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Abstract 

Background:  Major depressive disorder (MDD) represents a major public health concern, particularly due to its 
steadily rising prevalence and the poor responsiveness to standard antidepressants notably in patients afflicted with 
chronic inflammatory conditions, such as obesity. This highlights the need to improve current therapeutic strategies, 
including by targeting inflammation based on its role in the pathophysiology and treatment responsiveness of MDD. 
Nevertheless, dissecting the relative contribution of inflammation in the development and treatment of MDD remains 
a major issue, further complicated by the lack of preclinical depression models suitable to experimentally dissociate 
inflammation-related vs. inflammation-unrelated depression.

Methods:  While current models usually focus on one particular MDD risk factor, we compared in male C57BL/6J 
mice the behavioral, inflammatory and neurobiological impact of chronic exposure to high-fat diet (HFD), a proce-
dure known to induce inflammation-related depressive-like behaviors, and unpredictable chronic mild stress (UCMS), 
a stress-induced depression model notably renowned for its responsivity to antidepressants.

Results:  While both paradigms induced neurovegetative, depressive-like and anxiety-like behaviors, inflammation 
and downstream neurobiological pathways contributing to inflammation-driven depression were specifically acti-
vated in HFD mice, as revealed by increased circulating levels of inflammatory factors, as well as brain expression of 
microglial activation markers and enzymes from the kynurenine and tetrahydrobiopterin (BH4) pathways. In addition, 
serotoninergic and dopaminergic systems were differentially impacted, depending on the experimental condition.

Conclusions:  These data validate an experimental design suitable to deeply study the mechanisms underlying 
inflammation-driven depression comparatively to non-inflammatory depression. This design could help to better 
understand the pathophysiology of treatment resistant depression.
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Background
Major depressive disorder (MDD) is one of the leading 
cause of disabilities worldwide and a major health con-
cern in modern societies. Despite the range of treatment 
options, many patients experience chronic relapse of the 
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disease and one-third of them do not respond to conven-
tional antidepressants [1]. To worsen the picture, MDD 
prevalence is steadily rising, notably in patients with 
chronic medical conditions associated with low-grade 
inflammation, including cardiovascular diseases, auto-
immune diseases, metabolic disorders and obesity [2–5]. 
Importantly, these patients also often display increased 
resistance to antidepressants, as compared to those free 
from these comorbid conditions [6–8]. This alarming 
issue highlights the need for a better understanding of 
the pathophysiology of treatment resistant depression 
(TRD) and the identification of reliable phenotypic mark-
ers to characterize concerned patients, who represent a 
highly heterogeneous population.

TRD is likely a multidimensional condition, but recent 
evidence suggests the involvement of inflammatory pro-
cesses [9, 10], in line with their notorious role in the 
pathophysiology of MDD [2, 11]. Enhanced baseline 
circulating levels of inflammatory markers predict poor 
antidepressant outcomes in depressed patients [9, 10, 12, 
13]. Moreover, obesity-related inflammation, which is 
known to contribute to depressive comorbidity in obese 
subjects [3, 5, 14, 15], was recently found to also compro-
mise response to standard antidepressants [6–8]. These 
findings sparked interest in the possibility of targeting 
inflammation to improve this clinical response [16–19]. 
The first studies conducted on this topic have provided 
promising results, although they vary depending on the 
class of anti-inflammatory drugs tested, their respec-
tive mechanism of action and potential neuromodula-
tory properties. Importantly, results also differ based 
on the clinical profile of depressed patients, with those 
with elevated inflammatory markers and poor response 
to antidepressants exhibiting greater benefit from anti-
inflammatory interventions. Determining circulating 
levels of particular inflammatory markers in depressed 
patients was found to be useful for predicting responsive-
ness to regular antidepressants [16, 18, 20]. Nevertheless, 
deeply understanding the relative contribution of inflam-
matory processes to the induction and treatment of dif-
ferent depressive symptom dimensions in these patients 
is needed to move toward more tailored and personalized 
anti-inflammatory therapeutic strategies. Addressing 
this challenging issue has been so far complicated, par-
ticularly due to the lack of relevant and reliable animal 
models of depression, i.e., models allowing experimen-
tally dissociating inflammation-related vs. inflammation-
unrelated depressive-like behaviors.

Exposure to psychological and/or environmental 
stressor(s) represents one of the most robust and repro-
ducible predictors of MDD [21, 22] and the primary 
paradigm to experimentally induce depressive-like 
behaviors. Many stress-induced depression models have 

been developed overtime, the unpredictable chronic mild 
stress (UCMS) being one of the most commonly used, 
because of its high face validity (similar phenotype as in 
depressed patients), construct validity (similar risk fac-
tors) and predictive validity (positive response to treat-
ments routinely used in humans) [23]. UCMS-induced 
depressive-like behaviors, which are usually reversed 
following chronic treatment with most classical antide-
pressants, have been primarily linked to hypothalamo–
pituitary–adrenal (HPA) axis stimulation and related 
neurotoxicity [23, 24]. In addition, some studies also 
report activation of inflammatory processes, but this 
seems to depend on the stress protocol applied and/or its 
combination with additional direct immune stimulation 
[25–27]. Taken together, these findings highlight the high 
translational potential of the UCMS model and its rele-
vance to study the involvement of different pathophysi-
ological bases of MDD, particularly by modulating stress 
intensity.

