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Abstract This paper considers the mixing of two dielectric miscible viscous liquids with different electric
permittivities bounded by solid walls in an external electric field normal to the interface of the liquids.
The mutual diffusion of these two liquids leads to the formation of an unsteady self-similar 1D diffusion
layer. This layer is found to be unstable to the perturbations of the interface. A special sophisticated
mathematical approach in self-similar variables is developed to estimate its stability. The results of a
linear stability theory are verified by direct numerical simulations of the full nonlinear problem. A mixing
efficiency based on the separation amplitude and an optimal electric field strength to achieve the fastest

mixing are proposed in the present study.

1 Introduction

Micro- and nanoscale phenomena of moving conductive
and non-conductive liquids with an interface between
them are of particular practical interest. Multi-phase
flows in micro-scale systems have recently found numer-
ous applications in a wide range of fields like bio-
chemical processing, such as lab-on-chip reactors [1-4],
mixers [5,6], DNA extraction [7], drug delivery [8], oil
extraction from porous rock formations [9,10]. Minia-
turized bioanalytical systems attempt to incorporate
many of the necessary components and functionality
on the surface of a typical laboratory substrate. Micro
Total Analysis Systems (WTAS) components include
reaction chambers, pumps, flow sensors, micromixers,
diluters, and preconcentrators. Analyses requiring rapid
mixing include immunoassays, DNA hybridization, and
general cell-molecule interaction. Application of these
techniques requires mixing of reagents that have rela-
tively low diffusion coefficients.

Rapid homogeneous mixing becomes increasingly
important [11-24]. Such a mixing can be caused by
either mechanical vibration through hydrodynamical
instability [25-27] or by a special type of hydro-electro
instability [28-33]. Electroconvective mixing may result
from many physical factors, such as the first kind elec-
troosmotic flow [34], the second kind electroosmotic
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flow [35,36], buoyant convection [37], conductivity gra-
dient [38], and electric permittivities [39]. The slow dif-
fusion mechanism of mixing is thus complemented by
much faster advection mixing.

The electrohydrodynamic instability of liquid flows
with conductivity gradients stems from pioneer works
by Hoburg and Melcher [28] which are based on classi-
cal models by Melcher and Taylor [29] (see also [30,31]).
Hoburg and Melcher [28] described the key mechanism
of this instability as caused by charge accumulation at
the perturbed interface, and made qualitative compar-
isons of their theory to experiments, but they neglected
the diffusion of electric conductivity. As a result, in their
calculation, the threshold of instability was absent.
This was improved later by Baygents and Baldessari
[32] with a more realistic model. However, Baygents
and Baldessari [32] wrongly assumed the principle of
exchange of stability in their linear stability analysis.
This was corrected subsequently by Chang et al. [40]
and Sharan et al. [41]. Research on this electrohydro-
dynamic instability was continued by Santiago’s team
[16-20,33]. A flow in a long rectangular-cross-section
microchannel with a conductity gradient orthogonal to
the main flow direction and an external electric field
was considered both experimentally and theoretically
in [16]. It was found experimentally that such a system
exhibits a critical electric field above which the flow
is unstable. In the theoretical part, the previous model
was generalized in [32]. The volume charge was assumed
small enough to be neglected in the ion transport equa-
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tions, but not in the equations of fluid motion, where
the Coulomb body force, based on the residual charge,
was taken into consideration.

A general linear stability analysis of miscible sys-
tems is not trivial due to the fact that the base state
of the problem is time-dependent and the correspond-
ing linear system ceases to be of classical type. Specif-
ically, the case considered in this paper differs, in two
ways, from the usually considered above-mentioned
cases of electrohydrodynamic instability: (a) the liquids
are dielectrics rather than conductors and, hence, the
Maxwell-Wagner stresses are created by the nonuni-
formity of the dielectric permittivity; (b) the liquids
are miscible and the boundary separating them spreads
with time by diffusion. These factors make the problem
more difficult, but also more interesting. Besides the
practical part connected with the desire of reducing
the mixing time, this problem raises some fundamen-
tal questions, namely, wether it is possible or not to
obtain instability in miscible flows with nonuniformly
distributed permittivity of these dielectric liquids. To
our knowledge, the stability problem of the interface of
two viscous miscible liquids with different electric per-
mittivities has not yet been addressed in the past.

The present paper considers a two-phase microflow
of dielectric miscible viscous liquids with different elec-
tric permittivities bounded by two flat solid walls in
an external electric field, normal to the interface. The
interface is initially expanding due to diffusion and this
process can be described by a self-similar solution. The
expanded solution takes into account the nonuniformity
of the permittivity of the two liquids which, in principle,
can trigger an instability. There is an obvious mathe-
matical difficulty in the solution of the given stability
problem: in the self-similar solution, the coefficients of
the stability equations depend exponentially on time
and an exponential growth rate of the perturbations is
thus expected. The classical frozen coefficient approach
[42,43] is not applicable in our case. We use sophis-
ticated ad hoc method proposed by Shtemler [44] to
solve our stability problem. In order to accomplish our
investigation and to prove the results of the linear anal-
ysis, we apply a numerical integration of the full prob-
lem without any simplification. These analytical results
are then complemented by direct numerical simulation
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solutions of the full non-linear problem, and an estima-
tion of the mixing efficiency is proposed as a function
of the separation amplitude.

