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Abstract 

The progression of dementia prevalence over the years and the lack of efficient treatments to 

stop or reverse the cognitive decline make dementia a major public health challenge in the 

developed world. Identifying subjects at high risk of developing dementia could improve the 

management of these patients and help selecting the target population for preventive clinical 

trials. We used joint modeling to build a dynamic prediction tool of dementia based on the 

change over time of two neurocognitive tests (the Mini-Mental State Examination and the 

Isaacs Set Tests) as well as an autonomy scale (the Instrumental Activities of Daily Living). 

The model was estimated on the French cohort PAQUID and validated both internally in cross-

validation and externally on the French cohort 3C. We evaluated its predictive abilities through 

AUCROC and Brier score accounting for right censoring and competing risk of death and 

obtained AUC values equal to 0.95 in average for the risk of dementia in the next 5 or 10 years. 

This tool is able to discriminate a high risk group of subjects from the rest of the population. 

This could be of great help in clinical practice and research. 
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Dementia is defined as a progressive cognition-altering disease that significantly impacts daily 

life, Alzheimer’s disease being its most common form (70-80%) (1,2). By now 47 million of 

people are affected worldwide. This number is predicted to reach 131 million by 2050 due to 

population aging (3,4) while no efficient treatment is currently available (5,6).  

Clinical signs of dementia leading to diagnosis are preceded by a long pre-diagnosis phase of 

cognitive decline (7,8). The general consensus is that to be efficient, future treatments should 

target subjects in the pre-diagnosis phase (10). Being able to identify early subjects with high 

risk of dementia is of major interest to design, evaluate and later apply such a 

therapeutic/prevention strategy.  

Several prediction models have already been proposed using biomarkers, brain imaging, or 

cognitive tests (11,12,13). Those based on combinations of cognitive tests and/or autonomy 

scales are especially useful since such measures are noninvasive and not expensive and thus 

easily collected in epidemiologic studies and clinical practice (13–15). However, previous 

works proposed prediction tools based on a single measure or rarely two measures (16) of each 

predictor while cognitive tests and autonomy scales are time-dependent. Exploiting all the 

measures collected for a given individual until the current time and updating the prediction with 

each new measure could lead to more precise predictions since they would account for the 

individual change over time of the predictors. A few prediction scores for dementia have been 

previously proposed based on several repeated measures of a single time-dependent marker 

(17-19). 

In this paper, using a joint model for the time to dementia and multiple longitudinal markers, 

we propose a tool to predict the risk of dementia in the next 5 or 10 years using repeated 

measures of several easy to perform cognitive tests and an autonomy scale.. The model is 

estimated on a large French population based cohort (PAQUID) and carefully evaluated by 
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cross-validation on PAQUID and on an external validation cohort (3C) accounting for 

censoring and competing risk of death. 

METHODS 

Data 

PAQUID. The Personnes Agées QUID (PAQUID) cohort was used as learning sample. Created 

in 1988, it aimed to study brain aging and dependency in the elderly (20). The cohort included 

3,777 subjects randomly selected on the electoral rolls aged 65 years and over living at home 

in two Southwest departments of France. Participants first received a visit at home by a trained 

psychologist to collect information regarding their social, demographic and medical situation. 

Subjects were also asked to perform several neurocognitive tests. Dementia diagnosis was 

established by a two-step procedure detailed in Supplementary data: a screening was performed 

by the psychologist, then subjects screened positive were visited by a neurologist who 

established the diagnosis according to the DSMIIIR criteria. Subjects were then followed for 

25 years (with visits at t = 1, 3, 5, 8, 10, 13, 15, 17, 20, 22, and 25 years after inclusion) with 

the same set of cognitive tests and the same diagnosis procedure for dementia at each visit. For 

this study, the sample of analysis excluded subjects who were diagnosed with dementia, 

subjects with major hearing or visual impairment or confined to bed at inclusion, subjects 

without any follow-up visit and subjects who had no value during the follow-up for at least one 

of the four predictors considered (IST, MMSE, BVRT, IADL). The final sample included 2,880 

subjects (Flow-chart in Figure 1). The data are available upon request from the 2nd author. 

