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Abstract: Synaptic plasticity is an extensively studied cellular correlate of learning and memory
in which NMDARs play a starring role. One of the most interesting features of NMDARs is their
ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect.
Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation
and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the
dynamic regulation of glutamate and membrane depolarization have been well studied in coincident
detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells,
astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity.
The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them
the capacity to sample and integrate information originating from unrelated synapses, regardless
of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow
responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to
reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity
and co-incident detection.

Keywords: astrocyte; coincident detection; D-serine; gliotransmission; glycine; neuron; NMDAR;
trip-partite synapse; synapse cluster

1. Introduction

Learning and memory are critical processes that define the temporal dimensions of
our mental organization and determine our behaviour. Memory requires alterations in the
brain and the ability to be persistently modified in response to specific neuronal activity.
While there are several candidates, the most popular candidate is the synapse. Donald
Hebb first hypothesized that synapses between neurons would be strengthened if they
showed coincident activity [1]. This hypothesis has the potential to explain how associa-
tions between temporally linked events are formed. In 1973, Bliss and Lomo discovered
long-term synaptic potentiation (LTP), a cellular mechanism of Hebbian plasticity which
corresponds to a long-lasting potentiation of the synaptic strength [2,3]. Over the last half-
century, substantial effort has been invested in understanding the molecular mechanisms
of coincidence detection in synaptic plasticity. NMDARs materialized as critical molecules
in LTP, learning and memory [4] are now appreciated for their crucial role in coincidence
detection and the ability to transform specific activity patterns into long-lasting changes
in synapses.

Classically, postsynaptic NMDARs detect coincident presynaptic and postsynaptic
activities through glutamate binding and membrane depolarization. For NMDARs to open,
co-agonist binding is also required. However, co-agonism was believed to be permissive;
thus, its role in NMDAR function was overlooked for a long time [5–7], and as a result, the
physiological significance is poorly understood. Nevertheless, recent evidence indicates
that astrocytes play a central role in co-agonism and may participate in the tonic and active
release of co-agonists [8–14]. As coincident detection occurs at the level of the synapse
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and astrocytic synaptic partners are highly heterogeneous [15], it is essential to study these
processes locally. Currently, much of the data considers co-agonist regulation remotely,
either in the bulk tissue or by measuring synaptic activity remotely at the neuronal soma.
Understanding co-agonism at the subcellular level will be critical to understanding the
physiological role(s) in circuit activity, learning and memory. The aim here is to review the
current understanding of astrocyte-mediated co-agonism and explore its potential role in
coincidence detection.

2. NMDARs

NMDA (N-methyl-D-aspartate) receptors (NMDAR) are ionotropic glutamate recep-
tors that are ubiquitously expressed at excitatory synapses in the mammalian brain. NM-
DARs are heteromers with numerous subunit compositions. Currently, seven subunits are
known, and these are classified into three subfamilies: GluN1, GluN2A–D, and GluN3A–B.
Although only one GluN1 gene has been identified, eight splice-variants/isoforms exist
(i.e., GluN1-1a–GluN1-4a and GluN1-1b–GluN1-b4) [16]. The subunits are homologous,
and their tetrameric assembly forms a large variety of NMDAR subtypes. Functional
tetrameric receptors require two GluN1 subunits and two non-GluN1 subunits (GluN2
or GluN3) and typically form di-heteromers of 2GluN1/2GluN2 or tri-heteromers of
2GluN1/GluN2/GluN3. This topic has been reviewed in detail by Paoletti et al. [16]. At
least a dozen functionally distinct channels have been reported to date [16]. Their subunit
composition, particularly GluN2 and GluN3, determines fundamental receptor properties
that govern synaptic integration and plasticity, i.e., permeability to Ca2+, sensitivity to
voltage-dependent block, channel kinetics, sensitivity to extracellular modulators, and
dependence on co-agonist binding [17,18].

According to the properties conveyed by the specific subunits, glutamate binding is
typically insufficient to open the NMDAR channel, which may be blocked by Mg2+ and
requires depolarization as an expeller. Thus, the dual requirement enables NMDARs to act
as a coincidence detector of simultaneous pre-synaptic (glutamate) and post-synaptic (de-
polarization) activities. In addition, the subunit composition also determines the receptor
ligand; specifically, the GluN1 and GluN3 subunits bind glycine/D-serine, whereas GluN2
subunits bind glutamate [19]. Hence, for the classical NMDARs, GluN1/GluN2 receptors,
the binding of two glutamates and two glycine/D-serine molecules are essential to open
the channel [20]. In contrast, the GluD and GluN1/GluN3 receptors are gated purely by
the co-agonist [21–23].

As the endogenous levels of extracellular D-serine and glycine are high (2–10µM) [24–29],
in comparison to the co-agonist site affinity (nanomolar range) [16], the co-agonist site was
initially believed to be saturated [5] and therefore to have no bearing on NMDAR func-
tion. Nevertheless, it turned out that this assumption was wrong [13,30–37]. Furthermore,
changes in the glycine site occupancy, in vitro [7,11,38] and in vivo [34], regulated synaptic
NMDAR activity. Consequently, mechanisms regulating co-agonist availability are likely
to regulate NMDAR function, synaptic plasticity, learning and memory.