Regarding inflammation-driven depressive-like 
behaviors, infection models or direct administration of 
inflammatory cytokine inducers have largely contrib-
uted to unravel the mechanisms linking inflammation 
to depression [11, 28, 29]. These approaches particu-
larly enabled to show the critical role of indoleam-
ine 2,3-dioxygenase (IDO) [30–33], an enzyme which, 
upon inflammatory activation, degrades tryptophan 
(TRP) into kynurenine (KYN) at the expense of sero-
tonin (5-HT), a key factor in MDD pathophysiology. 
Concurrently, KYN pathway activation can also induce 
depressive symptoms by promoting glutamate-related 
neurotoxicity. In line with studies documenting the 
causal chain of events between excessive and/or unbal-
anced diets, induction of chronic low-grade inflam-
mation and development of MDD [3, 5, 15], high-fat 
diet (HFD)-induced obesity has also been used as a 
relevant and reliable translational model of inflam-
matory depression [34–37]. As for the UCMS model, 
HFD-induced depressive-like phenotype develops over 
several weeks, which reflects the progressive alterations 
of neuronal networks and therefore closely models 
pathophysiological mechanisms of MDD. Inflamma-
tory processes activation and associated brain function 
alterations, including those related to the KYN pathway, 
have also been reported in HFD models [3, 34, 35, 38]. 
Moreover, they also display dysregulation of another 
important pathway for inflammation-driven depressive 
symptoms, the tetrahydrobiopterin (BH4) pathway that 
ultimately impairs dopamine (DA) neurotransmission 
[29, 39, 40], as reported in obesity and MDD [41–44]. 
HFD models therefore recapitulate most of the neuro-
biological alterations linked to inflammation. Accord-
ingly, they appear as particularly suitable to study the 
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involvement of affected systems in the development 
of associated depressive symptoms, while offering the 
opportunity of considering the potential impact of obe-
sity-related metabolic dysregulations [45].

Based on these findings, comparing the UCMS and 
HFD models appears as a suitable strategy to dissect the 
specific effects of inflammation on depressive-like symp-
toms, provided that experimental conditions used to 
induce depressive-like behaviors only activate inflamma-
tory processes in the HFD model. This study thus aimed 
to define and validate the adequate experimental design 
allowing to investigate different depressive-like symp-
tom dimensions and their neurobiological correlates 
characterizing inflammation-related vs. inflammation-
unrelated depression, respectively. Furthermore, in light 
of clinical findings suggesting that inflammation may 
interact with other risk factors, especially environmental 
stress, to induce MDD [2], we also combined HFD and 
UCMS. This is also relevant in the perspective of study-
ing the impact of this combination on the therapeutic 
response, since it has been reported to be impaired in 
these conditions [46], but the underlying neurobiological 
mechanisms have not yet been investigated. Altogether, 
this study validated an innovative experimental approach 
particularly suitable to study inflammation-driven 

depression and to further assess its likeliness to respond 
to antidepressant strategies in future investigations.

Methods
Details are provided in Additional file 1.

Animals and UCMS procedure
All procedures were in accordance with European Direc-
tives (2010/63/EU) and approved by the Institutional 
Animal Health and Care Committee (Approval ID: 
A13169). Upon arrival, 3-week-old male C57BL/6J mice 
(Janvier Labs, France) were collectively housed under a 
normal 12 h/12 h light/dark cycle and randomly allocated 
to standard diet (SD, A04, SAFE, France; 2.9  kcal/g) or 
HFD groups (D12492, Research Diets, New Brunswick, 
NJ; 5.24  kcal/g, 60% Kcal from fat), with free access to 
water and food (Fig. 1A). They were fed with their respec-
tive food upon arrival. The UCMS procedure began 
19  weeks after the experiment onset and was applied 
until its end, except the days preceding behavioral tests 
to avoid potential interferences between acute effects 
of a particular stressor and impact of chronic stress on 
mice behavior. Unstressed mice remained group-housed 
unless transient isolation was required for specific behav-
ioral tests. In this case, they were placed in individual 
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Fig. 1  HFD mice displayed expected overweight and related metabolic dysregulations as compared to SD-fed mice. A Experimental timeline 
and design. Male C57BL/6J mice (3 weeks old) were fed ad libitum as soon as they arrived and during the entire experiment with standard diet 
(SD; 2.9 kcal/g) or high-fat diet (HFD; 5.24 kcal/g). Behavioral measures included: coat-state, splash-test, novelty suppressed feeding test (NSFT), 
sucrose preference test (SPT), locomotor activity and forced swim test (FST). n = 32/group before UCMS onset and 14–16/group after. B Schematic 
representation of the different stressors randomly applied during the UCMS procedure. C Body weight was recorded weekly for the entire 
experiment. It became significantly higher in HFD mice than in their SD counterparts from the 9th week. ***P < 0.001 for Diet effect
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cages 2  days before performing the test, in order to let 
them habituate to these new housing conditions, and put 
back to collective cages immediately after. Stressed mice 
were individually housed during the entire procedure, 
which consisted to randomly apply several times a day 
different stressors (e.g., cage tilting, changes of housing 
conditions or light cycle, social stress, restraint stress; 
Fig. 1B) following a schedule changed weekly to prevent 
habituation (see Additional file 2: Table S1).

Behavioral characterization
Behavioral characterization was performed using well-
validated tests allowing to assess different symptom 
dimensions of MDD: neurovegetative changes (coat-
state, splash-test, locomotor activity), depressive-like 
behaviors (sucrose preference test, SPT; forced swim 
test, FST) and anxiety-like behaviors (novelty suppressed 
feeding test, NSFT). Methods were essentially similar to 
those described previously [34, 47, 48] and are detailed in 
Additional file 1. Each mouse was submitted to a maxi-
mum of 2 behavioral tests per week, with a between-test 
interval of at least 3 days. To reduce the number of tests 
per mouse, 2 cohorts that followed the same experimen-
tal protocol before behavioral characterization were used. 
The 1st was tested in the coat-state, splash-test, SPT and 
FST, while locomotor activity and NSFT were assessed in 
the 2nd. All biochemical measures were performed in the 
1st set of mice, except brain monoamines assays. Behav-
ioral tests were conducted only once, except for the coat-
state and splash-test (Fig. 1A).