Three-City (3C). The Three-City cohort was used as validation sample. This cohort includes 

participants aged 65 years and over randomly selected on the electoral rolls of three French 

cities (Bordeaux, Dijon and Montpellier ) at the baseline visit between 1999 and 2001 (21). The 

validation sample consists only of the participants of Montpellier and Bordeaux (N=4363) 
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where follow-up lasted up to 17 years after inclusion with visits at t = 2, 4, 7, 10, 12, 14 and 17 

years (for Bordeaux only), whereas the follow-up was shorter in Dijon. The study design was 

similar to PAQUID. At baseline and at each follow-up visit participants completed several 

neurocognitive tests and were diagnosed with dementia according to the DSM-IV criteria as  

described in the Supplementary data. ). The same exclusion criteria as for the PAQUID sample 

were applied, leading to a final validation sample of 3,953 subjects (Figure 2). The data are 

available upon request from e3c.coordinatingcenter@gmail.com. 

 

Cognitive tests 

For building the prediction model we considered repeated measures of three cognitive tests and 

the IADL scale whose values at inclusion were all previously found predictors of dementia 

(14,22) and were repeatedly measured in both cohorts. 

Isaacs Set Test (IST). The IST measures verbal fluency (23). Participants must give as many 

words as possible belonging to four semantic categories (animals, cities, fruits, colors). In 

PAQUID, the test was stopped when the participant reached 10 words in each category leading 

to a strong ceiling effect. Given this truncation, we previously demonstrated that the score at 

15 seconds was a better measure of cognitive decline and had a Gaussian distribution (24,25). 

Thus we used the score at 15 seconds truncated at 10 words in each category both in PAQUID 

and 3C. The score ranges from 0 to 40. 

Mini-Mental State Examination (MMSE). The MMSE is a measure of global cognitive 

functioning (26). It measures orientation to space, orientation to time, immediate and delayed 

memory (repeating three words immediately and after a while), attention, language, and 

constructive praxis. The score ranges from 0 to 30 (higher is better).  
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Visual Retention Test of Benton (BVRT). The BVRT evaluates the visual memory: participants 

are shown a simple geometrical figure, and are then asked to find each among four proposals 

(27); this task is repeated for 15 different figures. The final score is the number of correct 

answers. It ranges from 0 to 15.  

Instrumental Activities of Daily Living (IADL). IADL is a scale that measures dependency. It 

consists of eight items in total, each evaluating one aspect of daily life. For each item, the scale 

ranges from 0 (completely independent, no help required) to 4 (completely dependent, unable 

to perform the activity alone). We used a subscale named IADL4 which only takes into 

consideration four items that were collected for both men and women and were previously 

shown to be associated with the risk of dementia in the PAQUID study (28): using the 

telephone, using means of transport, taking medication as prescribed, managing money. 

Statistical analysis 

Joint models. The prediction model was a multivariate joint model (29) that fits simultaneously 

the trajectories over time of the four markers using mixed models and the time-to-dementia 

using a proportional hazard model with approximation of the baseline hazard by penalized 

splines. Cognitive scores changes over time were described by linear mixed model  while 

IADL4 change was modeled by a log-linear Poisson mixed model. The proportional hazard 

model included as explanatory variables both the expected current value of the markers and the 

slope of the markers’ trajectories (on the log scale for IADL4).  

As the MMSE and BVRT have asymmetric distribution with floor and/or ceiling effects that 

can strongly biased linear mixed model estimates (25), they were normalized using a pre-

transformation estimated with a latent process mixed model in the LCMM package (30). As 

MMSE is a widely used test, the normalizing transformation was previously estimated with 

LCMM and validated on several cohorts and a tool was developed for easy computation of the 
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normalized score (NormPsy, 31). The BVRT transformation was directly estimated on the 

PAQUID sample with LCMM. The normalized MMSE and BVRT and the IST scores were 

then centered and standardized using the mean and standard deviation at inclusion. 