In parallel to these findings was the realization that the co-agonists, D-serine and
potentially glycine, are produced, stored, and released by the non-neuronal glial cells. In
the context of the current review, the so-called co-agonism of NMDARs is of central interest.
Co-agonism of glutamate and glycine at GluN1/GluN2 NMDARs enables inhibitory
neurons [39] and glia [40–42] to engage in crosstalk with excitatory synapses. In the
following section, focusing on glia, we will explore the molecular mechanisms underlying
co-agonist availability at the synapse.

3. Molecular Mechanisms of Astrocyte Mediated Co-Agonism

The brain contains an equal number of neuronal and non-neuronal cells, including
glia [43]. Among the glia, astrocytes influence diverse functions, including neurometabolic
coupling, glutamate/glutamine cycle, synaptic transmission and synaptic plasticity. As-
trocytes regulate synapse function by releasing neuro-active substances termed gliotrans-
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mitters (by analogy to neurotransmitters) [44,45]—e.g., D-serine, an endogenous NMDAR
co-agonist. Mounting evidence indicates that glycine, another NMDAR co-agonist, is also
released. In addition to co-agonist release, astrocytes regulate co-agonism by playing a cen-
tral role in the D-serine lifecycle. Therefore, to understand the functional consequences of
astrocyte in co-agonism, it is essential to unravel the molecular mechanisms of co-agonism
initiation and termination at the synapse. To this end, the following section reviews the
current understanding of molecular mechanisms underlying co-agonist availability at the
synapse—i.e., co-agonist synthesis, release, uptake, and degradation.

3.1. Co-Agonist Synthesis

Glycine and D-serine concentrations are relatively high in the brain (2–10 µM) [25–29,46],
where they are synthesized locally [47] from L-serine [28,48–50]. L-serine itself is synthe-
sized from glucose by the phosphorylated pathway occurring exclusively in glia cells and
predominantly astrocytes [48,51,52]. L-Serine is converted into glycine by serine/glycine
hydroxymethyltransferase (sgHMT) [53] and D-serine by serine racemase (SR) [54–58]
(Figure 1). Interestingly, the knock-out of SR reduced D-serine in the hippocampus and
cerebral cortex by 80 to 90% [59–62]. Although L-serine is the primary precursor of D-
serine [47], residual production in the SR-/- brain suggests an additional route for D-serine
synthesis, albeit minor, possibly involving glycine cleavage system [63] or phosphoser-
ine phosphatase [46]. These routes may have more importance in regions with low SR
expression, e.g., the cerebellum [59,60].

SR initially appeared to be an astrocytic enzyme [10,54,64–69]. However, the cellular
location of SR and thus D-serine production was recently debated [70,71]. In addition to
D-serine production in astrocytes, it was proposed that L-serine is shuttled to neurons
for racemization [72]. The debate primarily arose because the detection of SR in situ is
sensitive to the antibodies and fixation conditions used [54,67]. In various conditions, SR
was located to only astrocytes [8,54,69,73–75], astrocytes and neurons [76], neurons and
oligodendrocytes [77], or only principal neurons [67,78,79].

As brain SR protein has a single molecular-weight band and one predicted amino
acid sequence [54,57], it is generally accepted that there is only one isoform of SR in the
brain. However, Neidle and Dunlop [80] reported two isoforms of mouse brain SR with
similar molecular weight and enzymatic properties but structural differences. Since then,
multiple transcripts have been reported [74,81]. The possible existence of astrocyte and
neuronal-specific SR isoforms could explain the differential detection of neuronal and glial
SR by distinct antibodies; isoform differences may also explain the differential regulation
of SR in neurons and astrocytes [73,82]. Recently, SR distribution was examined without
SR antibodies, using a transgenic mouse with GFP expression under the control of an SR
promoter; this revealed that the SR promoter is active in both neurons and astrocytes [83].

Although present in neurons and astrocytes, the role of SR at these two locations
is unresolved. It is intriguing to consider that their respective role could be distinct.
Conditional KOs are promising tools to resolve this. However, so far, this technology
has provided inconclusive data. While selective acute inhibition of D-serine synthesis or
release by astrocytes reduced NMDAR function and impaired LTP [8–10,14,84,85], the
conditional KO in astrocytes did not impair LTP [78]. Due to concerns over the time
allowed for KO in astrocytes [70] and the poor recombination of endogenous floxed loci
using hGFAP-CreERT2 mouse line [86], it would be interesting to use a different approach
for the targeted expression of Cre in astrocytes—e.g., AAV. In contrast, depleting SR or
L-serine in neurons impaired LTP [78]. However, in this case, the LTP impairment was
inconsistently accompanied by changes in harmony with the co-agonism of synaptic
NMDARs—i.e., reduced activity of synaptic NMDARs, reduced extracellular D-serine, and
reduced NMDAR co-agonist site occupancy [50,78,87]. Notably, chronic depletion of SR
(>45 days) in the post-synaptic neuron did not change the synaptic content of D-serine but,
over time, altered the synaptic content of GluN2B [87]. As D-serine can alter the mobility
of GluN2B in the membrane [88], this may indicate that neurons regulate extracellular D-
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serine at a site apart from the synaptic cleft, potentially controlling the subunit composition
of synaptic NMDARs in adult CA1 pyramidal neurons. These findings suggest that
neuronal L-serine and SR are critical for LTP but may not involve the co-agonism of
synaptic NMDARs. For example, SR may be required for D-serine degradation and the
production of pyruvate [65,76,89,90], and L-serine is needed for protein synthesis [91] and
the production of phospholipids and sphingolipids [48,92,93]. Notably, according to the
enzyme affinities for L-serine, these pathways are likely favored over SR [54,89].