2 Formulation

We consider two viscous miscible dielectric liquids in
a 2h gap between conducting impermeable walls, see
Fig. 1. Notations with tilde are used for the dimen-
sional variables, as opposed to their dimensionless coun-
terparts without tilde. (Z,y) are the Cartesian coordi-
nates, where z is directed along the channel and g is
normal to it. R

A potential difference AV is applied between the
walls; any external forces (such as gravity), except the
electrical one, are neglected. It is assumed that at the
initial time, £ = 0, the interface is a straight line
y = 0 perturbed with small-amplitude natural “room
perturbations” and the first liquid is located in the
—h < y < 0 region, while the second liquid is in the
region 0 < y < h. These liquids are denoted by the
indices of 1 and 2, respectively. At time £ > 0, the inter-
face is subject to mutual diffusion of these liquids and
an electrohydrodynamic instability may arise. The fol-
lowing two-dimensional equations describe the mixture
behavior,

(0w ~O0w ~Ow
p(aﬁUa:z*Vag)
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where w is the mass fraction of the liquid 1 in the mix-
ture with 0 < w < 1; D, p, it and € are the diffusion,
the density, the dynamic viscosity and the dielectric
permittivity of the mixture, respectively; (U, V) are
the components of the velocity vector, II is the pres-
sure and 7}; is the viscous stress tensor. The first equa-
tion describes the mixing by diffusion and advection
([45]), the next three equations are Navier—Stokes equa-
tions with Maxwell forces in the right-hand side and
the continuity equation. The channel is micron-sized
and, thus, the Reynolds number is small so that Stokes’
approximation for the creeping flow can be applied.
The last equation is the Maxwell equation for the elec-
tric field which should be completed by the relation,
(Ey, Ey) = =V, where ® is the electric potential.

In this work, we restrict our analysis to the partic-
ular case where the densities of the fluids are equal
to each other (this hypothesis will be further verified
with experimental data, see Sect. 4.3.4). The liquids
are assumed to be Newtonian, but the viscosity i of
their mixture depends on the mass fraction w, as well
as the dielectric permittivity €. Both dependecies are
assumed to be linear functions of w,

fi = finw + fig(1 — w) = fig + (f — fig)w,
E=&g1w+ 52(1 — w) =éE9+ (51 — 52)’[1). (6)

The system (1-5) can be rewrittten into the following
form,

_dw =~ (O*w  DP*w

]
9 (.0 9 ([ _0d
7 ()3 (45) - N
07 0%
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This system must be complemented by relations (6) and
proper boundary conditions (BCs). The solid surfaces
7y = th are assumed to be impermeable to the mixture,
and the no-slip conditions for the velocity are applied at
these surfaces. The potential difference AV is applied
between the walls. These conditions can be written as
follows,

= AV, (12)

We neglect the net flow along the Z-direction in order
to consider only the impact of electric forces on mixing.
The spatial domain is assumed to be infinitely large in
the Z-direction, and the boundedness of the solution as
T — too is imposed. Therefore, periodic conditions will
be assumed with respect to  in the numerical simula-
tions described in Sect. 4.2.

Adding initial conditions for the fraction w completes
the system (7)-(12). At £ =0,

w=1 at —h<§<O0,

w=0 at 0<g§<h (13)

3 Simplified analytical solution

3.1 A one-dimensional self-similar solution

At the initial time £ = 0, liquids 1 and 2 are separated
by a sharp boundary at § = 0. At subsequent moments,
t > 0, mutual diffusion of liquids occurs, which leads to
the formation of a thin diffusion layer §(£). Note that
at this period of time, the influence of walls can be
neglected and the system has no characteristic size and
its solution is thus self-similar.

As long as the diffusion layer is uniform, 9/0% = 0

and its thickness 0 is a good choice for the dynamic

characteristic length, 6 = 2\/57?. The spatial variable
§ is normalized to &, and the self-similar variable is
introduced as, n = g/ 6. The derivatives with respect to
t and §j can be written as,

0 g 0 7 1 0

ot 4i/Dion’ 95 2/pidn

Equation (7) turns into the following ordinary differen-
tial equation and BCs,

(14)

d?w dw
d7772+27]d—77:(), n— —oo: w—1,
n—4oo: w—0. (15)
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The solution of Eq. (15) is a well-known error function,

w =

= 11 —erf(a)]. (16)

The permittivity and the viscosity in the mixing layer
can readily be found from relations (6),

5262;€1erf(77)+52;61,
o — i i + fi
o=t . FL ort(ag) + H2 : = (17)