Model estimation. The strategy of analysis is detailed in the web appendix.  Briefly “unimarker” 

joint models were first estimated on repeated measures of each marker and time-to-dementia 

using the PAQUID sample. The mixed-effect sub-models and the time-to-dementia sub-model 

were both adjusted on the age at inclusion (standardized as such: (𝑎𝑎𝑎𝑎𝑎𝑎 − 65) 10⁄ ) for the 

mixed-effect sub-models), sex, and education status (1 if the subject had at least a primary 

school diploma, 0 if not). We selected the best unimarker models by comparing different 

modeling of the time-trend for the markers, . Second, the multimarkers model was estimated. 

Models were estimated using the R package JMbayes (32). Estimation of joint model with 

several longitudinal markers is challenging due to the large number of parameters and random 

effects. As convergence was not reached with the most complex 4-marker model, we removed 

the BVRT test which was by far the least predictive among the four unimarker models and 

slightly simplified the modeling of marker trajectories. In the final model, the time trend of the 

cognitive tests was modeled through cubic splines with 1 interior node, while that of IADL4 

was assumed to be linear (on the log scale). The three mixed models included correlated random 

intercept and slope with an unconstraint correlation structure between the 6 random effects.  

Predictions 

Using parameter estimates of the joint models, we estimated for each subject 𝑖𝑖 still at risk of 

dementia at a given time s, the probability to develop dementia between s and 𝑠𝑠 + 𝑡𝑡, given the 

repeated measures of the markers collected until s using formula [3] in Supplementary data. As 

each visit can take place approximately within one year of the planned date, for PAQUID, 

predictions were computed for 𝑠𝑠 = 0, 1, 2, 4, 6, 9, 11, 14, 16 and 18 years. For 3C, predictions 
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were computed for 𝑠𝑠 = 0, 3, 5, 8 and 11 years. Every prediction was calculated with an horizon 

(𝑡𝑡) equal to 5 years and 10 years. 

Evaluation of predictive abilities 

AUC and Brier Scores. Predictive abilities of the model were evaluated both by 5-fold cross-

validation on the learning data set PAQUID, and on the external validation sample 3C. The 

predictive accuracy was assessed by the AUC under the ROC curve (which represents the 

capacity of a model to discriminate between subjects who underwent the event and subjects 

who did not) and the Brier Score (BS, which measures the error of prediction). The Inverse 

probability of Censoring Weighting (IPCW) estimators of AUC and BS were computed using 

the R package TimeRoc accounting for both the right censoring and the competing risk of death 

(17,33).   

For subjects not diagnosed with dementia during the follow-up, their dementia status at death 

was unknown if they died several years after the last visit. As recommended by Jacqmin-Gadda 

et al (14) for computing AUC and BS for interval censored data, subjects who died without 

dementia diagnosis more than 2 years after the last visit were considered as right censored at 

the last visit. To account for competing risks, two definitions of AUC were estimated. In the 

first one, a control was defined as a subject who was free of any event (dementia or death) at 

time 𝑠𝑠 +  𝑡𝑡 (Formula [4a], Supplementary data), and in the second one, a control was defined 

as a subject who was free of the main event (dementia) at time 𝑠𝑠 +  𝑡𝑡  (Formula [4b], 

Supplementary data).  

Estimation of cumulative incidence of dementia and calibration. The joint model was estimated 

without accounting for competing death and thus the predicted probability was the probability 

to develop dementia in the 5 or 10 years assuming a null death risk in the window. To quantify 

the dementia risk accounting for competing risk of death and interval censoring for dementia, 
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we computed a non-parametric estimate of the 5-year and 10-year cumulative incidence of 

dementia for four risk groups defined according to the quartiles of the predicted probabilities 

(low, medium, high and very high) at each prediction time. For each group and each time s, an 

illness-death model was estimated by penalized likelihood maximization accounting for 

interval censoring (34) using all the subjects still at risk of dementia at the closest visit preceding 

𝑠𝑠. The  𝑡𝑡-year cumulative incidence is the probability to develop dementia before dying in the 

next 𝑡𝑡 years. The estimation was performed using the package SmoothHazard (35). 

To evaluate the calibration of the predicted probabilities for 𝑡𝑡=5 and 10 years and the impact of 

competing risks and interval censoring, we compared these estimates with the means of the 𝑡𝑡-

year predicted probabilities from the joint model and with the 𝑡𝑡-year cumulative incidence 

estimated by a Nelson Aalen estimator (using the packages survival (36) and riskRegression 

(37)) which neglects the competing death and interval censoring. 