Figure 1. Scheme of L-serine, D-serine, and glycine synthesis in the central nervous system. In
astrocytes, L-serine is synthesized from glucose by the phosphorylated pathway (orange) branch-
ing from glycolysis (black). 3-phosphoglycerate, an intermediate of glycolysis, is converted to
3-phosphohydroxypyruvate by 3-phosphoglycerate dehydrogenase (PHGDH). Subsequently, 3-
phosphohydroxypyruvate is metabolized into 3-phosphoserine by phosphohydroxypyruvate amino-
transferase (PSAT1). Finally, 3-phosphoserine is hydrolyzed to L-serine by phosphoserine phos-
phatase (PSPH). L-Serine is converted into glycine by serine/glycine hydroxymethyltransferase
(sgHMT) and D-serine by serine racemase (SR). In neurons, conditions may favor the conversion of D-
serine into L-serine and pyruvate. In addition, L-Serine may be an important source of sphingolipids
and phospholipids. Abbreviations: TCA, tricarboxylic acid cycle; PHGDH, 3-phosphoglycerate dehy-
drogenase; PSAT1, phosphohydroxypyruvate aminotransferase; PSPH, phosphoserine phosphatase;
sgHMT, serine/glycine hydroxymethyltransferase; SR, serine racemase; NMDAR, N-methyl-D-
aspartate receptors; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoaxzolepropionic acid receptor.

The half-life of SR (4.5 h) [94] is much shorter than that of D-serine (12 h) [47]; conse-
quently, the activity of SR may have a crucial role in regulating D-serine release. SR activity
is regulated by numerous players, including ephrinB3 [95], glycolysis [96], DISC1 [73],
Golga3 [94], GRIP [97], glycine [50,89,98] (also see [64]).
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3.2. Release

Both astrocytes and neurons can release NMDAR co-agonists [99,100]. In the context
of the current review, addressing the role of astrocytes in co-incident detection, we focus
on co-agonists released by astrocytes and direct interested readers to other reviews ex-
ploring neuronal release [101,102]. Astrocytes can release D-serine under ambient or basal
conditions [8,10,13,14,38] and in response to neuronal activity [9–11]. Both the tonic and
active release depend on Ca2+ as they may be augmented by increasing extracellular Ca2+

and blocked by impairing Ca2+ release/influx or chelation of intracellular Ca2+ [10,14,66].
Multiple modes of D-serine release indicate several release mechanisms, and indeed, using
primary culture, several mechanisms have been proposed. Here, we review the proposed
mechanisms of co-agonist release by astrocytes.

3.2.1. Exocytosis

Stimulation of non-NMDAR glutamate receptors on primary astrocytes, or the Ca2+

permeable ionotropic receptor α7nAChR (α7 nicotinic acetylcholine receptor) in situ, triggers
Ca2+- and SNARE-dependent vesicular release of D-serine by astrocytes [9,10,66,84,103,104].
Consistent with these findings, astrocytic D-serine concentrates within synaptic like micro-
vesicles (SLMVs) in culture and in situ. Importantly, SLMVs are close to synapses, are ac-
companied by a significant intracellular Ca2+ store (endoplasmic reticulum) [105–107], and
are equipped with proteins of the SNARE-dependent regulated secretory pathway, i.e., synaptic
vesicle protein 2 (SV2), synaptobrevin (Sb2/VAMP2) and cellubrevin (VAMP3) [66,105,107–110].

Functional evidence for SNARE-dependent exocytosis of D-serine containing SLMVs
rests on the inhibition of D-serine release using SNARE toxins (tetanus neurotoxin) and
the exogenous expression of dominant-negative SNARE protein [9,10,66]. Nevertheless,
it was astutely pointed out that this may also be explained by perturbed the SNARE-
dependent membrane insertion of channels/transporters mediating D-serine release [45].
Of relevance to this point, Papouin et al. (2017) recently reported that tonic D-serine release
is SNARE-independent and co-exists with SNARE-dependent release [70].

3.2.2. Volume-Regulated Chloride/Anion Channel (VRAC)

VRACs are typically activated by cell swelling and provide a pathway for the out-flux
of intracellular anions and amino acids, including glutamate, aspartate, and taurine [111].
In addition, VRAC mediates AMPA (α-amino-3-hydroxy-5-methyl-4-isoaxzolepropionic
acid)-induced D-serine release from primary astrocytes [100]. The molecular identity of
VRAC has been enigmatic; this is highlighted by its many names (volume-sensitive out-
wardly rectifying [Cl-] channel, VSOR [112]; volume-sensitive organic osmolyte[organic]-
anion channel, VSOAC [113]; volume-sensitive chloride channels, ICl,vol [114]; and swelling
activated Cl- channel, ICl,swell [115]). The leucine-rich repeat-containing protein 8A (LRRC8A)
appears to be an essential VRAC component [116,117] mediating receptor-activated amino
acid release in astrocytes [113].

Although VRAC opening is classically Ca2+ independent, recent evidence indicates
that Ca2+ regulates VRAC activity. Either receptor-induced Ca2+ increase can activate
VRAC by an associated increase in cell volume [111,118], or independent of swelling,
VRAC activity is modulated by Gq-protein coupled receptors and downstream signalling
cascades involving Ca2+-dependent protein kinases and ROS production [113,118–123].
As Ca2+ nano-domains modulate VRAC activity, VRAC-mediated D-serine release may
preserve the input specificity of synaptic transmission [122,123]. While receptor-mediated
Ca2+ transients are rapid, the modulation of VRAC current develops gradually over 15
to 20 min [121,122]. The gradual action favors intercellular communication on a long
timescale, even when Ca2+ signals are transient and confined to fine subcellular structures.