By introducing dimensionless parameters 3 and v as,

p=Lo1, 4=y (18)
€2 H2

we get the dimensionless solution of the permittivity
and the viscosity,

=Tt 1, =

o2

(1 — erf(n)] + 1.
(19)
The electric potential P is completely determined from

the permittivity field £ (Eq. 8) and the corresponding
BC (Eq. 12),

(20)

where C' is a constant of integration, which is found
from the BCs at y = +h,

in which,

2 (e

We can reduce Eq. (23) to dimensionless form using
(14), (18), (19),

AV=C2{M<J+H2+ﬂ) (24)
€2 1475
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where H = h/d and,
0 H
1 1 1
J = -———]d +/ - —=1]dn.
/—H <€ L+ 5) (S (5 ) !
(25)

Assuming that § < h, the finite limits of integration
can be approximated by infinite ones,

0 0o
1 1 1
J = -——)d -—1)d
/m<s 1+6)"+A (6 ) "
(26)
which means that J depends only on 3, but not on H.

The unknown of integration C' can then be deduced
from Eq. (24),

L BAV 1+
C= , 27
o/pi Q+B)H +(1+3)J (27)
with its following dimensionless form,
1
C- +h (28)

2+B)H+(1+8)J’

where C' = 2_7\/137 C.
EaAV

Gravity forces are absent and the problem can thus
be taken as symetric and without loss of generality, the
bottom and the top liquids can be swapped. Therefore,
only positive § can be considered, J(8) is evaluated
numerically and tabulated (see Table 1).

The hydrodynamics is decoupled from the one-
dimensional solution and the velocity components are
vanishing (see Egs. 9-10), but the Coulomb forces pro-
duce a nonzero pressure field from Eq. (10). The cor-
responding solutions for the velocity and pressure field
can be written as follows,

3.2 Stability of the self-similar solution

The interface between the two liquids is always slightly
disturbed by natural “room perturbations”. These
small disturbances can either decay or grow. In the lat-
ter case, the 1D solution is unstable and must evolve
into some more complex state, than the one obtained
in Sect. 3.1.

We consider the linear stability of the 1D self-similar
solution and we slightly perturb it in the Z-direction. It
is more convenient to use different reference values in =
and g-directions,

lo = 1/ag : length in Z-direction;
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Table 1 The function J for different values of 3

Page 50f 14 1

8 0.10 0.20 0.40 0.70
—0.0870

J —0.0035 —0.0121 —0.0383

1.0 2.0 5.0 10.0
—0.138 —0.289 —0.580 —0.830

6= 2\/ﬁ7t~ : length in g-direction;
Uy = f)/ Iy : velocity in Z-direction:;
Vo = ﬁg/l?) : velocity in g-direction;
[y = Djip/5? : pressure;

AV : drop of potential.

Here &y is some characteristic wavenumber_and to is
some characteristic time (we used o = 12/D, but the
resulting dimensionless equations do not depend on its
choice). New independent variables and their deriva-
tives are introduced,

T:ia §—$040, 77:2: g~7
to 1) o2/ Dt
0 o 1 9 0 .0
ot or EU% GF 0408*57 (30)
0 10
—_— = == 3]‘
dy  §0n (81)

In self-similar variables, Eq. (7) turns into the following
one,

811} 8w ow 8w

Pw 0w
- (agz : w) | @)

The dimensionless dielectric permittivity ¢ and the
dimensionless viscosity p are linear functions of w and
can be found from (6),

e =1+ puw(r,&n), p=1+~yw(r,&n). (33)

The electric potential (Eq. 8) turns into,

L0 (00 9 [ 0D\
“ag(‘fag)%(%)‘“ (39

The dimensionless parameter a = ddp can have
two different interpretations: (i) a dimensionless dif-

fusion length (derived from 0) or (ii) a dimensionless
wavenumber (derived from &g). We will use the sec-
ond choice. This wavenumber depends on time and
for sufficiently large time it is assumed to be a slow
parameter. The diffusion layer between the two liquids
expands exponentially and, therefore, the stability of
the self-similar solution cannot be investigated by clas-
sical methods as in Refs. [42,43]. The details can be

found in Ref. [44], and the corresponding method was
successfully applied in [46] and [47]. Details on this will
be given later.

Introducing the stream function ¥ from the rela-
tions,

ov ov

and substituting them into Eqgs. (9)—(10), we get,
O (PN L, 92 OPUN L 02 (0P
anz \"onz ) "7 agon Mogon) T oz \Moe2

o2 02 92V 5 02 92V
9e2 “ n2 T oS \F o
o€ on &

o (09 a2<1> 200 0@
T oe \ o an? 0¢ 9€on
2 2
AP (0 220,00 020 (36)
on \ On 9€on o¢ 0g?
Here, the parameter, A = % is introduced. It char-
2

acterises the coupling between hydrodynamics and elec-
trostatics and for fixed physical properties, it corre-
sponds to the square of the dimensionless potential
drop.