Tissue sampling and biochemical measures
Fasted glycemia was measured in 6-h-fasted mice at the 
end of the UCMS procedure as previously described [49]. 
One week after completion of behavioral testing, mice 
were anesthetized by isoflurane inhalation and blood 
samples immediately collected via cardiac puncture [49]. 
Commercial kits were used to assay plasma corticoster-
one (Corticosterone-HS kit; ImmunoDiagnostic System, 
France), leptin, resistin and adiponectin concentrations 
(Metabolic- and Adiponectin-Milliplex kits; Merck-Mil-
lipore, France). Plasma chemokine and cytokine assays 
were conducted by Eve Technologies (Calgary, Canada) 
using a bead-based multiplex assay (Mouse Cytokine/
Chemokine Array 32-Plex [MD32]). After blood collec-
tion, mice were perfused with chilled 1X PBS and part of 
the brains rapidly dissected to collect and immediately 
frozen the hippocampus (HC), prefrontal cortex (PFC) 
and striatum. After homogenization, DA, 5-HT and their 
main metabolites (dihydroxyphenyl acetic acid (DOPAC), 
homovanillic acid (HVA), 5-hydroxyindoleacetic acid 
(5-HIAA)) were measured by HPLC-EC [50]. Brains used 
to measure mRNA expression were directly stored at 

− 80  °C until they were micropunch-dissected as previ-
ously described [51].

Taqman low‑density arrays (TLDA)
Total RNAs from HC and PFC micropunches were 
extracted using Trizol (Invitrogen, Life Technologies, 
France) and reversed-transcribed to cDNA using the 
SuperScript-VILO™ cDNA Synthesis Kit (Invitrogen, 
Thermo-Fisher Scientific, France). A custom-made 
TLDA card (Applied Biosystems, France) was designed 
to measure the expression of 48 genes (Additional file 3: 
Table S2) and processed at the Integrative Microgenomic 
platform (@BRIDGe, INRA, Jouy-en-Josas, France) fol-
lowing the manufacturer’s protocol. All reactions were 
performed in duplicates and the relative mRNA expres-
sion was normalized against the endogenous controls 
using the comparative delta–delta Ct method.

Statistical analysis
Following the method described previously [50, 52], 
we applied z-normalization across data obtained in the 
coat-state, splash-test, SPT and FST (all performed in 
the same mice) to calculate an integrated emotional-
ity z-score representing a relevant index of the severity 
of HFD- and UCMS-induced depression-like behaviors. 
Z-normalization was also applied across complemen-
tary measures of plasma, HC and PFC inflammation, 
KYN and BH4 pathways, 5-HT and glutamate systems, 
and oxidative status. Regarding inflammatory z-scores, 
both inflammatory and anti-inflammatory factors, which 
contribute together to the inflammatory response, were 
integrated in order to better reflect what happens in con-
ditions of chronic inflammation. For the same reasons, 
the KYN z-score included the enzymes promoting either 
neurotoxicity or neuroprotection. Depending on their 
distribution, data were analyzed using parametric statis-
tics (two-way ANOVAs with repeated measures for the 
time factor and post hoc Fisher’s LSD test when appro-
priate) or non-parametric statistics (Kruskal–Wallis test 
and Dunn’s pairwise multiple comparison test).

Results
HFD mice displayed overweight and related metabolic 
dysregulations
As expected, HFD mice became progressively heavier 
than SD mice regardless of stress (Diet: F(1,56) = 166.2, 
P < 0.001; Diet × Time: F(5,5280) = 51.5, P < 0.001; Fig. 1C) 
and displayed significantly higher plasma leptin 
(F(1,55) = 298.8, P < 0.001), resistin (F(1,55) = 12.9, P < 0.001) 
and fasted glucose concentrations (F(1,56) = 58.8, P < 0.001; 
Additional file  4: Table  S3). UCMS increased glycemia 
(F(1,56) = 12.5, P < 0.001) and tended to enhance plasma 
corticosterone levels (P = 0.06) whatever the diet.
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HFD and UCMS induced emotional alterations
Neurovegetative changes were evaluated using the coat-
state and splash-test, two paradigms related to self-care 
and classically used to characterize rodent depression 
models [48, 53]. Both HFD and UCMS degraded the coat-
state, as revealed by the increased scores calculated for 
those groups (P < 0.001; Fig. 2A), these effects being exac-
erbated when both conditions were combined (P < 0.001). 
In the splash-test, HFD mice groomed less than SD mice 
(F(1,56) = 4.9, P < 0.05; Fig.  2B), whereas behavior was 
unchanged by UCMS. Assessment of locomotor activ-
ity was used as an index of psychomotor changes (agita-
tion/retardation) that are classically reported in MDD. It 
progressively decreased in all mice (Time: F(5,195) = 60.0, 
P < 0.001), reflecting the habituation that follows the ini-
tial exploration phase due to novelty. In addition, covered 
distance was reduced by HFD (F(1,39) = 65.7, P < 0.001; 
Diet × Time: F(5,195) = 3.5, P < 0.01; Fig. 2C), but this effect 
was damped by UCMS (F(1,39) = 6.3, P < 0.05).