3.2.3. Hemichannels

Cx43 hemichannels mediate the release of glutamate, ATP, glutathione, and D-serine
from astrocytes and glioma cells [85,124–126]. Hemichannels are open at intracellular
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Ca2+ in the range of 0.1 to 1 µM and peak at 0.5 µM [85,127,128], values typically ob-
served under physiological conditions [129,130], and at membrane potentials typical of
astrocytes [85,131]. Lowering extracellular Ca2+ increases the opening probability of Cx43,
whereas 1 mM extracellular Ca2+ closes them [125,132]. In vitro studies indicate that
hemichannels participate in activity-dependent D-serine release either directly, by open-
ing in response to Ca2+ [85,127,133,134] or IP3 [135–137], or indirectly by facilitating Ca2+

entry [138], which subsequently activates other [Ca2+]i-dependent D-serine release mecha-
nisms [85]. Nevertheless, the significance of hemichannels for gliotransmission in vivo is
uncertain [139,140].

3.2.4. Reverse Uptake

A transporter can potentially mediate substrate uptake and release, and its stoichiom-
etry is a critical factor that controls the driving force and thus the transmitter flux direction.
Thus, in principle, D-serine may also be released from astrocytes by reverse transport. To
date, ‘alanine, serine, cysteine transporter 2′ (ASCT2) has been the leading candidate for
the reverse uptake of D-serine by astrocytes in vitro; however, current data indicates that
this probably does not occur in vivo. In situ ASCT2 is detected on neurons and retinal
glia but not in astrocytes or Bergmann glia [141,142]. In addition, triggering amino acid
hetero-exchange through ASCT2 transporters in vivo did not induce significant D-serine
release [143]. Finally, ASCT2 transporters have a much higher affinity for L-glutamine
and L-serine and, under physiological conditions, should preferentially release these
molecules [72,143,144]. The contribution of astrocytic ASCT1 to D-serine release in situ
is also unclear. Although ASCT1 KO reduced extracellular D-serine, indicating a role in
D-serine release, the selective activation of ASCT1 hetero-exchange in acute slices did not
elicit detectable release of endogenous D-serine or glycine [145]. One possible explanation
is that ASCT1 reverse uptake is maximal under resting conditions.

Glycine, the other co-agonist of NMDARs, can be released from astrocytes via a
non-vesicular mechanism such as reverse transport by the glycine transporter GlyT1
(reviewed by [102,146–148]. The glial glycine transporter, GlyT1b, has a stoichiometry of
2Na+/Cl-/glycine, which predicts that glycine can be exported or imported, depending
on the physiological conditions [149,150]. Activation of reverse uptake occurs when
there is an increase in intracellular glycine or intracellular Na+ and following membrane
depolarization [149–151]. Thus reverse-uptake could occur in response to local increases
in the intracellular Na+ concentrations resulting from either the activation of glia AMPA
receptors [146,149,152–154] or enhanced Na+/Ca2+-exchanger (NCX) activity following
a pure Ca2+ response. The release is also enhanced by lowering extracellular Ca2+ and
K+ [150]. In astrocytes, receptor stimulation and activation of the GqPCR-PLC signalling
cascade may also enhance glycine release via GlyT1 [155]. By estimation, reversed glycine
uptake could increase extracellular glycine from a sub-saturating level (~100 nM) to the low
micromolar range [146]. However, the functional significance of reverse transport in vivo
is unknown. Some essential biophysical details are needed to clarify the role of reverse
transport, e.g., the quantification of membrane depolarization and ion concentrations in
subcellular astrocytic compartments and transmitter diffusibility. The employment of
Na+ imaging and genetically encoded voltage sensors will provide some illumination in
the future.

3.2.5. P2X Purinoceptor 7

ATP activates P2X purinoceptor 7 (P2X7) receptors opening a large conductance
pore, which can mediate the release of glutamate [156] and ATP [157,158]. In addition,
P2X7could potentially release D-serine [45]. Notably, cytosolic Ca2+ does not regulate P2X7
channel gating.
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3.2.6. Astrocytic Mechanisms of Tonic and Active Release of Co-Agonists

Astrocytes participate in the tonic and active release of NMDAR co-agonists. Tonic
release accounts for the ambient occupation of the NMDAR co-agonist site. Experimen-
tally, this has been assessed by applying low-frequency stimulation (0.05 Hz) [10] and
observing the synaptic NMDAR function in the absence and then presence of saturating
exogenous co-agonist. In contrast, the active release of co-agonist has been triggered by
high-frequency (50 Hz) trains of neuronal activity and observed by monitoring NMDAR
function before and after conditioning stimuli [10]. However, because strong stimulation
can trigger immediate active release under conditions of low-frequency stimulation [11,12],
it is apparent that this experimental distinction may not be so clear. It may therefore be
essential to control the level of synaptic stimulation to isolate tonic release experimentally.