Imposing small perturbations on the 1D self-similar
solution, substituting them into Eqgs. (32)—(36) and lin-
earizing with respect to the perturbations turns this
system into a linear system with the coefficients inde-
pendent of the coordinate £. It allows seeking sinusoidal
elementary solution with respect to £-coordinate but its
dependence on time must be changed from exponen-
tial to the power one. The reason comes from the fact
that in this linear stability analysis, the coefﬁment of
the time derivative depends itself on time [47' 5, in Eq.
(32)]. As a result, the linear perturbations will not grow
exponentially With time, as we used to have in most
of the classical linear stability hydrodynamic problems,
but in form of power law in time,

w = wo(n) + BT, B = Do(n) + (n)es?,
U = —iW(n)esr?, (37)

where subscript 0 refers to the 1D self-similar solu-
tion and A is the growth rate. The factor —i before the
amplitude of the stream function is introduced in order
to make all the system coefficients real. Upon substi-
tution of the expressions (37) into Egs. (32), (34) and
(36), omitting the subscript ‘0’ and after linearization,
we get the following system of ODEs,
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wave number evolution with time
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Fig. 2 Growth rate A vs 5]

the wavenumber « for a wave number evolution with time
A = 1500, 8 = 2.25 and 4]

v = 0 and different values 3 | stable

of the dimensionless
half-width of the channel 27
H and, b A = 1500, H =2 -
and different values of

dimensionless viscosity ~y 0

unstable

stable

| stable stable

unstable

0 0.5 1
(63
(a)
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L (@IV _ 2042\11” + a4\i/)
+v (w//\i/// + 2wl\i1”/ _ 2a2w'\f1’ + a2w”\fl>
= AD' (20" — B'e’), (40)

where the prime means the derivative with respect to
1. The BCs are,

Ww=0 &=0, V=0, W' =0at n=H. (41)

Here from the self-similar solution,
e=1+ g[l —erf(n)]+1, p=1+ %[1 —erf(n)] + 1,
® = C(H, g%. (42)

The formulated spectral stability problem is described
by four outer parameters, 3, v, H and A and one inner
parameter, the wavenumber, a (C(H, () is defined via
J(B) (see Eq. 28) and is presented in Table 1). Note
that G characterizes the ratio of the permittivity of the
two liquids, v is the ratio of their viscosity, A is the
normalized strength of the electric field, H and « are
slowly changing parameters with time.

The eigenvalue problem for the growth rate A\ was
solved numerically by the shooting method, using A as
a parameter, conditions (41) at n = —H as the initial
conditions for the Cauchy problem and the correspond-
ing conditions at n = +H as the target.

The dependence of the growth rate A on the wavenum-
ber a for equal viscosity of liquids v = 0 for differ-
ent dimensionless channel widths H = h/0 is presented
in Fig. 2a. The influence of different viscosities on the
dependence A(«) is shown in Fig. 2b. Increasing the
value of v = fi1/fia — 1 leads to a system which is
more and more stable. Note that for equal liquid per-
mittivity 8 = 0 the flow is stable for any value of other
parameters. This fact allows us calling this instability
as the electric-permittivity-based instability which cor-
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15 2 0 05 1 15 2
[0}
(b)
responds to a new type of instability in miscible fluids.
According to the classification of Cross and Hohen-
berg [48], the instability described above is a short-wave
instability: the long waves and the very short waves are
stable, while the intermediate ones are unstable. This
classification determines the behavior of the perturba-
tions in time. The peculiarity of our case is that while
the dimensional wavenumber & and the channel width A
are fixed, their dimensionless counterparts o = & and
H = h/¢ are slowly changing in time. The fact that H
and « are time-dependent is justified both experimen-

tally and in numerical simulations. In Fig. 3 the results
are presented in the coordinates,

% = %\/DE, a = 2a0V Di,

for different fixed parameters A and (3, which are inde-
pendent of time.

The ratio k = a/H ! does not depend on time, but
the position of the point on this k-line depends on time.
Each straight line, emanating from the origin (0,0),
with the inclination k, (a =k %), characterizes the sce-
nario of the time evolution of the imposed perturbation
with dimensional and constant in time wavenumber d.
The point (1/H,«) on each straight line moves away

from the origin as a square root of time, Vi

For sufficiently large & > k* (which corresponds to
short waves) the straight line with inclination k will
be in the stable region. The corresponding perturba-
tion on the entire line will decay. For k < k* (interme-
diate and long waves), the straight line will cross the
unstable region, but at small times, the perturbation
will always decay, reflecting the short-wave instability.
For the marginal case, k = k*, the straight line only
touches the instability region, but does not cross it.
Hence, this results in a rather sophisticated behavior.
Depending on the value of k, two different scenarios
are possible: (a) stable, when the perturbation always
decays; (b) unstable, when the perturbation originally
decays, then grows and eventually decays again. Such
behavior will be confirmed later in our direct numerical
simulation.
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Fig. 3 Marginal stability curves for § = 2.25 and v =0 in

coordinates a—1/H. The wavenumber o and 1/H are chang-

ing along the straight line as it is shown by the red arrows; A

during this evolution successively transfers between stable,

unstable and again stable regions

4 Direct numerical simulation

To make the analysis complete, the 1D self-similar ana-
lytic solution and its stability investigation are supple-
mented by the direct numerical simulation (DNS) of the
full nonlinear problem.