Anhedonia-related depressive-like behaviors were 
measured in the SPT. HFD significantly decreased 
sucrose preference (F(1,56) = 26.3, P < 0.001; Fig.  2D), but 
to different ranges depending on stress conditions (Diet 

× Stress: F(1,56) = 8.0, P < 0.01). UCMS slightly reduced 
sucrose preference in SD mice, while blunting diet effect 
in stressed-HFD mice, which still displayed, however 
lower preference than unstressed controls. In line with 
these data, increased depressive-like behaviors were also 
reported in the FST, immobility time being enhanced 
both by HFD (F(1,49) = 7.6, P < 0.01; Fig.  2E) or UCMS 
(F(1,49) = 6.3, P < 0.05). Of note, this was not just an unspe-
cific consequence of impaired locomotor activity related 
to overweight since no significant differences were found 
between groups when swimming was assessed during the 
first minute of the FST, during which active behavior is 
classically very high (data not shown). Moreover, there 
was no significant correlation between body weight and 
duration of immobility.

The NSFT was used to assess anxiety-like behavior. 
Latency to eat in a novel environment was increased by 
HFD (F(1,34) = 24.5, P < 0.001; Fig. 2F), in interaction with 
UCMS (F(1,34) = 4.5, P < 0.05) that specifically enhanced 
this latency in SD mice. Importantly, this measure was 
similar in all groups when tested in their home cage 
(Fig. 2F) and not correlated with food intake assessed in 
each condition. Together, these results discard potential 
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Fig. 2  Both HFD and UCMS induced emotional alterations. A Total coat-state score assessed week 25 and calculated by summing, for each 
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different from the others, HFD-UCMS mice displaying the highest score, meaning lower self-care (n = 14–16 mice/group). B Duration of grooming 
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implication of differences in appetite and therefore con-
firm increased anxiety-like behavior in HFD and UCMS.

In summary, both experimental conditions induced 
emotional alterations related to distinct symptom dimen-
sions of MDD. Supporting this, HFD (F(1,56) = 146.6, 
P < 0.001) and UCMS (F(1,56) = 14.3, P < 0.001) indepen-
dently increased the emotionality z-score (Fig.  2G). Of 
note, this effect appears however to be stronger in HFD 
than UCMS mice, which suggests that the neurobiologi-
cal correlates of those behavioral alterations may be also 
differentially impacted.

Emotional alterations were associated with activation 
of inflammatory processes in HFD mice
To determine whether inflammatory status was differen-
tially affected by HFD and UCMS, plasma levels of a large 
panel of inflammatory markers were measured. Consist-
ent with the expected obesity-related systemic inflam-
mation, the plasma inflammatory z-score calculated 
from data displayed in Fig. 3A was significantly increased 
by HFD (F(1,46) = 45.1, P < 0.001; Fig.  3B) but unchanged 
by UCMS. HFD particularly enhanced plasma levels of 
interleukin-6 (IL-6), IL-10, monokine induced by IFN-γ 
(MIG or CXCL9), IFN-γ-induced protein-10 (IP10 or 

CXCL10), keratinocytes-derived chemokine (KC or 
CXCL1) regardless of stress, as well as tumor necrosis 
factor-α (TNF-α) and eotaxin (CCL11) in unstressed-
HFD mice (Fig. 3A and Additional file 5: Fig. S1). When 
acting, UCMS mainly reduced inflammation, as shown 
for levels of macrophage inflammatory protein-1β 
(MIP-1β or CCL4) whatever the diet, monocyte che-
moattractant protein-1 (MCP-1 or CCL2) in SD mice, 
IL-13 and granulocyte-colony stimulating factor (G-CSF) 
in stressed-HFD mice, although it increased IL-5 levels in 
the latter.

Akin to peripheral inflammation, HFD upregulated 
gene expression of several markers of microglial activa-
tion in two central sites for emotional regulation, the 
HC (Fig.  4A and Additional file  6: Fig. S2A) and PFC 
(Fig. 5A and Additional file 7: Fig. S3A) [49, 54]. Accord-
ingly, the HC inflammatory z-score (integrating data 
from inflammatory factors displayed in Fig.  4A) was 
significantly increased in unstressed-HFD mice (Diet 
× Stress: F(1,36) = 5.1, P < 0.05; Fig.  4B), UCMS coun-
teracting the effect of HFD (F(1,36) = 7.1, P < 0.05). In 
the PFC, HFD significantly enhanced local inflamma-
tory z-score (F(1,36) = 4.4, P < 0.05; Fig.  5B), indepen-
dently from stress. Altogether, these data confirmed 
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reporting the effects of Diet, Stress and their interactions. *P < 0.05 **P < 0.01, ***P < 0.001; ns = not significant. B Integrated plasma inflammatory 
z-score calculated from data displayed in the heatmap and graphed as means ± SEM. n = 8–15 mice/group. ***P < 0.001 for Diet effect
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activation of inflammatory processes in HFD mice, but 
not unstressed- or stressed-SD mice, while highlighting 
stress-related anti-inflammatory properties in the HC of 
HFD-UCMS mice.