Tonic and active release have distinct mechanisms but are both Ca2+-dependent [9,10,14]
(Figure 2). As ASCT1 and P2X7 are Ca2+-insensitive, they are unlikely to play a role in
either tonic or active release. Experimental data strongly indicates that exocytosis mediates
the active release of D-serine [9,10]. In contrast, tonic release is SNARE-independent [9], reg-
ulated by Ca2+ influx channels (transient receptor potential ankyrin 1, TRPA1) and blocked
by conditions that lower the resting Ca2+ level (100–150 nM) [129,130] to 50–80 nM [9,10,14].
The blocking of D-serine release at [Ca2+]cyto <100 nM is consistent with the involvement
of hemichannels [85,127]. However, it is not possible to rule out other Ca2+-sensitive mech-
anisms. Indeed, both VRAC activity [122] and D-serine release may be regulated by TRPC
(transient receptor potential canonical)-mediated Ca2+ influx [159]. As commonly used
inhibitors block hemichannel and VRAC [160,161], their importance in the tonic release is
unclear. The recent cloning of the VRAC channel will hopefully provide the means to solve
this issue [113].

Tonic and active release, as defined here, differ in their temporal characteristics. The
tonic release of co-agonists by astrocytes sets the ambient level of co-agonism. Further-
more, it is expected that the regulation of tonic release will produce changes in NMDAR
function that are slowly adapting and sustained over long periods. In this sense, tonic
release modulates NMDAR function [44,162]. Such ambient co-agonism may play a role
in supporting NMDAR function under basal conditions. Tonic release may also limit
NMDAR activity by promoting NMDAR desensitization through “glycine-dependent
desensitization” [163–166]. In contrast, the active release of co-agonists by astrocytes pro-
duces a transient enhancement of NMDAR function [10] and influences neuronal activity
in real time. LTP induction at the Schaffer collateral-CA1 (cornu Ammonis subfield 1)
synapses depends on the tonic (SNARE-independent, TRPA1-dependent) [9,14] and active
co-agonism (SNARE-dependent) [9,10]. It is currently not clear why LTP requires active
and tonic co-agonism. The simplest explanation is that active co-agonism has an insufficient
capacity to saturate the NMDAR glycine site (we estimated that SLMV contains approx-
imately 120 molecules of D-serine [105]). Thus, tonic co-agonism provides a necessary
leg up for active release to exceed saturating concentrations of co-agonist at the synapse
(>1.5 µM [152]).

3.3. Termination of Co-Agonism

Synaptic NMDARs are not saturated, indicating that active transport mechanisms re-
duce D-serine and glycine in the synaptic cleft. Uptake is also important for the termination
of co-agonism and the availability of D-serine and glycine for future release. As D-serine
is an agonist of the strychnine-insensitive glycine binding site on the NMDAR, three- to
fourfold more potent than the co-agonist glycine [29], clearance of D-serine is likely to have
profound physiological consequences.

3.3.1. Glycine Uptake

At excitatory synapses, glycine transporters maintain glycine below saturation of
NMDARs [7,33]. Many glycine transporters have been cloned in the mammalian CNS, and
all are derived from two genes: GlyT1 (GlyT1a–GlyT1c) and GlyT2 (GlyT2a–GlyT2b). GlyT1
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is located in fine astrocyte processes around glycinergic and non-glycinergic neurons and
areas devoid of strychnine-sensitive receptors [167,168]. Glycine is rapidly accumulated
into presynaptic terminals by GlyT2a, whereas GlyT1b controls the extracellular glycine
concentration [35,149,169–171]. GlyT1 has, in principle, the ionic strength/accumulative
power needed to reduce [gly]o well below values that saturate the glycine site of NMDAR
(40 nM to 1 µM [29,152]).

Figure 2. Scheme of a glutamatergic synapse showing the mechanisms of Ca2+-dependent D-serine
release by astrocytes. In astrocytes, D-serine is present in the cytosol (300–800 µM) and concentrated
within synaptic-like micro-vesicles (6 mM). Vesicular uptake of D-serine is mediated by an unidenti-
fied vesicular D-serine transporter and facilitated by vesicle-associated serine racemase activity (SR).
(Left) Under basal conditions, VRAC (volume regulated anion channel) and hemichannels release cy-
tosolic D-serine. Basal release is regulated by [Ca2+]basal. (Right) High-frequency afferent stimulation
(50 Hz) triggers Ca2+- and SNARE-dependent vesicular release of D-serine by astrocytes. Following
D-serine release into the synaptic cleft, D-serine binds to synaptic NMDAR containing GluN2A.
Abbreviations: SR, serine racemase; VRAC, volume regulated anion channel; NMDAR, N-methyl-D-
aspartate receptors; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoaxzolepropionic acid receptor.

The proline transporter, SLC6A20A [172], is a novel transporter of glycine in the brain
that regulates extracellular glycine and NMDAR function [173]. SLC6A20A cotransport
glycine with Na+ and Cl- ions. SLC6A20A is expressed in glia (astrocytes and microglia)
and is less prominent in neurons [173]. Unlike GlyT1 and GlyT2, which are more strongly
expressed in the brain stem [40,174,175], SLC6A20A are located in various brain regions,
including the hippocampus and cortex [173].

