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Abstract: The unification of the laws of fluid and solid mechanics is achieved on the basis of
the concepts of discrete mechanics and the principles of equivalence and relativity, but also the
Helmholtz–Hodge decomposition where a vector is written as the sum of divergence-free and curl-
free components. The derived equation of motion translates the conservation of acceleration over a
segment, that of the intrinsic acceleration of the material medium and the sum of the accelerations
applied to it. The scalar and vector potentials of the acceleration, which are the compression and
shear energies, give the discrete equation of motion the role of conservation law for total mechanical
energy. Velocity and displacement are obtained using an incremental time process from acceleration.
After a description of the main stages of the derivation of the equation of motion, unique for the fluid
and the solid, the cases of couplings in simple shear and uniaxial compression of two media, fluid
and solid, make it possible to show the role of discrete operators and to find the theoretical results.
The application of the formulation is then extended to a classical validation case in fluid–structure
interaction.

Keywords: fluid–structure interaction; discrete mechanics; Helmholtz–Hodge decomposition; Navier–
Stokes equations; Navier–Lamé equations

1. Introduction

Fluid–structure interactions always present a challenge related to the ever-broader
problems tackled within the framework of industrial processes or for the environment. They
put to the test the most recent numerical methodologies but also the physical models which
must make it possible to integrate all types of constitutive laws. The finite difference or
finite element methods which were among the first to allow solid–fluid couplings [1,2] have
been joined for several decades by techniques from differential geometry such as mimetic
discretizations [3,4] or the discrete exterior calculus [5]; sometimes they are combined to
increase their versatility. Progress in the simulation of fluid–structure interactions is also
conditioned by the formulations implemented; some treat fluids and solids separately by
solving the Navier–Stokes and Navier–Lamé equations, respectively. Others treat fluids
and solids together in a so-called monolithic description.

The object of this article is the presentation of the evolution of a physical model of
monolithic type developed from 2014 [6,7], on the basis of a modification of the Navier–
Stokes equation introducing a term into the divergence of the viscous stress tensor. This
made it possible to accumulate the shear stresses in the solid parts of the field and classically
resolve the movements of fluids. The interfaces between the media were taken into
account using a tracking method of the volume of fluid type. This technique made it
possible to carry out standard test cases such as the Turek–Hron benchmark, the flow of
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a laminar incompressible flow around an elastic obstacle fixed to a rigid cylinder with a
satisfactory precision.

However, the existing formal differences between the Navier–Lamé and Navier–
Stokes equations as well as certain difficulties in defining the Lamé coefficients for fluids
leads one to abandon this path. The unification of fluid and solid mechanics has been
sought on the basis of discrete mechanics developed few years ago. The conservation of
the momentum at the basis of the continuum mechanics media has been replaced by the
conservation of acceleration; at the same time, mass or density has been abandoned in
favor of the conservation of an equivalent quantity, energy. The first publications of 2020
present the discrete physical model defined on the basis of the acceleration conservation in
a local frame of reference [8,9]. The equation of motion resulting from the derivation in
this frame of reference made it possible to build a representative model of the movements
of fluids and solids without any other modification than those of the longitudinal and
transverse celerities of the media considered. The velocity formulation allows, at the same
time, calculating the displacements and the compressive and shearing stresses. Other
reference cases such as that of Sugiyama et al. [10] made it possible to verify and validate
this formulation. At the same time, the associated numerical methodology has evolved
towards techniques based on differential geometry and exterior calculus. The equation of
motion is free from tensor of order equal to or greater than two and the vectors themselves
are scalars carried by oriented segments. The formalism and numerical methodology are
presented in detail in [11].

The evolution of this discrete model is continuous; the one presented here reduces
the local frame of reference to a segment of length dh called a discrete horizon. which is
the distance traveled by an acoustic wave at a velocity equal to the celerity of the medium.
The derivation of the equation of motion for fluids and solids is carried out on a segment
translates the conservation of acceleration on it but also the conservation of the total energy
between the two ends of the segment, the sum of kinetic energy and potential energy. The
scalar potential of acceleration represents the compression energy per unit mass and the
vector potential represents the shear energy per unit mass. The extension of the model
to several dimensions of space is carried out by assembling the segments in polygons
to form the primal surfaces then the elementary faces are linked by one of their side to
create volumes. The interactions from one local frame of reference to another is interpreted
by a cause and effect mechanism through the scalar potential common to two or more
segments. From the technical point of view, an unstructured mesh based on polygons or
polyhedra with any number of faces represents the primal geometric structure. The passage
of information from the primal mesh to the dual or its inverse is carried out according to
the mimetic method developed in particular by Shaskov [12].