RESULTS 

Data description 

The training (PAQUID) and validation samples (3C) are described in Table 1. Both cohorts 

have a mean age at inclusion around 73 years old and included approximately 60% of women. 

Subjects in 3C were more educated than subjects in PAQUID: 68.7% in PAQUID, 91.2% in 

3C have at least a primary school diploma (PSD). As a result, the initial values of the cognitive 

tests were slightly higher in 3C. Similarly, there were more subjects who were considered as 

autonomous at inclusion according to the IADL4 scale in 3C than in PAQUID (89.9% vs 

75.4%). Accordingly, the incidence of dementia in PAQUID was higher than in 3C 

(Supplementary Figure 1). Supplementary Figure 2 displays the spaghetti plots of observed 

values of MMSE, IST, BVRT and IADL for subsamples of PAQUID and 3C as well as smooth 
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mean curves estimated on whole samples; this highlights the differential evolution between 

subjects who developed dementia and the others.  

Model estimation 

Table 2 summarizes estimates of the four unimarker joint models and the final 3-marker joint 

model. An increase of the age at inclusion was associated with a significant increased risk of 

dementia (adjusted on sex, education status, current value and slope of the marker) except in 

models including IADL. After adjustment on current cognitive and IADL scores and their 

slopes, the risk of dementia significantly increased with the educational level. Indeed, when 

subjects with a higher educational status reach the same values and slopes of cognitive tests 

than subjects with a lower educational status, it is a consequence of a stronger cognitive decline, 

associated with a higher risk of dementia. After adjustment, women showed a significant lower 

risk of dementia compared to men in all models except in the unimarker models considering 

only IST or only BVRT. 

According to the unimarker models, an increase in the current value of each cognitive test or 

its current slope (i.e. a less decreasing slope since slopes are negative) was significantly 

associated with a decreased risk of developing dementia. Opposite statements apply to the 

IADL4 scale as an increase of the IADL4 value means more dependency. In the fully adjusted 

multimarker joint model, the directions of the associations remained the same but the 

associations were much weaker for each marker. 

Comparison of 5-year predictive abilities 

Figure 3 compares the 5-year predictive abilities of the four unimarker models and the final 3-

markers model by 5-fold cross-validation on the PAQUID cohort (left panel) and by external 

validation on the 3C cohort (right panel). The first AUC evaluates the discrimination between 

subjects who develop dementia and subjects alive and free of dementia at 5-years  while the 
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second one evaluates discrimination between subjects who develop dementia  and all the others 

(who died without dementia within 5 years or were alive and free of dementia 5 years later). 

These two estimates were very similar on Figure 3. Among the four unimarker models, MMSE 

and IADL4 had the best predictive abilities according to both AUC and BS. Their AUC values 

were above 0.9 on PAQUID (cross-validation), and above 0.85 on 3C. These AUCs are the 

probabilities that a subject randomly selected among those who develop dementia in the next 5 

years has a higher predicted probabilities of dementia than a randomly selected subject free of 

dementia after five years. The IST exhibited only slightly lower predictive abilities while 

prediction performances of the BVRT were much lower. 

More importantly, the joint model combining MMSE, IST and IADL4 exhibited better 

predictive abilities than each of the unimarker model, both in internal and external validation, 

whatever the evaluation criterion and whatever the time of predictions. The cross-validated 

AUC values on PAQUID were between 0.93 and 0.96 depending on the time of prediction and 

between 0.85 and 0.96 on the 3C cohort. 

The predictive abilities of the models were further evaluated in the subsamples with “high 

cognitive level” (no IADL limitations and MMSE>28) and “no cognitive impairment” (no 

IADL limitations and MMSE>23) at baseline. Results were very similar with those of the full 

samples but the difference between the MMSE model and the 3-markers model was very small 

among the high cognitive level subjects (Supplementary Figures 3 and 4). 