3.3.2. D-serine Uptake

Studies employing synaptosomes and competitive inhibitors have identified the fol-
lowing D-serine transporters: the Na+-independent transporter asc-1 [142,176–178] and the
Na+-dependent transporters ASCT1 [145], ASCT2 [178], and System A transporters (SAT1
and SAT2) [176]. The immunohistochemistry indicates that, within the CNS, Asc-1 is a neu-
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ronal protein concentrated in the presynaptic complexes [177,179–181]; ASCT2 is limited to
neuronal dendrites and, except for retinal glia, is not found in glia [142]; ASCT1 is present
on astrocytes [142,145]; SAT1 is expressed mainly in GABAergic neurons [176,182–189],
pyramidal neurons lack appreciable immunoreactivity [176,183,184,190], and SAT2 is ex-
pressed in the somatodendritic compartments of glutamatergic neurons, barely detected
in interneurons, and potentially glia [185,189,191–195]. Although helpful in identifying
transporters, synaptosomes and inhibitors, which are themselves substrates for transport,
have limited use for studying D-serine regulation in vivo [196]. In order to understand the
physiological importance of these transporters, we have chosen to focus, when possible,
on studies using intact preparations and KOs or inhibitors that are not also substrates
for transport. Measurements of extracellular D-serine either in vivo or in acute brain
slices indicate that, overall, asc-1 and ASCT1/2 either release D-serine or are unimpor-
tant [145,180,196,197]. So far, only System A appears to accumulate intracellular D-serine
in vivo. However, this relied on inhibition by the System A substrate MeAIB [176], which
is also a substrate of the novel glycine transporter, SLC6A20A [173]; as such, confirmation
awaits the development of a specific non-competitive inhibitor.

The empirically determined transporter roles appear at odds with their biophysical
properties. As the external D-serine is low, 5–8 µM [26,198], the high affinity of asc-1
for D-serine (19 µM) and rapid uptake [178] have made it the primary candidate for D-
serine transport in vivo. In contrast, the low affinity of System A (2.3 mM) [176], ASCT1
(150 µM) [199] and ASCT2 (110–700 µM) [142,199–202] has indicated that they are unlikely
to contribute significantly to D-serine uptake in vivo [178]. A more detailed study of the
spatial–temporal uptake of extracellular D-serine may provide clarity. From the published
data, it is apparent that synaptic D-serine may be regulated differentially from bulk ex-
tracellular D-serine. Briefly, inhibition of asc-1 and System A, respectively, increased and
decreased synaptic NMDAR function [176,197], indicating that, in contrast to bulk extra-
cellular D-serine measurements, at the synaptic level, asc-1 takes up D-serine, and System
A releases D-serine. Although blocking asc-1 only modestly enhanced synaptic NMDAR
function, this is consistent with the observation that the sub-saturated co-agonist sites
are held close to saturation [9,10]. Extracellular D-serine has several proposed functions,
including co-agonism of synaptic NMDARs [203], regulating trafficking of extra-synaptic
NMDARs [88], and a pool for shuttling from glutamatergic to GABAergic neurons [79].
Given these distinct roles and the differential regulation of uptake, spatially distinct pools of
extracellular D-serine may exist and be served by different pools of transporters (Figure 3).
It is compelling that asc-1, operating close to equilibrium, might release D-serine at rest
to maintain sub-saturating levels of co-agonist and transiently flip to D-serine uptake to
clear synaptic D-serine following transient co-agonism. Furthermore, a concentration of
extracellular D-serine at non-synaptic sites could explain how the low-affinity System A
transporter can take up D-serine in vivo. A detailed analysis of the spatial and temporal
profiling of D-serine pools and uptake is essential to our understanding. Such studies may
benefit from fluorescent D-serine biosensors under development [204].

3.4. Recycling of D-serine and Glycine

Brain D-serine has a half-life of approximately 16 h [47,80], but its degradative pathway
is unresolved. In the mammalian brain, D-serine may be degraded by D-amino acid oxidase
(DAAO) and SR [54].

DAAO catalyzes the oxidative deamination of neutral D-amino acids. DAAO is low
in the higher brain areas/forebrain and occurs primarily in the brain stem, cerebellum,
and spinal cord, concentrated in astrocytes of the hindbrain and cerebellum [68,205,206].
DAAO may participate in the catabolism of D-serine in the cerebellum and medulla ob-
longata. There appear to be other mechanisms for catabolism of endogenous D-serine
in the rostral brain [68,207,208]. Inhibitors of DAAO can elevate endogenous D-serine
levels in lower brain regions, but to a much smaller degree in the forebrain, e.g., the
hippocampus and cerebral cortex [209]. Furthermore, D-serine levels were normal in the
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cerebrum, hippocampus, hypothalamus, pituitary gland, and pineal gland of mutant mice
lacking DAAO (ddY/DAAO–) [208]. At odds with this, NMDAR-dependent learning and
behaviour, hippocampal LTP, and NMDAR function were all enhanced in mutant mice lack-
ing DAAO activity [210,211]. These findings suggest that DAAO plays a role in regulating
the very local synaptic environment. Nevertheless, because the potent NMDAR co-agonist,
D-alanine [18], is increased fivefold in the hippocampus of ddY/DAAO– mice [208], the role
of DAAO in D-serine catabolism requires clarification. Heightened anxiety may also have
played a role [212].

Figure 3. Scheme showing D-serine uptake and reverse uptake at glutamatergic synapses. (A) While
astrocytes express ASCT1 and SAT2, post-synaptic neurons express ASCT2 and SAT2, and pre-
synaptic neurons express asc-1. (B) At the synapse, asc-1 mediates D-serine uptake, and SAT2 medi-
ates reverse uptake. (C) These roles are reversed outside of the synapse; SAT2 mediates uptake, and
asc-1 mediates D-serine reverse uptake. ASCT1/2 also mediate reverse uptake outside of the synapse.
Abbreviations: SAT2, System A transporter 2; ASCT1/2, Na+-dependent alanine-serine-cysteine
transporter 1/2; asc-1, Na+-independent alanine-serine-cysteine transporter 1; NMDAR, N-methyl-D-
aspartate receptors; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoaxzolepropionic acid receptor.