HFD‑induced inflammation was associated 
with modulation of KYN and BH4 pathways
We then assessed the impact of HFD and UCMS on the 
KYN and BH4 pathways (Figs.  4A, 5A), which contrib-
ute to inflammation-related depression [29, 40]. In the 
HC, the KYN z-score, which integrated the expression 
of related enzymes (IDO, kynurenine aminotransferase 
(KAT), kynurenine 3-monoxygenase (KMO), kynureni-
nase (KYNU) and hydroxyanthranilic acid oxygenase 
(HAAO)), was increased in stressed-SD and unstressed-
HFD mice (Diet × Stress: F(1,36) = 6.5, P < 0.05; Fig.  4C). 
Interestingly, while UCMS particularly targeted KAT 
expression in SD mice (Diet × Stress: F(1,28) = 4.6, 
P < 0.05; Additional file  6: Fig. S2B), HFD rather pro-
moted KYN-related neurotoxicity by enhancing KYNU 
expression (F(1,31) = 4.2, P < 0.05). BH4 z-score integrat-
ing main BH4-related enzymes and regulatory proteins 

(guanosine triphosphate cyclohydrolase-1 (GCH1), GTP-
cyclohydrolase-1 feedback regulator (GFRP), sepiapterin 
reductase (SPR), dihydrofolate reductase (DHFR) and 
6-pyruvoyltetrahydropterin synthase (PTPS)) was also 
notably increased in unstressed-HFD mice (Stress × Diet: 
F(1,36) = 4.4, P < 0.05; Fig.  4D). UCMS and HFD indeed 
interacted to differentially modulate GFRP (F(1,31) = 5.2, 
P < 0.05; Additional file  6: Fig. S2C) and SPR expres-
sion (F(1,35) = 4.0, P = 0.05). UCMS decreased expression 
of GCH1 (F(1,33) = 4.6, P < 0.05) and PTPS (F(1,33) = 3.9, 
P = 0.05), while increasing that of DHFR (F(1,34) = 4.1, 
P = 0.05). Consistent with KYN z-score, both factors 
modulated glutamatergic neurotransmission in stressed-
SD and unstressed-HFD mice, as revealed by enhance-
ment of glutamate z-score (Diet × Stress: F(1,36) = 19.0, 
P < 0.001; Fig. 4F) that integrated expression of glutamate 
transporters (vesicular glutamate transporter (vGLUT), 
glutamate transporter-1 (GLT-1), glial high-affinity 
glutamate transporter (GLAST)) and NMDA recep-
tor subunits (NR2a, NR2b). Of note, vGLUT expression 
was significantly down-regulated by UCMS (F(1,32) = 5.2, 
P < 0.05; Additional file 6: Fig. S2E), which interacted with 
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Fig. 4  HFD and UCMS differentially modulated HC gene expression of inflammatory markers and related neurobiological processes. A Heatmap 
generated with R gplots package displaying differential expression levels of hippocampus (HC) genes, as analyzed with the TLDA method in 
unstressed (Controls) or stressed (UCMS) SD and HFD mice. Results are plotted as fold changes relative to controls, which are not presented since 
their value was equal to 0 (white color). Genes showing poor or late amplification were not included in the analysis. The table associated to the 
heatmap displays results of the statistical analysis for genes related to: inflammation, KYN pathway, BH4 pathway, 5-HT system, glutamate system 
and oxidative status. *P < 0.05 **P < 0.01; ns = not significant. B Inflammatory, C kynurenine, D BH4, E 5-HT, F glutamate and G oxidative z-scores 
calculated from expression of related genes displayed in the heatmap. All results are graphed as means ± SEM. n = 8–10 mice/group. $P ≤ 0.05, 
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HFD to up-regulate that of GLT-1 (Stress: F(1,31) = 7.9, 
P < 0.01; Diet × Stress: F(1,31) = 7.2, P < 0.05) and GLAST 
(Diet × Stress: F(1,35) = 7.8, P < 0.01). Lastly, the oxidative 
z-score calculated from catalase (CAT), superoxide dis-
mutase-1 (SOD), glutathione peroxidase-1 (GPx-1), nitric 
oxide synthase-1 (NOS1) and NOS2 expression was also 
increased in the same two groups (Diet: F(1,36) = 3.7, 
P = 0.06; Diet × Stress: F(1,36) = 12.6, P < 0.01; Fig.  4G), 
CAT and NOS2 expression being significantly upregu-
lated by HFD, while UCMS blunted this effect (Diet 
× Stress: F(1,33) = 8.4, P < 0.01 and F(1,34) = 5.4, P < 0.05, 
respectively; Additional file 6: Fig. 2F).

In the PFC, the impact of HFD on KYN z-score did 
not reach significance (F(1,36) = 3.6, P = 0.07; Fig.  5C), 
but it increased KMO (F(1,35) = 9.9, P = 0.05; Addi-
tional file  7: Fig. S3B) and HAAO expression (Diet × 
Stress: F(1,36) = 5.6, P < 0.05), which was also enhanced 
in stressed-SD mice. Supporting further HFD-induced 
KYN-related neurotoxicity, the neurotoxicity/neuropro-
tection ratio (KMO/KAT) was significantly increased by 
HFD (F(1,33) = 5.0, P < 0.05; Additional file 7: Fig. S3B) and 
reduced by UCMS (F(1,33) = 7.1, P < 0.05). BH4 z-score 

was similar in all mice (Fig.  5D), although UCMS and 
HFD interacted to increase PTPS expression in stressed-
HFD mice (F(1,35) = 5.2, P < 0.05; Additional file  7: Fig. 
S3C) that also tended to display overexpression of GCH1 
(F(1,36) = 3.6, P = 0.06). Lastly, glutamate and oxidative 
z-scores were not significantly changed (Fig.  5F, G), but 
UCMS increased CAT expression (F(1,34) = 8.4, P < 0.01; 
Additional file  7: Fig. S3E) and interacted with HFD to 
upregulated that of NOS2 (F(1,35) = 4.5, P < 0.05).