4.1 Dimensionless equations

In order to render the system dimensionless, the fol-
lowing characteristic quantities are chosen in our direct
numerical simulations,

h : half-width of the channel;

h?/D : time;

Uo = D/ﬁ : velocity;

Iy = Djiz/h? : pressure;

&9 : permittivity of the fluid 2;

AV : drop of potential over the channel width.

Unlike Sect. 3, we select a time-independent character-
istic width here, which will simplify the interpretation
of the results. The problem is described by the following
dimensionless equations,

Ow ow ow 0w Pw

o [ 0d o [ 0d

o (752) oy (5 ) =© ()

O L, 0 (OUN O ( U\, 0 (v
ox oz \M oz Jy “ay Jy K o
Aoe | (0D [0d\?

=30 |(5) +(5) | 45)

om0 (VN D (U D (v
y dy “ay ox M@y or \M oz
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Ade [ (90N> [00\*
_aY%lf= il ; 46
2o | (5:) + (5) @
ou oV
— 4+ —=0. 47
Ox + dy (47)
The BCs are,
0
y==x1: U=V =0, —wZO;
Ay
@iy — B,y = 1. (48)
and initial conditions are as follows,
t=0: w=1 at —-1<y<0,
w=0 at 0<y<l, (49)

where small perturbations in the x-direction on the
interface are assumed to be superimposed on this BC.

The problem is characterized by three dimensionless
parameters: (3, v and A, all defined previously in Sect. 3.
The latter can be rewritten as,

EAVZ  AVZ AV?

A = = = —,
Djiy Dps/ey AV

which represents the square of the dimensionless drop of
the electric potential with the electroviscous potential

AV = 1/ Djfiz/2s.
In order to distinguish between dimensionless

wavenumbers defined in the self-similar analysis and the
present DNS model, we denote the wavenumber here as
k = ah in contrast to a = a0 in the self-similar basis,
so that k = I/LH, where H = h/6.

Note that k is a dimensionless wave number in the
present basis not only but has also another meaning:
it represents the inclination as defined in Sect. 3 (see
Fig. 3).

Besides, if we consider the dependence between «, k
and t, then a® = 24Dt or o = 4k*t and we can then
obtain the following useful relation,

t= 2 (50)

The problem is solved for the following physical prop-
erties (the same viscosity has been taken for both flu-
ids for the sake of comparison with the analytical solu-
tion): fi; = fis = 1 x 1073 kg/(ms), D ~ 1079 m?/s,
gy =2x 10710 C%s?/(kgm?®), AVp = 0.097 V. § = 2.25
is used in computations. These properties loosely cor-
respond to water (£1) and ethanol (£2).

The potential drop is varied within AV = 0—20 V.
Thus, the dimensionless parameter A changes from 0 to
42 500.

The case of different viscosity will be used in
Sect. 4.3.4 for sake of comparison with experimental
data.
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Fig. 4 Evolution of the 1 ¥
1D permittivity solution t=0 \ t=03
for different time instants v
with 8 = 2.25. Solid line 0.5
stands for the DNS and
dashed line, for the
analytical solution (Eq. 27) w 0
-0.5
\J
\}
1
- _ _ _ Il 1 1
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
y y y y y

4.2 Numerical methodology

The numerical solution is based on the finite-difference
method proposed in [49]. The space derivatives are
approximated by a two-point difference scheme of the
second order on a staggered grid. Spatial discretization
with fine resolution leads to stiff problems and requires
implicit methods for time advancement. Fully implicit
methods produce a set of nonlinear coupled equations
for the problem variables on the new time level, and are
usually prohibitively costly for long-term calculations of
the multi-parameter problems. Semi-implicit methods,
in which only a part of the operator is treated implic-
itly, constitute a reasonable compromise for this class of
problems. The semi-implicit third-order Runge-Kutta
method [50] is used for time integration. The functions
® and V¥ are found by a direct solution of the sparse
system of linear algebraic equations, directly following
from the discretization of the equations.

The infinite spatial domain is modelled by a finite
domain that has dimensionless length [ (so that waves
with wavenumbers starting from ki, = 27 / [ can be
captured in simulations). The condition that the solu-
tion at * — oo is bounded, is changed to periodic
boundary conditions. The length of the domain has to
be taken large enough to make the solution independent
of the domain size. The value [ = 4w was typically cho-
sen in most calculations, whereas [ = 87 was used to
verify the results.