SR is a unique pyridoxal 5′-phosphate enzyme present in astrocytes and neurons
(see Section 3.1). Its enzymatic activity is dependent on divalent cations, alkaline pH,
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and ATP [58,80,90] and can remove D/L-serine by β-elimination [58,65,80,89] or racem-
ization. D-serine is removed directly by β-elimination [65,89,90] or by racemization and
subsequent β-elimination [89]. Given the relative racemase and β-elimination activities
of SR, degradation of D-serine is only expected if its concentration approaches or exceeds
that of L-serine [89]. Indeed, appreciable D-serine degradation was only observed in vitro
when L-serine dropped to 0.1–0.2 mM [65] and in the presence of supra-physiological
D-serine (5 mM) [65]. Hence, because astrocytes continuously synthesize L-serine (1 mM)
and cytosolic D-serine is relatively low (0.3 mM) [65,152,213,214], SR is unlikely to remove
D-serine in astrocytes. In contrast, the higher D-serine and lower L-serine expected in
neurons may favor D-serine degradation by SR. D-serine may be stored in astrocytic SLMV
and extracellular space to avoid the risk of accumulating cytosolic D-serine [65].

4. Detection of Coincident Neuronal and Astrocytic Activities by NMDARs

Although astrocytes can regulate NMDAR function, a role in coincidence detection has
seemed unlikely as it requires participation in generating associations between temporally
and spatially linked events. Astrocyte biology has long held that astrocytes operate on a
much slower time scale than neurons, emphasizing volume transmission over point-to-
point communication [162]. The disconnect of astrocyte activity from the immediate spatial
and temporal activity of neuronal networks led to the idea that astrocytes, rather than
participating in the ongoing activity, are regulators of synaptic transmission and plasticity.
In line with this view, although NMDAR activation depends on glutamate and co-agonist
binding, only glutamate is believed to participate as a transmitter—i.e., released in an
activity-dependent manner. In contrast, the co-agonists glycine and D-serine are present at
more constant levels, indicating a modulatory function [215]. Interestingly, as discussed in
Section 3.2.6, the presence of both tonic and activity-dependent release of D-serine could
play distinct roles, as has been proposed recently [9,216].

Aside from the acknowledged role of astrocytes in synaptic regulation, snippets of
experimental evidence have begun to suggest that astrocytes might also be capable of
actively participating in synaptic transmission and coincidence detection: (1) astrocytes are
capable of generating local Ca2+ signals at the synaptic level [15,217,218] and may therefore
preserve and participate in point-to-point communication; (2) initially thought to take
seconds to respond, and therefore too slow to actively participate in synaptic transmission,
recent studies show that astrocytes are capable of responding within hundreds and even
tens of milliseconds in vitro [217,219] and in vivo [220,221]; (3) in comparison with previous
studies examining the occupancy of the glycine site under basal conditions—tonic/ambient
co-agonist availability—the NMDAR glycine site occupancy can be actively regulated by
astrocytes in the hippocampus and amygdala [9–12]; (4) critically, actively released co-
agonists had an immediate impact on evoked responses, indicating a near-instantaneous
release of co-agonists in response to presynaptic stimuli [11,12].

4.1. Astrocytes Detect Activity at Segregated Synapse

The points above allow for the active participation of astrocytes in point-to-point
synaptic transmission and plasticity. However, simply adding astrocyte-mediated co-
agonism to the classical co-incident detection scheme would make astrocytes mere relays
for synaptic transmission. Assuming astrocyte-mediated co-agonism is essential, how
might astrocytes’ unique structure and functional properties enrich coincidence detection?

In addition to participating in synaptic transmission, two landmark studies by Li et al.
(2009, 2013) [11,12] demonstrated that the amount of co-agonist released by astrocytes
scales with the level and pattern of synaptic activity. These findings strongly suggest that,
as with neurons, astrocytes perform spatial–temporal integration of synaptic activity. While
astrocyte integration is not a new concept [44], the distinction made by Li et al. is that
astrocytes responded rapidly and participated in synaptic transmission. To recapitulate
this important point, integration of converging neuronal signals by astrocytes translates
into a coordinated increase of NMDAR activity through co-agonist release.



Int. J. Mol. Sci. 2021, 22, 7258 12 of 23

To understand how spatial–temporal integration performed by astrocytes might differ
from that of neurons, we next consider astrocyte morphology. Astrocyte morphology,
which plays a vital role in astrocyte physiology, is striking next to neurons. If astrocytes
are involved in coincidence detection and synaptic integration, their functional anatomy
will undoubtedly play an important role. Each astrocyte occupies an exclusive ‘territory’
or ‘domain’ [222,223], containing more than 100,000 synapses [222]. Astrocyte’s unique
reticular morphology forms bridges between synapses irrespective of their pre-synaptic
and post-synaptic components [15,224] (Figure 4). Thus, astrocytes potentially provide
a conduit for communication between related and unrelated synapses. In the context
of the spatial–temporal integration described above, this could provide conditions for
the coordinated increases in the activation of NMDAR at closely located but unrelated
synapses—segregated synapses. In contrast to neuronal dendritic integration, which
performs spatial–temporal integration of synaptic events in a segregated group of inputs
converging on a single hippocampal neuron, the astrocyte would be able to detect and
integrate the synaptic signal at segregated synapses [11,44]. Activity-dependent co-agonism
by astrocytes would promote plasticity in clusters of unrelated but co-active synapses
(Figure 4). As a single astrocyte serves 300 to 600 dendrites [223], these principles of
synaptic integration may extend to dendrites.