Changes in monoaminergic neurotransmission 
accompanied modulation of KYN and BH4 pathways
Because 5-HT system participates to MDD pathophysi-
ology and can be impacted by inflammation and related 
modulation of KYN and BH4 pathways, we measured 
whether UCMS and HFD affected gene expression of 
key 5-HT elements (5-HT1A, 1B, 2C receptors, 5-HT 
transporter (5-HTT) and monoamine oxidases (MAO) 
degradation enzymes; Figs. 4A, 5A). In the HC, the 5-HT 
z-score calculated from these elements was increased 
in stressed-SD and unstressed-HFD mice (Stress × 
Diet: F(1,36) = 8.9, P < 0.01; Fig.  4E). Accordingly, these 
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Fig. 5  HFD and UCMS differentially modulated PFC gene expression of inflammatory markers and related neurobiological processes. (A) Heatmap 
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mice displayed increased 5-HT1A and MAOA expres-
sion (Stress × Diet: F(1,31) = 4.2, P < 0.05 and F(1,30) = 6.3, 
P < 0.05, respectively; Additional file  6: Fig. S2D) and 
reduced 5-HT concentrations (Stress × Diet: F(1,31) = 4.2, 
P < 0.05; Table  1), while 5-HIAA levels and 5-HIAA/5-
HT ratio were unchanged. Conversely, HFD decreased 
5-HT1B (F(1,36) = 4.8, P < 0.05; Additional file 6: Fig. S2D) 
and 5-HT2C expression (F(1,31) = 8.9, P < 0.01) and UCMS 
that of 5-HTT (F(1,31) = 6.4, P < 0.05). In the PFC, HFD 
increased 5-HT z-score (F(1,36) = 4.9, P < 0.05; Fig. 5E) and 
5-HTT expression (F(1,30) = 7.8, P < 0.01; Additional file 7: 
Fig. S3D) regardless of stress, while slightly reducing 
MAOA expression (F(1,32) = 4.4, P < 0.05). No significant 
changes of 5-HT and 5-HIAA levels or their ratio were, 
however, reported (Table 1).

Because impaired DA neurotransmission has been 
reported in obesity and MDD [41–44], DA and its 
metabolites were measured in the HC, PFC, but also the 
striatum as an important dopaminergic site (Table  1). 
No significant changes were reported for DA levels in 
the PFC, but they were decreased by UCMS in the stria-
tum (F(1,36) = 4.6, P < 0.05) and increased by HFD in the 
HC (F(1,34) = 6.5, P < 0.05), although they remained much 

lower here than in the other regions. Lastly, DA metabo-
lite levels were similar whatever the groups.

Taken together, these results showed that emotional 
alterations instigated by HFD and UCMS were associated 
with differential induction of systemic and brain inflam-
mation, specifically reported in HFD mice, distinct acti-
vation of KYN and BH4 pathways, particularly in the HC, 
together with increased oxidative status and dysregulated 
brain glutamate and monoaminergic neurotransmission 
(Fig. 6). In addition, they pointed to a particular regula-
tion of HFD-induced inflammatory activation and related 
neurobiological alterations in the HC of HFD-UCMS 
mice.

Discussion
Dissecting the relative contribution of inflammatory 
processes in the occurrence of MDD remains a chal-
lenge in the field of immunopsychiatry, and the lack of 
suitable preclinical models of depression further com-
plicates this issue. This study provides valuable findings 
relevant to this topic by validating an experimental strat-
egy that enables dissociating inflammation-related vs. 

Table 1  Impact of HFD and UCMS on brain concentrations of monoamines and their metabolites

Concentrations of 5-HT, DA and their metabolites (DOPAC and HVA for DA; 5-HIAA for 5-HT) measured by HPLC-EC at the end of the experiment in the HC, PFC and 
Striatum of unstressed (Controls) or stressed (UCMS) SD and HFD mice. Values are expressed as pmoles/g of tissue. n = 10–11 mice/group. ND: not detectable. *P < 0.05 
for diet effect; #P < 0.05 for stress effect