4.3 Results
4.3.1 Linear stage of evolution

For subcritical values of A and (3, all perturbations in
x-direction decay and the 1D solution is observed. How-
ever, this solution does not fully correspond to the self-
similar solution due to the influence of the walls that
breaks down the validity of the latter. The dimension-
less time of the order of £ ~ 0.1 %2 still provides per-
fect matching between self-similar and DNS solutions
when representing the permittivity as a function of the
y-direction, see Fig. 4. The dimensionless time of full
mixing is estimated of the order ¢ ~ 0.5. Evidently,
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the diffusion is the only one mechanism to mix the two
fluids for the 1D solution.

Small perturbations are superimposed on the inter-
face between the liquids in the numerical simulations.
Two kinds of such perturbations are considered:

(a) The initial disturbances which are natural from
the viewpoint of the experiment. The so-called “room
perturbations” determining the external low-amplitude
and broadband white noise are imposed on the surface.

(b) Artificial forced monochromatic perturbations
with a fixed wavenumber @. These artificial perturba-
tions allow better understanding of the behavior of the
system.

For the supercritical parameters, a special kind
of electro-hydrodynamical instability takes place. The
instability triggers an additional mechanism of mix-
ing, by advection, which is more powerful and strongly
reduces the time for mixing. In all subsequent calcu-
lations, the initial conditions are defined as follows for
both monochromatic and room perturbations,

wy = %(1 — sign (y))

+4o (1 — |tanh (ay)|) (sign (y) + 5 (2)) ,

where s (z) is either a uniformly distributed random
value in the range [—1,+1], or a monochromatic sinu-
soidal wave. We define the following function (which
will be also used in Sect. 4.3.2),

A(t) = max ( max w(t,z,y) — min w(t,z, y)) .
(v) (z ()

Ag = A(0) is a small parameter specifying the ampli-

tude of disturbances, and ‘a’ controls the initial mixing

layer thickness. Numerical simulations were performed

with a = 99.

Let us first consider simulations for the monochro-
matic perturbations as initial conditions. For such con-
ditions, the initial perturbation is set up by a sinusoidal
perturbation in z-direction with one single wavenum-
ber k. These perturbations are artificial, but they allow
us to understand the nature of the instability. So we
return to the interpretation of the results of our self-
similar analysis in Fig. 3. Keeping the wave number
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Fig. 5 a Solid line stands for the marginal stability of
the self-similar solution, triangles (DNS simulations) stand
for the time when monochromatic perturbations with the
wavenumber k change their decay to growth. The filled cir-
cles stand for the wavenumber k, realized for the room dis-

10’ 102 1038 104

A

Fig. 6 Marginal stability wavenumber k* vs A for § =
2.25. Solid line corresponds to the self-similar solution and
triangles for the DNS solution

k constant, originally along the straight line in Fig. 3,
the disturbance decays first and after some time it may
grow. As it can be seen from Fig. 5a even for the unsta-
ble parameters there is a latent period of time when
perturbations do not grow up to a certain time. These
observations are in good correspondence with the linear
analysis of the self-similar solutions (see Fig. 5a).

The second kind of perturbations is the natural
“room disturbances”. In our case, all other perturba-
tions practically decay in comparison with the most
dangerous one with the wavenumber k,, see Fig. 5a.
Thus, any evolution results in an almost monochro-
matic perturbation with the wavenumber k,.. It is close
to the wavenumber observed in DNS (Fig. 5b).

The results of the numerical simulation of the non-
linear system (43)-(49) with the natural white noise
initial conditions are in good correspondence with the
linear stability results. Both are presented in Fig. 6.
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turbances as intitial conditions, 8 = 2.25 and A = 1500;
b Permittivity at the cross-section (y = 0) for A = 1500,
B =2.25, ey = 1+ 3/2 is the permittivity of the mixture.
The disturbances are fully developed, t =~ 0.14

4.3.2 Nonlinear evolution

The linear filtering mechanism singles out only one
wave number k, with minimal time to instability,
see Fig. ba. When the amplitude of the perturbation
becomes sufficiently large, the nonlinear stage of evolu-
tion takes place.

For monochromatic disturbances, the function A(t)
(defined in Sect. 4.3.1) is two times the amplitude of
those disturbances. It is easy to see that A(t) is exactly
zero for any 1D solution (including fully mixed state),
and the range of its possible values is [0, 1]. The max-
imal value, 1, is reached when both pure liquids 1 and
2 are present at some y = const. The temporal evolu-
tion of the amplitude as a function of its initial value
and of the voltage is shown in Fig. 7. After the initial
stage, which, in accordance to the linear stability anal-
ysis, consists of a characteristic decay and followed by
a growth, the disturbances reach saturation and then
decay again. This decay seemingly justifies the picture
in Fig. 2b, where all perturbations decay at sufficiently
large times. In reality, the mechanisms differ. On the
one hand, for a long-time process the perturbations are
always nonlinear: the interface between the two phases
becomes too bent for linearization to be valid. On the
other hand, the diffusion smooths out the difference
in concentration of the two liquids. The final stage of
the evolution corresponds to the uniformly distributed
(fully mixed) fluids.

