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Min inflammatory bowel disease, graft-versus-host
disease, celiac disease, and multiple organ dysfunction. In
these diseases, effectors of increased permeability include
immune signaling,1 microbiome,2 and corticosteroids3 that,
in part, signal through epithelial myosin light chain kinase
(MLCK). More modest permeability increases occur in other
disorders, including irritable bowel syndrome (IBS), autism
spectrum disorder, depression, and stress-related disorders.
However, data directly linking barrier loss to disease phe-
notypes are lacking.

To define the impact of modestly increased intestinal
permeability, we studied transgenic mice with intestinal
epithelial-specific constitutively-active myosin light chain
kinase (CAMLCK) expression. This MLCK-dependent tight
junction regulation increased intestinal permeability
(Supplementary Figure S1A and B).1 Nevertheless, postnatal
growth (Supplementary Figure S1C), reproduction, intesti-
nal transit (Supplementary Figure S1D) and intestinal his-
tology, epithelial proliferation (a sensitive indicator of
epithelial damage), and epithelial turnover are unaffected in
CAMLCK transgenic (CAMLCKTg) mice.1 In contrast, mucosal
tumor necrosis factor-a, interferon-g, interleukin (IL)-10,
and IL-13 transcripts as well as numbers of lamina propria
neutrophils, CD4þ T cells, and IgAþ plasma cells are
modestly increased by CAMLCK expression.1,2 Subclinical
inflammation is, therefore, present and, by microbiome-
dependent, IL-17–mediated processes, affords partial pro-
tection from acute pathogen invasion.2 Immune activation is
nevertheless unlikely to amplify CAMLCK-driven perme-
ability increases, as barrier function and ZO-1 anchoring are
both acutely normalized by enzymatic MLCK inhibition.1,4

We initially analyzed the gut microbiome of 31 wild-type
(WT) and CAMLCKTg pups born to 8 WT dams. The micro-
biomes segregated by pup genotype but not dam
(Supplementary Figure S1E) and included increased Clos-
tridium and decreased Bacteroidetes, Enterococcus spp, and
Prevotella in CAMLCKTg mice (Supplementary Figure S1F).
FLA 5.6.0 DTD � JCMGH588 proof �
Increased intestinal permeability can therefore cause
dysbiosis-like microbiome shifts. Interestingly, maternal
separation, which increases intestinal permeability, causes
similar alterations and can be partially corrected by MLCK
inhibitor–induced barrier restoration.5

Microbiome alterations overlapping with the above have
been reported in IBS and autism spectrum disorder. We
therefore asked if CAMLCKTg mice displayed anxiety-like
behavior, as occurs in those disorders, using the open field
test (Figure 1A) Q. Both the percentage of distance traveled in
the center and the fraction of time spent in the center of the
open field were reduced in CAMLCKTg mice (Figure 1A); this
did not reflect reduced locomotor activity, as total distance
traveled in the entire area was similar in CAMLCKTg and WT
mice (Figure 1A). These data are consistent with increased
anxiety-like behavior in CAMLCKTg mice. Although the re-
sults cannot differentiate between direct effects of increased
permeability and those requiring intermediate mediators,
these data demonstrate that intestinal permeability in-
creases can influence behavior.