5-year cumulative incidence estimation and calibration 

Supplementary Figure 5 displays the non-parametric estimates of the 5-year cumulative 

incidence of dementia in each risk group defined by the quartiles of the distribution of the 

predicted probabilities, according to the time of prediction accounting for competing death and 

interval censoring. In PAQUID as well as in 3C, the results show a much higher cumulative 
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incidence in the fourth quartile. In this group, the 5-year cumulative incidence ranges from 0.26 

to 0.66 according to the time of prediction in PAQUID and from 0.23 to 0.32 in 3C. Subjects 

belonging to the other quartiles have a very low risk of dementia before death: below 0.1 in 3C 

at all timepoints, and below 0.2 at most timepoints in PAQUID with a clear gradient between 

the 3 quartiles. 

Figure 4 (top panel) compares the above estimates of the cumulative incidence with the Nelson-

Aalen estimates neglecting competing death and interval censoring and with the mean of the 

predicted probabilities. The latter fits well the Nelson Aalen estimates showing a good 

calibration of the joint model. The differences with the illness-death estimator are also quite 

small highlighting a modest impact of the competing risk of death and interval censoring on 5-

year periods except for the medium and high risk group for PAQUID. 

Overall, the results do show that the predictive tool is well calibrated and exhibits excellent 

discrimination.  

10-year prediction 

Figure 5 presents the predictive abilities of the 5 models for 10-year dementia prediction. The 

3-markers model remained the best but the difference between the AUC and BS of the BVRT 

model and the other models was smaller. As expected, the main difference between 5-year and 

10-year prediction was the stronger impact of competing death for 10-year prediction. Indeed 

the AUC considering deceased subjects as control (AUC2) was smaller than the AUC excluding 

subjects who died (AUC1) and the predicted probabilities assuming no death in the highest 

quartile were overestimated compared to the illness-death estimates accounting for competing 

risks and interval censoring as shown in the calibration plot (Figure 4 bottom panel). 
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DISCUSSION 

We designed a predictive tool based on the evolution over time of two neurocognitive tests (IST 

and MMSE) and one dependency scale (IADL4). This tool is able to predict the risk of dementia 

in the following 5 or 10 years with great accuracy (AUC values close to 0.95). Especially, 

subjects in the highest quartile of predictive scores have a much higher risk of dementia than 

other subjects. 

 

Existing predictive models in the literature show a lot of diversity depending on the variables 

and factors selected to compute the risk of dementia. Few of them have been validated (13,38). 

The main variables selected to build the predictive tools are demographic information (age, sex, 

education), cognitive tests scores (the MMSE being the most used), cardio-vascular risk factors 

and comorbidities and genetic factors (mostly the APOE allele status). Many prediction models 

are based on one or several cognitive scores (39–45), leading to AUC values ranging between 

0.63 (44) and 0.89 (40,41). Combining information from both cognitive tests and the 

dependency scale IADL4 also led to good prediction accuracy (15). However, all these tools 

only use baseline evaluation to predict the risk of dementia. Some works have compared 

predictive abilities of models using repeated measures of a unique predictor, either cognitive 

tests or functional scales (17-19). A few tools based on repeated measures of several markers 

were proposed using either deep learning (46) or functional principal component analysis (47). 

Most of them used data from the Alzheimer Disease Neuroimaging Initiative (18,19,46,47) and 

focused on short-term prediction of conversion from MCI to dementia (6 to 18 months) 

reaching an AUC around 0.8. To our knowledge, no studies have been conducted to predict the 

risk of dementia in the general population using joint models with multiple longitudinal 

markers.  



 14 

Our study has several strengths. First, this work was conducted on two large population-based 

cohorts (PAQUID and 3C) with a long follow-up, which allowed us to validate the tool both in 

cross-validation and in external validation. Additionally, unlike many cohorts that establish 

dementia based on algorithms only, both PAQUID and 3C use an accurate clinical diagnosis 

for dementia established by a neurologist according to validated criteria. Second, our predictive 

tool combines information from repeated measurements of two neurocognitive tests as well as 

a dependency scale,. Using repeated measurements rather than baseline values allows to detect 

a cognitive decline or loss of autonomy. Even if the MMSE and the IADL4 are already on their 

own good predictors of dementia, we succeeded in increasing the predictive abilities of the tool 

by combining information from these markers with the IST, reaching AUC values close to 0.95.  