If the potential difference is large enough, A > A*
(approximately 5000), the amplitude can reach unity,
i.e. the system contains areas filled with pure liquids
1 and 2 along some y-cross-section. Calculations show
that these areas extend in “stripes” to almost the full
microchannel width (Fig. 8e¢), and in this case the dif-
fusion process occurs along = (Fig. 8f). For A < A*,
transverse diffusion develops for sufficiently long time

@ Springer
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Fig. 7 Development of A (t) as a function of a initial amplitude Ap (1—Ap = 107°,2—107*,3—107%, 41072, 5— 107")
and for 8 = 2.25 and A = 37000, bA: 1A = 37,000, 216,500, 36100, 44000, 52500, 61500, 7—1000, Ag = 10~°.

The marked points are depicted in Fig. 8
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Fig. 8 Temporal development of the fraction w for fluid 1 for 8 = 2.25, Ao = 107°. at =0, b 0.0071, ¢ 0.0092, d 0.0149,
e 0.0328, f 0.2. Snapshots (b—f) correspond to the markers in Fig. 7. Left column: A = 16,500, center column: A = 32,000,

right column: A = 65,500

(see Fig. 9d’) and the concentration gradient does not
reach sufficient high values to form “stripes” (Fig. 9¢’).

4.3.3 Mixing efficiency

In order to estimate mixing efficiency, we introduce the

separation amplitude,
// ‘w — ‘dxdy,

where the integration is performed over the whole sim-
ulation domain. This amplitude also varies from 0 to 1,
where ‘0’ means complete mixing and ‘1’ means com-
plete separation.

Our calculations (Fig. 10) show that the mixing effi-
ciency practically does not depend on A unless it is large

(51)

Asep(t)

»L'max

@ Springer

enough, A > A*. As mentioned earlier, the value of A*
is connected with the appearance of the “stripes”, so
these “stripes” are responsible for mixing enhancement
over low-voltage regimes. However, with increasing A,
this enhancement becomes small.

The dynamics of the solution in time sequentially
goes through four stages:

I. A self-similar expansion of the diffusion layer
according to Eq. (16) occurs. The solution does
not depend on the strength of the external electric
field and is determined only by the diffusion of the
two layers. If we take the characteristic time asso-
ciated with diffusion p = iL2/D, then the curves
in Fig. 10 shrink into one line and Eq. (51) for
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Fig. 9 Temporal
development of the fraction
w for fluid 1: f = 2.25,

A = 4000, Ag = 107>, The
snapshots are marked in
Fig. 7
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self-similar solution (16) can be written as,
1 t 1
Asep(t) = erf (M) + 2\/; (exp <_4t> - 1) .

II. If the external field is strong enough, then the
self-similar solution loses its stability. The initial
disturbances grow until the velocity components
become large enough.

III. At some time ¢t = t*, the disturbances become large
enough to affect the convective terms and, hence,
Asep. For ¢t > t* it is convenient to switch to a
different characteristic time, namely, . = 5‘2‘ 2@2.

With this time, the parameter A disappears from

the right hand-side of Eqs. (45-46) but appears

on the right-hand side of the diffusion-convection

equation of the fraction w (Eq. 43),

0%w
+ 8y2> . (53)

For A — o0, the solution of the system of equations
does not depend on A and all curves (see Fig. 10)
shrink into one. The diffusion is negligible for this
case.

IV. Diffusion of the formed regular structures. As the

liquids are mixing at stage III, the “stripes” of
the fraction w are eventually formed, where w
practically does not depend on the y-coordinate,
see Fig. 8. Also, dw/dy = 0 at the horizontal
boudaries, so the velocity field vanishes, U =V =
0. Mixing is thus carried out only by the diffusion,
hence the diffusion time p = h?/D must be taken
as the characteristic one. Curves 1, 2 and 3 turn
into parallel straight lines in semilogarithmic coor-
dinates, see inset of Fig. 10a.
It is possible to show it with trivial case. If we con-
sider the diffusion problem and keep only the main
harmonics in the series along x with wavenumber
k,

ow n U@w

ow ow 8710_1 0w
ot ox oy

A\ 0922

wy = %(cos(kx) +1), (54)

then this problem can be solve analytically and
Asep takes the following form,

2
Asep == ; exp (_th) . (55)

One can see that the dotted line in Fig. 10 is
parallel to the others with non-zero A. It means
that curves differ only by a multiplication con-
stant, which transform into an additive constant
in the logarithmic scale.