Stress and increased permeability have been associated
with enhanced visceral sensitivity in humans and rodents.
Surprisingly, CAMLCKTg mice displayed striking visceral
analgesia to colorectal distension relative to WT littermates
(Figure 1B). Sensitivity was restored by enzymatic MLCK
inhibition, water avoidance stress, or naloxone-mediated
opioid receptor antagonism (Figure 1B). Although this ef-
fect of increased permeability on visceral sensitivity was
unexpected, it is remarkably similar to the naloxone-
reversible visceral analgesia reported in chronically
stressed female rats6 and naloxone-sensitive inhibition of
21 March 2020 � 8:34 pm � ce OB
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Figure 1. Increased intestinal permeability modifies behavior and visceral sensitivity. (A) Videotracking paths of representative
WT and CAMLCKTg mice in the open field test. Percent distance traveled in the center (dashed lines), percent time in the
center, and overall distance traveled in the entire field are shown. CAMLCKTg (blue circles, n ¼ 8) and WT (red squares, n ¼ 9)
littermates were tested. Values are mean ± SEM. *P < .05; **P < .01, Mann-Whitney U test. (B) Stepwise colorectal distension-
induced visceromotor responses in CAMLCKTg (blue circles, n ¼ 7) were reduced relative to WT (red squares, n ¼ 7) litter-
mates. Genotype-specific differences were eliminated by MLCK inhibition, water avoidance stress, or naloxone treatment. n ¼
5–9 per condition; for each treatment (vehicle control CAMLCKTg and WT mice from the same experiment are shown with pale
symbols in the last three graphs). Values are mean ± SEM. **, P < .01, 2-way analysis of variance.
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nociceptive neurons by supernatants of colitic human and
murine tissues.7

Studies of female IBS patients have linked increased
permeability to altered functional and structural brain
connectivity.8 Thus, although responses to colorectal
distension can be mediated by spinal reflexes and sensory,
limbic, and paralimbic regions of the brain,9 we asked if
neuronal activation was modified by CAMLCK-induced
permeability increases. C-Fos immunolabeling, an indicator
of neuronal activity, was significantly greater in the para-
ventricular nucleus of the thalamus, the paraventricular
nucleus of the hypothalamus, and the hippocampus but not
the medial prefrontal cortex, nucleus accumbens, or amyg-
dala of CAMLCKTg, relative to WT, mice (Figure 2,
Supplementary Figure S2). Increased intestinal permeability
may therefore increase basal neuronal activity in areas of
the brain that regulate responses to visceral pain or stress9

but not those associated with conscious visceral sensation.
These results demonstrate that increased intestinal

permeability can impact (1) gut microbiome composition,
FLA 5.6.0 DTD � JCMGH588 proof �
(2) behavior, (3) visceral pain responses, and (4) neuronal
activation within the brain. Critically, these changes are all
results, rather than causes, of intestinal barrier loss, as the
latter was induced by targeted CAMLCK expression.

The sites of neuronal activation in CAMLCKTg mice sup-
port the hypothesis that increased intestinal permeability
can activate the hypothalamic-pituitary-adrenal axis.10

Conversely, hypothalamic-pituitary-adrenal axis activation
by exogenous stress can induce intestinal permeability in-
creases.3 Thus, as has been proposed in inflammatory bowel
disease and graft-versus-host disease, a self-amplifying cycle
may ultimately direct the diverse phenotypes induced by
MLCK-dependent, intestinal permeability increases. Further
study is needed to define the complex relationships between
intestinal permeability, stress, behavioral alterations, vis-
ceromotor responses, microbiome composition, and other
abnormalities.

These data are the first to assess behavior in a model in
which a targeted increase in intestinal tight junction
permeability is the only direct perturbation. The results
234
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Figure 2. Increased intestinal permeability induces increased
c-Fos immunolabeling in selected brain regions. CAMLCKTg
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demonstrate, unequivocally, that modest tight junction
permeability increases induced via a physiologically and
pathophysiologically relevant mechanism are sufficient to
trigger local and systemic microbial, behavioral, and
neurosensory changes. This provides a new perspective
with which to understand previously hypothesized cause-
effect relationships that have been proposed on the basis
of correlative data.
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Supplementary Methods
Animals

CAMLCKTg mice1–4 (Tg(Vil-FLAG-CAMLCK)#Jrt) were
maintained as male heterozygotes on C57BL/6J background.
These were mated with wild-type (WT) C57BL/6J female mice
to produce WT and CAMLCKTg littermates. At weaning, female
mice were separated and housed at constant temperature (22
± 1�C) with a 12-hour light/dark cycle. Food (Teklad 2018;
Envigo, Indianapolis, IN) and water were available ad libitum.
All experiments were performed at 8 weeks of age. Proced-
ures were approved by the Ethical Committee CEEA-86, under
the number APAFiS#4145.