(pmoles/g tissue) Controls UCMS HFD HFD-UCMS

Hippocampus [5-HT] 2031.5 ± 189.9 1688.0 ± 163.3 1487.1 ± 141.6* 1934.3 ± 280.2

[5-HIAA] 2044.0 ± 146.6 2084.0 ± 124.4 2610.4 ± 477.8 2297.3 ± 177.4

5-HIAA/5-HT 1.1 ± 0.2 1.3 ± 0.2 1.6 ± 0.3 1.4 ± 0.2

[DA] 57.7 ± 6.9 69.0 ± 14.0 116.5 ± 34.3* 171.2 ± 51.5*

[DOPAC] 87.6 ± 11.7 77.5 ± 6.9 95.7 ± 13.6 120.2 ± 29.9

[HVA] ND ND ND ND

DOPAC/DA 1.5 ± 0.2 1.7 ± 0.4 1.1 ± 0.2 1.0 ± 0.2

Cortex [5-HT] 1662.7 ± 83.4 1657.6 ± 80.7 1505.8 ± 75.8 1717.2 ± 95.9

[5-HIAA] 1939.8 ± 178.4 1741.1 ± 169.7 1559.5 ± 199.2 1794.2 ± 141.3

5-HIAA/5-HT 1.2 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 1.1 ± 0.1

[DA] 6828.2 ± 1140.7 8175.8 ± 1676.7 9125.4 ± 673.7 7866.6 ± 1164.1

[DOPAC] 2164.2 ± 181.6 2021.4 ± 296.9 2545.4 ± 131.4 2394.0 ± 277.8

[HVA] 1450.0 ± 183.8 1486.8 ± 128.0 1666.5 ± 115.8 1686.2 ± 160.9

DOPAC/DA 0.4 ± 0.09 0.5 ± 0.2 0.3 ± 0.03 0.4 ± 0.05

HVA/DA 0.3 ± 0.1 0.2 ± 0.05 0.2 ± 0.02 0.2 ± 0.04

Striatum [5-HT] 1216.3 ± 220.7 1360.6 ± 172.0 1473.2 ± 219.4 1267.2 ± 223.0

[5-HIAA] 2616.5 ± 472.5 1972.9 ± 258.6 2850.3 ± 269.4* 2484.1 ± 276.4*

5-HIAA/5-HT 2.2 ± 0.3 1.7 ± 0.2 2.2 ± 0.3 2.6 ± 0.5

[DA] 19,358.3 ± 4421.4 10,115.5 ± 2406.4# 18,595.6 ± 3641.0 13,783.9 ± 3034.9#

[DOPAC] 3639.0 ± 541.3 3331.3 ± 633.5 3806.8 ± 393.6 3365.9 ± 629.9

[HVA] 2374.3 ± 500.1 2443.6 ± 366.1 2965.4 ± 291.9 2789.7 ± 307.4

DOPAC/DA 0.3 ± 0.05 0.5 ± 0.1 0.3 ± 0.08 0.3 ± 0.09

HVA/DA 0.1 ± 0.02 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.04
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inflammation-unrelated depressive-like behaviors and 
to decipher the respective cascade of events underlying 
their induction.

While most depression models usually focus on 
one particular MDD risk factor [23, 55, 56], we com-
pared exposure to HFD and UCMS. Both paradigms 
induced neurovegetative alterations resembling MDD 
symptoms, including apathy and carelessness [36, 48, 
57, 58], as notably evidenced by increased coat-state 
score. As HFD is greasy and friable, this could explain 
fur degradation in HFD mice. However, it is notewor-
thy that similar observation was reported in stressed-
SD mice. Importantly, the splash-test confirmed 
impaired grooming in HFD mice, as previously shown 
in obese mice and other depression models [37, 58–61]. 
Regarding UCMS, published data changed depending 
on mouse strains used, and the intensity, nature and/
or duration of the stress protocol [23, 46, 48, 53, 61]. 
Here, C57BL/6J mice were chosen as classical strain 
for HFD-induced obesity studies, although they are not 
the most responsive to UCMS [34, 37, 42, 44]. Moreo-
ver, strong stressors such as food and water depriva-
tion were discarded for ethical reasons. This likely 
explains why stressed-SD mice behaved as controls in 
the splash-test, while otherwise displaying higher emo-
tional behaviors. As previously shown [44, 50, 61, 62], 
UCMS and HFD notably increased immobility in the 

FST. Although it could be postulated that HFD-related 
locomotor impairment may be a confounding factor 
in this test [45], changes in immobility likely reflected 
depressive-like behavior, consistent with impaired 
sucrose preference in the SPT, a reward-based test 
modeling anhedonia, which does not rely on locomo-
tor response. Further ruling out potential interferences 
of motor impairment in the FST, we previously showed 
that changes in immobility can be reported in this test 
without general locomotion necessarily being altered 
[30–33]. In line with this, HFD-induced anxiety-like 
behavior, as assessed in behavioral tests involving loco-
motor response, were also independent of overall loco-
motion [45]. Akin to these findings, we showed here 
that both HFD and UCMS mice displayed prolonged 
latency to eat in the NSFT only when conducted in the 
new environment, which reflects increased anxiety-like 
behaviors unrelated to changes in appetite or locomo-
tion [37, 47, 48, 50, 62]. Altogether, these data there-
fore confirmed that HFD and UCMS models displayed 
depressive phenotypes, although they did not neces-
sarily induce similar behavioral alterations. Of note, a 
specific behavioral profile was also reported when the 
two conditions were combined, at least regarding some 
depressive dimensions. This agrees with previously 
published data [46], which interestingly show that this 
was associated with a differential response to chronic 

HFD

Emotional Alterations

UCMS

Fig. 6  Overview of the neurobiological processes, associated with HFD-induced and UCMS-induced emotional alterations respectively. In line 
with the initial expectations, inflammation was selectively reported in the model of HFD-related depression, as shown by increased expression of 
markers of microglial activation in the HC and PFC. Consistent with this, HFD mice also displayed activation of the KYN and BH4 pathways, which 
are known to trigger inflammation-driven depression. This activation, which was particularly sustained in the HC, was associated with impaired local 
monoaminergic neurotransmission, notably the 5-HT system. It concomitantly promoted glutamate excitotoxicity and oxidative stress, favoring in 
turn neurotoxicity. Of note, these neurobiological changes that likely contribute to emotional alterations were also found in the UCMS depression 
model, but importantly, upstream triggering mechanisms were in that case independent from inflammation. The two experimental conditions 
enable, respectively, to dissociate inflammation-related vs. inflammation-unrelated depressive symptoms. Arrows indicate activation and dotted 
T-bars inhibition/impairment
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antidepressant treatment, supporting further the inter-
est of having several complementary preclinical models 
to study the pathophysiological bases of TRD.