The verification and validations carried out mainly for fluid flows show that the most
classic solutions of the Navier–Stokes equations are also those of the discrete equation. For
solutions represented by a polynomial of degree less than or equal to two, the solution
obtained is exact to machine precision; for the other solutions, the precision is on the order
of two in space and time. The cases presented here are limited to three: (i) a fluid–structure
interaction in one dimension of space for the shear of an elastic solid by a Newtonian fluid;
(ii) compression of an elastic solid by a fluid; and (iii) a lid-driven open cavity flow with
flexible bottom wall, which is one of the benchmarks of the FSI literature [13,14].

2. Discrete Mechanics Formulation
2.1. One-Dimensional Framework

The discrete formulation already presented elsewhere [8,9,11] is summarized to give
its main characteristics. It is based on established principles: (i) the principle of equivalence
between gravitational and inertial effects; (ii) the Galilean principle of velocity relativity;
(iii) the equivalence between energy and mass resulting from special relativity; and (iv)
the Helmholtz–Hodge decomposition of a vector into one divergence-free component and
another curl-free.



Fluids 2021, 6, 95 3 of 13

The geometric structure on which the derivation of the equation of motion is per-
formed is one-dimensional in space. The classic representation of the vectors of space
within a global frame of reference (x, y, z) is abandoned in favor of a local frame of reference
where all interactions are defined from cause to effect. It is a rectilinear segment Γ limited
at its ends by two points a and b, thus introducing a characteristic length dh = [a, b] named
discrete horizon with reference to the distance traveled by a wave of celerity c during a
time interval dt or dh = c dt; in mechanics, the celerity c is simply the longitudinal velocity
of sound c = cl . The segment Γ is oriented by a unit vector t carried by it. The scalar
variables such as the pressure are attached to the points of the segment Γ, while the vectors
acceleration, velocity or displacement are located on this one where they are considered as
constant. In one dimension of space, they are vectors or scalars on the oriented segment
and in the multidimensional case they are also defined on Γ as a component of the vector of
space whose knowledge is not required. At no time is the notion of a space vector required,
only knowing the components on different segments would make it possible, if necessary,
to represent the vector in a n-dimensional space. Similarly, the notion of tensor of order
equal to greater than two is no longer useful. The framework of the mechanics of contin-
uous media is abandoned as well as that of the derivation at a point, the mathematical
analysis, etc.

The starting point of the discrete formulation is the interpretation of the principle
of weak equivalence which states that the effects of a gravitational field are identical to
the effects of an acceleration. The observation of the equality between the inertial mass
and the gravitational mass on the law of dynamics m γ = F for F = m g leads to deleting
the moving mass m to get an equality between accelerations, γ = g. Discrete mechanics
postulates that this law can be extended to any other acceleration, any kind of nature:

γ = h (1)

where γ is the intrinsic acceleration of the material medium or of a particle with or without
mass and h is the sum of all the accelerations applied to it on the segment Γ.

The essential difference on the interpretation of the principle of equivalence of Galileo
as well as the principles which result from it adopted by the discrete mechanics is that the
mass is a separate notion from that of acceleration. In other words, they should not be
associated. Mass is a nonessential quantity; it can be replaced by energy or rather by energy
per unit mass. Indeed, within all the quantities of physics which depends on mass, this one
intervenes only with order 1, 0 or −1; thus, it is possible to define equivalent quantities
per unit of mass, for example the force per unit of mass is an acceleration. If we define the
total energy per unit of mass Φ as the sum of the kinetic energy and the potential energy,
its difference between the points a and b is written:

Φb −Φa =
∫ b

a
γ · t dl (2)