Gut Microbiota Composition Analysis
Gut microbiota were analyzed in two cohorts (15 WT

and 16 CAMLCKTg) from 8 different WT dams. At sacrifice,
colonic contents were stored at –80�C. DNA was extracted
using the ZR fecal DNA MiniPrep kit (Zymo Research, Irvine,
CA) and adjusted to 1 ng/mL. Changes in relative abundance
of 24 microbial 16S rRNA gene targets were obtained by
quantitative reverse-transcription polymerase chain reac-
tion (PCR) using an adapted Gut Low-Density Array
platform.5–7 A universal bacterial primer set was included
as the reference gene. quantitative reverse-transcription
PCR was performed in duplicate on a ViiA7 (Applied Bio-
systems, Foster City, CA).

Fluorescence data were imported into LinRegPCR to
perform baseline corrections, calculate mean PCR efficiency
per amplicon group. and calculate initial quantities. Among the
24 targeted amplicon groups, 6 were not detected in any fecal
samples and were removed from the analysis (Bacteroides
vulgatus, Alistipes spp, Parabacteroidetes distasonis, Roseburia
spp, Escherichia coli, and Akkermansia muciniphila). Normal-
ized N0-values were log10-transformed and processed by
mixOmicsQ4 (v6.1.1; https://www.bioconductor.org/packages/
release/bioc/html/mixOmics.html) with RStudio (v1.0.44;
RStudio, Boston, MA) to build a partial least-squares
discriminant analysis. This multivariate supervised approach
projects samples (X) onto a low-dimensional space of latent
variables to maximize separation between groups according
(Y ¼ genotype). Leave-one-out cross-validation was used to
select the optimal number of latent variables for partial least-
squares discriminant analysis models.

Open Field Test
Mice explored a 50 � 50 cm arena (illumination 300 lx)

for 10 minutes. Exploration was automatically assessed
using a video tracking system (Bioseb, Vitrolles, France).
The percentage of distance traveled and time spent and in
the center area (20 � 20 cm) and total distance traveled in
the entire arena were assessed.

Colorectal Distension
Two 0.08-mm diameter electrodes were implanted in

the abdominal external oblique muscle and a third in the
abdominal skin. On postoperative days 3–6, colorectal
distension (CRD) was performed using a balloon catheter
(Fogarty 4F catheter [Edwards Lifesciences, Irvine, CA], 1.1

cm length, tip 3.5 cm from the anus)8 in 10-second periods
with increasing volumes from 0.02 mL to 0.10 mL, with 5
minutes’ rest between distensions. Abdominal electromy-
ography activity was registered after the amplification
(10,000�) and analyzed (Powerlab Chart 5; ADInstruments,
Sydney, Australia). Basal electromyographic Q5activity was
subtracted from electromyographic activity registered dur-
ing distension. Some mice were treated with ML-7 (2 mg/kg
intraperitoneal) or naloxone sulfate (2 mg/kg intraperito-
neal) 1 hour before CRD. For others, water avoidance stress
was induced on a floating platform (3 � 3 cm) in the middle
of a water-filled tank (40 � 40 cm) for 1 hour daily over
four days. Recovery (30 minutes) preceded CRD.

Gastrointestinal Transit
Animals received 70 mL of 100-mg/mL TRITC-70kDa

dextran in tap water by gavage and were sacrificed 1 hour
later.9 The stomach and small and large intestine were cut in
11 equal parts. Luminal contents of each segment were
centrifuged and fluorescence determined. Transit was calcu-
lated as the geometric center of the values for each mouse.