As anticipated, both depression models displayed dif-
ferent neurobiological changes potentially contributing 
to their behavioral phenotype. This could include meta-
bolic dysregulations specifically induced by HFD, as pre-
viously reported [45, 63], but mounting evidence suggests 
that they unlikely play a direct predominant role. Indeed, 
impaired emotional behaviors were previously associated 
with low leptin levels or increased leptin resistance [38, 
64, 65], while mice with high leptin levels, but no inflam-
mation, exhibit normal depressive-like behavior [34]. 
Moreover, improving obesity-driven inflammation and 
emotional alterations can be achieved without concomi-
tantly normalizing adipokine and/or glucose levels, and 
vice-versa [49, 53, 66, 67], although some studies report 
positive behavioral effects of anti-diabetic drugs [37, 
68]. Of note however, these drugs may act by reducing, 
beyond hyperglycemia, inflammation [69, 70]. Here, ele-
vated plasma levels of inflammatory factors contributing 
to the overall innate immune system activation [15, 34, 
38, 42, 64, 71] and increased brain expression of classical 
markers of microglial activation [36, 64, 72] were selec-
tively triggered by HFD. These results were in line with 
a wide literature also reporting other compelling signs of 
inflammation and immune activation related to obesity, 
such as adipose tissue production of inflammatory fac-
tors or local infiltration of activated immune cells [71, 73, 
74]. Unlike other studies using stress protocols stronger 
than ours, different strains of mice and/or additional 
immune stimulations [25, 26, 75], stressed-SD mice 
were not inflamed, which could likely account for the 
behavioral differences reported between these mice and 
unstressed-HFD mice. UCMS even occasionally altered 
HFD-induced inflammation, as also reported for some 
emotional behaviors. These results are consistent with 
the wide, although often conflicting literature illustrating 
the complexity of the bidirectional relationship between 
chronic stress and consumption of palatable food [76–
80]. Indeed, it has been shown that chronic stress expo-
sure can mitigate the adverse effects of HFD, in particular 
through the anti-inflammatory properties of stress-
induced HPA axis activation [76, 80]. Conversely, HFD 
consumption has been reported to alleviate the deleteri-
ous effects of stress on depressive symptoms and related 
neurobiological impairments [77–79]. Additional studies 
are needed to understand further how stress interacts 
with obesity-driven inflammation and related symptoms 
in the current experimental conditions. Meanwhile, we 
clearly showed that UCMS alone did not activate inflam-
mation in our experimental conditions, thus meeting the 
specifications that were initially set.

Interestingly, both UCMS and HFD models also dif-
fered regarding some of the main downstream neurobio-
logical events triggering inflammation-driven depression 
[3, 5, 11, 29, 40]. This primarily included KYN pathway 
activation in HFD mice, together with reduced hip-
pocampal 5-HT levels and imbalanced brain neuro-
toxic–neuroprotective ratio favoring neurotoxicity and 
oxidative stress, as previously reported in the adipose tis-
sue and plasma of obese patients [81, 82]. Enzymes of the 
BH4 pathway were also differentially expressed, particu-
larly in the HC of unstressed-HFD mice, with potential 
impact on monoaminergic neurotransmission, as BH4 
is required for optimal DA and 5-HT synthesis [29, 40]. 
Here, both HFD and UCMS differentially altered those 
systems in a monoamine-dependent and region-depend-
ent manner, what was expected given their central role in 
the pathophysiology and treatment of MDD [3, 41]. The 
mechanisms, respectively, underlying stress-induced and 
HFD-induced modulation of monoamine neurotransmis-
sion and related neuropsychiatric symptoms still need to 
be deeply studied, what supports further the relevance of 
comparing the two models.

The current work bears some limitations that upcom-
ing experiments should overcome. The main one is that 
data obtained are essentially correlative and do not there-
fore allow concluding about the causal role of the differ-
ent neurobiological processes studied, as well as their 
potential links, in the development of reported emotional 
alterations, nor identifying other possible underlying 
mechanism, particularly regarding the combined impact 
of stress and HFD. Of note however, this was not the aim 
of the present study. Another limitation is that experi-
ments were only performed on males, while women are 
at greater risk to suffer from MDD [83]. This is due to 
largely multifactorial reasons [83] that are not necessar-
ily easy to control experimentally and might in any case 
complicate data interpretation when both sexes are stud-
ied together. Being aware of that, and in order to reduce 
the number of mice used, we decided not to address 
this issue here. This means that extrapolating the pre-
sent findings to females needs to be taken with caution. 
Despite these limitations, the in-depth characterization 
of the two models of depression used in this study repre-
sents an essential first step in the further development of 
new pharmacological and/or more mechanistic studies.

Conclusions
In conclusion, by validating an experimental approach 
allowing the comparative analysis of inflammatory ver-
sus non-inflammatory depression models, this study 
highlights the relevance of this approach to unravel the 
role of inflammatory processes in the pathophysiology 
of MDD. It should notably help to identify the nature 
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of inflammation-driven brain alterations specifically 
involved in the development of particular symptom 
dimensions and better understand the pathophysiological 
bases of the clinical phenotype resulting from the com-
bination of stress and HFD. In addition, it should also 
enable addressing questions on the implication of inflam-
mation in the treatment of those disorders, by comparing 
the response to antidepressants between the two condi-
tions. In that context, the detailed insights into the behav-
ioral and neurobiological changes they, respectively, 
induced would be useful for the potential development 
of new therapeutic strategies, particularly those targeting 
inflammation. They could also facilitate the identification 
of reliable phenotypic markers to characterize the profile 
of patients with TRD. Lastly, unlike studies combining 
stress and direct immune activation instead of obesity-
driven inflammation [25–27], our experimental strategy 
takes into account an important player in MDD patho-
physiology, namely nutritional imbalance and its impact 
on brain function. Altogether, this study opens new ave-
nues for future research.
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