A limitation of this work is that the competing risk of death was not fully handled. As no 

software was available for estimating joint models and computing predictions with multiple 

markers accounting for both competing risks and interval censoring of the main event, the joint 

model was estimated by neglecting these two issues. However, predictive abilities of the joint 

model were evaluated by AUC and BS accounting for the competing risk of death. Moreover, 

to quantify the impact of competing risk and interval censoring, we estimated the cumulative 

incidence of dementia over the window of prediction in each risk group using a non-parametric 

approach that deals with these two issues and compared it with the Nelson-Aalen estimator and 

the mean of the predicted probabilities from the joint models. The joint model appeared well 

calibrated and its 5-year predictions were close to those obtained by the non-parametric illness-

death model. This suggests that the impact of the competing risk and interval censoring remains 

modest over 5-year intervals of prediction. We also faced convergence issues when estimating 

multimarker models. Consequently, we were not able to include the BVRT in the final model. 

As it was by far the least predictive marker on its own, however, it is very likely that it would 

not have significantly increased the predictive abilities of the tool. 
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We estimated two discrimination measures. The first AUC is more useful for individuals who 

want to quantify their risk of developing dementia if they survive from other causes for the next 

5 or 10-years while the second one is more useful in a Public Health perspective to discriminate 

all subjects who could need care for dementia. 

Conclusion 

Our results show that combining repeated measures of two cognitive tests (IST and MMSE) 

and a dependency scale (IADL4) increases the predictive abilities of a simple and inexpensive 

dementia prediction tool, reaching AUC values around 0.95. Using joint modeling makes it 

possible to compute predictions that can be updated at each new measurement. Numerous 

researches are currently ongoing to evaluate the performances of biomarkers for dementia and 

Alzheimer's disease prediction. However, our results show that, using two cognitive tests and a 

dependency scale very easy and quick to measure, we were able to obtain a highly powerful 

dementia prediction tool. This tool could be of great help to assist clinicians or clinical 

researchers in identifying high-risk subjects, possibly to be included in clinical prevention trial. 

Moreover, the prediction models using only repeated measures of MMSE, or to a lesser degree, 

IADL scale, also exhibited good behavior. This makes these tools interesting when the three 

markers are not collected or for use by general practitioners, for either reassuring their worried 

patients or referring them to specialists if needed. A new assessment of prediction performances 

in this framework would be useful. 
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Figure 1: Flowchart (PAQUID cohort). 

 

Figure 2: Flowchart (3C cohort). 

 

Figure 3: Estimation of the AUC and the Brier Scores for 5-year dementia prediction from time 
s on PAQUID (5-fold cross-validation) (A) and 3C (external validation) (B). To compute the 
AUC n°1, a control is defined as a subject who was free of any event (dementia or death) at 
time 𝒔𝒔 +  𝟓𝟓. To compute the AUC n°2, a control is defined as a subject who was free of the 
main event (dementia) at time 𝒔𝒔 +  𝟓𝟓 . Predictions are computed from either the final 
multimarker joint model (solid line) or a unimarker joint model based on MMSE (short dashed 
line), IADL4 (dotted line), IST (dashed-dotted line) or BVRT (long dashed line). 

 
Figure 4: Calibration of the predictive tool on PAQUID (A) and 3C (B). Comparison of the 
means of the predicted probabilities from the joint model with non parametric estimates of the 
5-year (top panel) and 10-year (bottom panel) cumulative incidence computed by Nelson-Aalen 
estimators and illness-death models. Red, very high risk group; yellow, high risk group; blue, 
medium risk group; black, low risk group; solid line, Nelson-Aalen estimators; dashed line, 
illness-death models estimators; dotted line, means of the predicted probabilities from the joint 
model. 

 
Figure 5: Estimation of the AUC and the Brier Scores for 10-year dementia prediction from 
time s on PAQUID (5-fold cross-validation) (A) and 3C (external validation) (B). Definitions 
of AUC n°1 and AUC n°2 are identical to Figure 3. Predictions are computed from either the 
final multimarker joint model (solid line) or a unimarker joint model based on MMSE (short 
dashed line), IADL4 (dotted line), IST (dashed-dotted line) or BVRT (long dashed line). 
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Table 1. Description of the learning dataset (PAQUID) and the validation dataset (3C). IST: 
Isaacs Set Tests at 15 seconds; MMSE: Mini-Mental State Examination; BVRT: Benton Visual 
Retention Test; IADL: Instrumental Activities of Daily Living. 