Figure 4. Schematic showing astrocyte interaction with related synapses (located on the same post-
synaptic neuron) and segregated synapses (located on different post-synaptic neurons). Astrocytes
detect coincident activity at related and segregated synapses, perform spatial–temporal integration
of the activity patterns, and subsequently release an NMDAR co-agonist, i.e., D-serine or glycine.
The amount of co-agonist released scales with the level and pattern of synaptic activity. Thus,
activity-dependent co-agonism promotes plasticity in clusters of co-active synapses, regardless of
their relationship status.

In addition to the spatial–temporal integration described above, the astrocytes’ struc-
tural hierarchy might provide further opportunities for compartmentalization and integra-
tion. The astrocytes’ reticular structure emanates from three to five major processes, which
are themselves connected through the somatic compartment. It is possible that the major
processes divide an astrocytes territory, and the synapses it serves, into functional districts
and gates their interaction. Indeed, from Ca2+ imaging studies, it is known that major
processes can operate independently or together. Accordingly, a single astrocyte may inte-
grate synaptic information and release the co-agonist at a single synapse [15,217,218,225]
or clusters of synapses of varying sizes. Synapse clusters may include the territory of a
single process, several processes, or the whole astrocyte.

Although synapse independence increases the computational power of neuronal
networks [226], there is a need for cellular mechanisms mediating synchronous plastic
modifications in a group of co-active synapses. Co-agonism by astrocytes could optimize
the conditions for encoding and retaining specific information about different network



Int. J. Mol. Sci. 2021, 22, 7258 13 of 23

activity patterns. This function is distinct from the afferent activity patterns stored by
dendritic (synapse) clusters. To this end, the maximal activation of NMDARs at segre-
gated synapses, soaked in the co-agonist released in an activity-dependent fashion, would
permit the induction of NMDAR-dependent synaptic plasticity at depolarized membrane
potentials while retaining synapse functional independence at the resting membrane po-
tential [11].

4.2. Differential Shaping of the Coincidence Window by Glycine and D-serine

The level of NMDA receptor glycine site occupancy under steady-state conditions
or low activity is synapse-dependent [8,10,13,103,104], indicating a circuit-dependent role
for the glycine site. In addition, the identity of the co-agonist, glycine or D-serine, is
synapse-specific [8,12,227,228], developmentally regulated [88,228], and possibly activity-
dependent [9,12,145,228]. These patterns are tied to the NMDAR subtypes expression
pattern at specific synapses [88,228]. Nevertheless, with the current level of understand-
ing, it is hard to appreciate why a given synapse might benefit from either tuning the
glycine site saturation or opting for one co-agonist over the other. The level of co-agonist
site saturation may be tuned (between unsaturated to saturated) to turn coincident de-
tection of segregated inputs on and off. In some instances, it has been suggested that
neurons provide D-serine and glycine [38]. The participation of neurons in co-agonism
may represent situations where the circuit does not require or desire the strengthening
of synapses based on the coincident activation of segregated input but wishes to retain
activity-dependent co-agonism.

Regarding the heterogeneity of the co-agonist identity of glycine or D-serine, one
possibility could be to regulate the subtype of subunit composing synaptic NMDARs [88].
Another possibility could be that the choice of two co-agonists could provide a means
to shape the plasticity rules governing coincident activity in segregated inputs. In this
framework, the lifetime of the co-agonist in the synapse dictates the window for coincident
activities. Moreover, the differential regulation of D-serine and glycine could provide a
means to fine-tune (stretch or compress) this window to the specific needs of a given circuit.

5. Conclusions

Co-agonism of NMDARs by astrocytes has attracted much interest over the last two
decades, its physiological relevance and even existence being heavily debated. In recent
years, a surge in studies reporting a neuronal role in co-agonism has at times appeared
to challenge the role of astrocytes. However, on balance of the evidence provided above,
astrocytic co-agonism remains sound. The emergence of neurons in co-agonism, rather
than supplanting an astrocytic role, acts to enrich it. Astrocytes have not been considered
capable of co-incident detection. The current review aimed to reassess this point of view.
Many of the reservations concerning the properties of astrocytic activity that may present a
barrier to co-incidence detection have been softened or removed in recent years.

Furthermore, landmark studies by Li et al. [11,12] have observed activity-dependent
co-agonism and proposed a novel role for co-agonism for the coincidence detection of
co-active segregated synapses. At this time, the question of co-agonism and co-incident
detection is intriguing and remains open. The proposed coincident detection of co-active
synapses will be heavily influenced by the spatial–temporal properties of co-agonism
and the physical arrangement of synapses. Therefore, it will be necessary to incorporate
the dendritic and reticular structures of neurons and astrocytes, respectively. The sub-
cellular anatomy is essential to account for the heterogeneity of tripartite synapses and
the extracellular space between synapses and astrocytic morphology. As co-agonism is
regulated by co-agonist uptake and metabolism, in the future, these processes should also
be studied in relation to the subcellular structure and synaptic microenvironment. The fine
mechanistic and biophysical details are critical to understanding the physiological role of
co-agonism and inform more realistic neuronal models, incorporating highly consequential
and dynamic co-agonism by astrocytes.
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