Ussing Chamber Analysis
Jejunal sections were mounted in Ussing chambers

(Physiologic Instruments, San Diego, CA) filled with Krebs
buffer and continuously oxygenated (95% O2, 5% CO2).
After 1 hour of equilibration, fluorescein (1 mg/mL) was
added in the apical chamber and fluorescence intensity of
the basolateral chamber was measured after 1 hour.

In Vivo Permeability Analysis
Mice were fasted for 4 hours before gavage with 150 mL of

100-mg/mL FITC-4kDa dextran in tap water. Blood (200 mL)
was collected after 4 hours and plasma fluorescence
determined.

C-Fos Analysis
Vibratome sections (40 mm) were stained using poly-

clonal rabbit anti-c-Fos (Santa Cruz Biotechnology, Dallas,
TX) and secondary horseradish peroxidase–conjugated goat
anti-rabbit antisera (Jackson ImmunoResearch, West Grove,
PA). NDPI images (�20) were obtained (Nanozoomer;
Hamamatsu Photonics, Hamamatsu, Japan) and converted
into TIFF format using ImageJ Q6(NDPI tools plugin; National
Institutes of Health, Bethesda, MD). Regions of interest were
manually circumscribed using region-of-interest tools and
c-Fos–immunoreactive cells quantified automatically using
the particle analysis function (size: 5–20 mm2; circularity:
0.5–1). For each animal, 3–6 sections of each brain area
were assessed by a blinded observer.

Statistical Analysis
Statistical significance was determined by 2-tailed t test, 2-

tailed Mann-Whitney U test, or 2-way analysis of variance and
set at P < .05. For microbial analyses, univariate analysis was
realized in parallel to compare each amplicon separately using
unpaired t test followed by the Benjamini-Hochberg adjust-
ment of P values for multiple comparisons.
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Supplementary Figure 1. (A) Transjejunal fluorescein flux was increased in CAMLCKTg (blue circles) relative to wild-type (WT)
(red squares) littermates. Values are mean ± SD. *P < .05. Mann-Whitney U test. (B) In vivo analysis using FITC-4kDa dextran
demonstrated increased permeability of CAMLCKTg (blue circles, n ¼ 19) relative to WT (red squares, n ¼ 20) littermates.
Values are mean ± SD. *P < .05, t test. (C) Weight gain was similar in WT (red squares, n ¼ 6) and CAMLCKTg (blue circles, n ¼
6) littermates. Values are mean ± SD. (D) Intestinal transit was similar in WT (red squares, n ¼ 10) and CAMLCKTg (blue circles,
n ¼ 9) littermates. Values are mean ± SD. (E) Partial least-squares discriminant analysis (PLS-DA) score plot based on the
relative abundances of 18 microbial taxa in gut contents of CAMLCKTg (circles, n ¼ 16) and WT (squares, n ¼ 15) born to 8
different dams (each color represents 1 dam). (F) Relative abundances of microbial communities in CAMLCKTg (blue) and WT
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Figure 2. CAMLCKTg (blue
circles, n ¼ 5–6) and wild-
type (WT) (red squares,
n ¼ 5–6) littermates.
Representative images
of c-Fos–immunolabeled
brains from CAMLCKTg

and WT mice. Scale
bars ¼ 200 mm. Values are
mean ± SD. *P < .05, t
test.

w
e
b
4
C
=
F
P
O

3.e3 Inczefi et al Cellular and Molecular Gastroenterology and Hepatology Vol. -, No. -

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

FLA 5.6.0 DTD � JCMGH588 proof � 21 March 2020 � 8:34 pm � ce OB


	Targeted Intestinal Tight Junction Hyperpermeability Alters the Microbiome, Behavior, and Visceromotor Responses
	References
	Supplementary Methods
	Animals
	Gut Microbiota Composition Analysis
	Open Field Test
	Colorectal Distension
	Gastrointestinal Transit
	Ussing Chamber Analysis
	In Vivo Permeability Analysis
	C-Fos Analysis
	Statistical Analysis

	Supplementary References