 

 

* The follow-up time is defined as the time to dementia diagnosis or to the last cognitive assessment for 
censored subjects 

 

 PAQUID 
(N=2,880) 

3C 
(N=3,953) 

Sex 
Women 

 
1,643 (57%) 

 
2,354 (59.5%) 

Education status 
With primary school diploma 

 

 
1,979 (68.7%) 

 
3,606 (91.2%) 

Age at inclusion (mean, SD) 73.09 (5.89) 73.25 (5) 
Cognitive scores at baseline (mean, SD) 

IST  
MMSE  
BVRT 

 
27.25 (6.14) 
26.25 (2.97) 
10.27 (2.6) 

 
29.48 (5.56) 
27.32 (1.97) 
11.59 (2.04) 

Autonomy scale at baseline IADL4 
0 
1 
2 
3 
4 

missing 

 
2,172 (75.4%) 
447 (15.5%) 
162 (5.6%) 
68 (2.4%) 
25 (0.9%) 
6 (0.2%) 

 
3,552 (89.9%) 

313 (7.9%) 
53 (1.3%) 
20 (0.5%) 
1 (0.02%) 
14 (0.4%) 

Follow-up in years * 
Median and [IQR] 

 
9.29 [3.68,14.95] 

 
9.73 [5.64,15.4] 

Number of repeated measures 
MMSE:Median and [IQR] 

 
4 [3, 7] 

 
5 [3, 5] 

IADL:Median and [IQR] 4 [3, 7] 5 [3, 5] 
IST:Median and [IQR] 4 [2, 6] 4 [3, 5] 

BVRT:Median and [IQR] 4 [2, 6] 4 [3, 5] 
Incident cases of dementia   

Number and (%) 813 (28.2%) 602 (15.2%) 
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Table 2. Estimates (with 95% credibility interval) of the time-to-event submodel of the joint 
models. PSD: primary school diploma; IST: Isaacs Set Tests; MMSE: Mini-Mental State 
Examination; BVRT: Visual Retention Test of Benton; IADL: Instrumental Activities of Daily 
Living. 

 
 
 
 

 Unimarker 3-markers 
 IST MMSE BVRT IADL4  

Sex 
(Ref: men) 

0.058 
 [-0.113, 0.242]  

-0.35 
 [-0.592, -0.082]  

 

-0.11 
 [-0.287, 0.068]   

 

-0.61 
 [-0.894, -0.344]  

 

-0.45 
 [-0.693, -0.204]  

PSD vs no PSD 0.270 
 [0.091, 0.444]  

0.874 
 [0.609, 1.15]  

 

0.681 
 [0.477, 0.891]  

 

0.454 
 [0.192, 0.716]  

 

0.631 
 [0.382, 0.896]  

 
Age in year 0.067 

 [0.053, 0.082]  
0.042 

 [0.022, 0.059]  
 

0.064 
[0.051, 0.079]  

 

-0.039 
 [-0.059, -0.020] 

 

-0.024 
 [-0.043, -0.005]  

 
IST_value -1.437 

 [-1.598, -1.29]  
 

   -0.177 
 [-0.390, 0.038]  

 
IST_slope -0.870 

 [-1.18, -0.563]  
 

   -0.006 
 [-0.589, 0.643]  

 
MMSE_value  -2.14 

 [-2.42, -1.91]  
 

  -0.832 
 [-1.10, -0.592]  

 
MMSE_slope  -1.24 

 [-1.53, -0.97]  
 

  -0.175 
 [-0.704, 0.316]  
 

BVRT_value   -1.59 
 [-1.81, -1.39]  

 

  

BVRT_slope   -0.458 
 [-0.797, -0.148]  

 

  

IADL4_value    2.83 
 [2.47, 3.27]  

 

1.58 
 [1.27, 1.92]  

IADL4_slope    2.24 
 [1.75, 2.83]  

 

0.945 
 [0.560, 1.38]  
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