The relation (1) appears as the fundamental law of dynamics but also as the conserva-
tion of total energy. The second member of this equation h represents the sum of all the
accelerations which are applied to the material medium; in the absence of a source term,
the acceleration is zero and the velocity is a constant on the segment Γ which satisfies the
Galilean principle of relativity. In fact, a uniform translational movement cannot be per-
ceived by the material environment; discrete mechanics extends this principle to uniform
rotational motion [9]. The calculation of the current velocity V at the instant t must be
carried out from its value at the instant to by the upgrade V = Vo + γ dt. Similarly, the
displacement on Γ is obtained by U = Uo + V dt.
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In one dimension of space, the law of dynamics is expressed from the intrinsic acceler-
ation γ and the acceleration applied, h; the latter can be written as deriving from a scalar
potential φ:

γ = −∇φ (3)

The scalar potential is defined only on the ends of the segment [a, b]. Although both
sides of this equation are vectors, they only represent their projections on Γ. The operator∇
will continue to represent one of the components of the gradient vector even in dimensions
equal to or greater than two. The potential φ is associated to various phenomena: gravity,
capillary effects, rotation effects, etc.

2.2. Extension to Other Space Dimensions

The extension to several dimensions of space is achieved by the construction of a
discrete geometric structure based on the association of segments by their ends. Three
segments build a triangular planar surface, but the planar polygonal surface can be gen-
erated from n segments; the collection of n segments forming the surface S is named
Γ∗. Figure 1 shows the geometric structure made up of the different facets S having the
principal segment Γ in common.

Each facet has a normal n orthogonal to the direction of the unit vector t, n · t = 0. This
set forms the local frame of reference whose position and directions in three-dimensional
space are undefined. The changes of frames of reference of classical mechanics are no
longer possible, the interactions from one segment to another are cause and effect, from the
modification of the common scalar potential located on a vertex. This extension is limited
to the creation of a polyhedral structure without any particular privileged direction, in
particular the notion of volume is not necessary for the derivation of an equation of motion.

Figure 1. Discrete geometric structure: a set of primitive planar facets S are associated with the
segment Γ of unit vector t whose ends a and b are distant by a length d. Each facet is defined by a
contour Γ∗, a collection of three segments Γ, is oriented according to the normal n such that n · t = 0;
the dual surface ∆ connecting the centroids of the cells is also flat.

However, it should be considered that the only scalar potential φ is not sufficient to
characterize the intrinsic acceleration γ. Indeed, the velocities on contour Γ∗ create a curl
carried by the normal n to the facet S ; this axial vector ψ associated with that of all the
other facets having the segment Γ in common makes it possible to calculate a circulation
on the contour of the dual surface ∆ passing through the barycenters of the facets. This
dual curl is carried by the segment Γ, thus defining a second contribution to the intrinsic
acceleration γ:

γ = −∇φ +∇×ψ (4)
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The second contribution is orthogonal to the first because they cannot combine, they
simply add up; exchanges between the two contributions are only possible if the accelera-
tion γ is not zero. This observation is in line with J.C. Maxwell’s idea on the dynamic role
of electromagnetic interactions [15]. Equation (4) is a formal Helmholtz–Hodge decomposi-
tion of the acceleration. The third harmonic term at the same time with divergence-free
and curl-free does not exist here because it corresponds to the uniform translational and
rotational movements immediately eliminated by the operators in accordance with the
principle of relativity. The intrinsic acceleration γ = dV/dt has a particular status; it is
the only quantity that can be considered as absolute. As we perceive the direct actions
represented by ∇φ and induced by ∇×ψ are entangled, in several dimensions of space
one does not exist without the other, one is the dual of the other. The classical interactions
of electromagnetism between direct currents and induced currents are exactly the same in
mechanics. The formulation has a certain number of properties in particular the global and
local orthogonality of the terms in gradient and in dual curl. The discrete operators mimic
some properties of the continuous operators∇× (∇φ) = 0 and∇ · (∇×ψ) = 0 whatever
the polygonal geometric structure, polygonal or polyhedral, structured or unstructured.

In discrete mechanics time runs smoothly from an instant to to the current instant
t = to + dt. There is no dilatation of time interval dt no more than contraction of the
lengths, these quantities are independent of the otherwise relative velocity. Relativistic
effects are taken into account in completely different ways. The state of the system is
completely defined at the instant to from scalar and vector potentials of the acceleration, φo

and ψo. The derivation of the discrete equation of motion therefore requires calculating the
acceleration γ at the current state by the law (4).