4.3.4 Mechanism of the instability

In order to understand the physical mechanism of the
instability shown in Fig. 7, we consider a simplified the-
ory. Note that there two competitive time-dependent
phenomena in this process are: (i) the mixing length
when the diffusion layer is expanding in the g-direction

as 2v/ DI and (ii) the amplitude of the unstable per-
turbation in the x-direction which is increasing in time.
The first one depends only on the diffusivity (D) and
does not depend on the voltage (AV) and the sec-
ond depends strongly on AV and with its increase, the
growth rate also increases. For sufficiently large AV, the
first characteristic time is much slower than the second
one and, qualitatively, the instability can be considered
with some frozen constant §. This is well illustrated in
Fig. 7 in which one can see that the mixing layer is
practically not changing with time while the instabil-
ity runs into the non-linear phase of its evolution. The
second assumption of this simplified theory is that we
restrict ourselves with the long-wave perturbations.

The instability is connected with the ratio of permit-
tivity €1/&, which is taken as very large. Hence, our
assumptions are the following,

AV > AV, AV, = M
/0 < /07,
51/52 > 1.

s = o
S~— —

@ Springer
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Fig. 10 Separation amplitude dynamics for different A
and 3 = 2.25as a function a of time, and b At. 1: A = 16,500,
2: 13,000, 3: 8100, 4: 0. Dashed line corresponds to the self-

Let us consider the permittivity dependence as a piece-
wise linear function,

o {:il ~fOI‘ 7;L<(1,~/<~A1, .
E= %—l—%(g—&) for A1 <j<As, (56)
gy for As < §<h.

where A; = —§/2 + a(z,1) and Ay = §/2 + a(,1)
(see Fig. 11 for details). Under the above assumptions,
Eq. (8) can be integrated twice and the constants of
integration can readily been found from the BCs, Eq.
(12),

09/9j=FE = 2L =, (57)

where B is a dimensionless constant of integration
which is given by,

5 olné
Rt YA N . (58
Ttz (58)

The terms connected with velocity V and (9®/0%)?

can be omitted and the Maxwell pressure II can be
found from Eq. (10). Moreover, by simple algebra, we

can show that, ﬁg/ﬁl = &1/&3 > 1. In accordance with
the hypothesis (c), II; can be neglected in comparison
with II5. Hence, the pressure field Il can be calculated

from Eq. (10) and Eq. (51) with the above assumptions,
l:[2 = 1§§~A‘~/2 B2
2 p2

(59)

The Maxwell pressure I, is directly proportional to
the squared voltage and inversely proportional to the

@ Springer
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similar solution (Eq. 51). Dotted line corresponds to the
diffusion of vertical structures (53) in region IV with k£ = 3

d=AV

Z Z
High Maxwell Pressure
-

g=—h d=0

Fig. 11 Simplified sketch for the mechanism of instability
of Fig. 7

width of the channel & (the smaller is the width of the
channel, the larger is II5). Note also that Il (Z,7) has
a maximum which coincides the maximum of a(z,?),
the same applies with the minimum. Thus if the layer
of liquid IT becomes thinner because of some localized
disturbance (as shown in Fig. 11), the electric field F
in this region becomes intense which, in turn, creates
a high Maxwell pressure spot, see Fig. 11. This high-
pressure spot drives the liquid away from it, the layer
nearby the spot becomes very thin and the Maxwell
pressure increases again, providing positive feedback.
This mechanism of instability is expected to be stabi-
lized by viscosity at short length scales.

The behavior described above is perfectly confirmed
with DNS for initial stages of evolution at A > A*,
see Fig. 12a. However, whenever the assumption (56)
fails (A is small or ¢ is large), the resulting distribution
becomes different, see Fig. 12b, c.



Eur. Phys. J. E (2022)45:1

Page 13 of 14 1

g~~~ —— T T LLLL L] i

e o
>
'10 2 4 6 8 10 12

X

HIIIIIIIIII »——— |

12

Fig. 12 Fraction (w) and Maxwell pressure distribution for A = 32,000 (b, e) and A = 4000 (e ). The snapshots are

marked according to Fig. 7.

5 Conclusion

Mixing of dielectric miscible viscous liquids with dif-
ferent permittivities has been investigated analytically
and numerically. Since the mixing layer is expanding
with time, its instability is not described by the usual
exponential law, but rather by the power law. This layer
has been proven to be stable with respect to short-
and long-wave disturbances. Intermediate waves have
been found to be unstable for a finite period of time.
The influence of walls does not allow to see the end
of instability in practice, but the initial period, when
all perturbations decay, has been confirmed with DNS.
We have found by numerical simulations that with a
strong enough electric field the amplitude of the waves
grows, so that their edges reach the walls. Due to the
Maxwell pressure between the top of the wave and the
wall, the liquids reorganize into alternating stripes. This
scenario of distinct stripes has not, to our knowledge,
been identified previously, and our simplified theory has
explained it. Mixing is enhanced with higher applied
electric field as expected. However, the “stripes” of sep-
arated liquids may slow down the mixing, so moderate
fields lead to better mixing in the long-time process.
Moreover, we have verified that our results are consis-
tent with experiments from [43] with transformer and
silicone oils with respect to the mixing index and time
evolution of instability. The obtained results can be
used in microfluidic applications as, for example, the
control over on-chip assays that require rapid mixing of
fluids.
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