2.3. Equations of Discrete Formulation

The calculation of the current potentials φ and ψ must be modeled by the introduction
of increments dφ and dψ dependent on the velocity V on each segment. The potentials φo

and ψo are called retarded potentials with reference to the Liénard–Wichert [16] potentials
of electromagnetism. The acceleration then becomes γ = −∇(φo + dφ) +∇× (ψo + dψ).
The modeling of these terms, which given previously in [17], make it possible to write the
discrete equation of motion in the form:

γ = −∇
(

φo − dt c2
l ∇ ·V

)
+∇×

(
ψo − dt c2

t ∇×V
)
+ hs

(1− αl) φo − dt c2
l ∇ ·V 7−→ φo

(1− αt) ψo − dt c2
t ∇×V 7−→ ψo

Vo + γ dt 7−→ Vo

Uo + V dt 7−→ Uo

(5)

where cl and ct are the longitudinal and transverse celerities; these quantities measured
experimentally must simply be known. The source term hs here characterizes the other
contributions to the modification of acceleration, gravitational effects, capillary effects, etc.
The 7−→ symbol corresponds to an upgrade from time to to time t. The quantities αl and
αt are the attenuation factors of the longitudinal and transverse waves. In the case of a
fluid, the shear stresses are relaxed in a very short time, of the order of τ ≈ 10−12 s, and
the attenuation factor αt is then close to unity; a fluid does not retain the memory of the
shear. On the contrary, an elastic solid medium has a zero attenuation factor αt = 0 and the
transverse waves persist for a very long time. In the general case, the two factors αl and αt
are arbitrary.
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The retarded potentials φo and ψo are expressed in m2s−2 or energies per units of
mass. System upgrades (5) correspond to the accumulation of compression and rotation
energies and are also written in the form:

φo = −
∫ to

0
c2

l ∇ ·V dτ; ψo = −
∫ to

0
c2

t ∇×V dτ (6)

The equation of discrete motion of system (5) is also a law of conservation of energy
per unit mass. This consists of two Lagrangians where the kinetic and potential energies
are exchanged separately for compression and shear. The interactions between the effects
of compression and shear, on the other hand, can only be achieved by modifying the
acceleration. The discrete formulation is a continuous memory model; the knowledge of
the potentials at the instant to and of the velocity V makes it possible to resume the forecast
of the next state at any time.

Equation (5) makes it possible to investigate various problems of mechanics, the
incompressible or compressible fluid flows, the mechanics of elastic solids or of media
having complex constitutive laws but also the couplings with other phenomena such as
thermal diffusion. The formulation lends itself to simulations carried out at all time scales,
the product dt c2

l for the longitudinal effects or dt c2
t for the transverse effects indeed allow to

take into account the characteristic scale of the phenomenon independently of its celerities.
The treatment of a fluid is exactly the same as for a solid, only the physical characteristics
(cl , ct, αl , αt) are modified. The formulation is perfectly suited to fluid–structure interaction
with large deformations.

2.4. Inertia on Discrete Formulation

The resolution of the system (5) is essentially unsteady, although it can be used to
obtain a stationary solution if it exists by adopting a very large time interval in order to
ensure −∇φ +∇× ψ = 0. It is thus advisable to express the acceleration starting from
the derivative in time and the nonlinear terms. These terms differ significantly from those
of classical mechanics which are written in the form V · ∇V or ∇ · (V⊗V)−V∇ ·V or
∇( |V |2/2)−V×∇×V. In discrete mechanics, inertial acceleration takes the form of a
Helmholtz–Hodge decomposition [9]:

γ =
dV
dt
≡ ∂V

∂t
+∇φi −∇×ψi =

∂V
∂t

+∇
(
‖V‖2

2

)
−∇×

(
‖V‖2

2
n
)

(7)

If the gradient term of the inertial potential φi = ‖V‖2/2 is the same as with contin-
uous media, the last term is a true dual curl. Applying the divergence operator to the
equation of motion eliminates this term, which is not the case in the mechanics of continu-
ous media. In some cases, it is possible to pass the term in gradient of the inertial potential
in the second member to reveal the potential of Bernoulli, φo

B = φo + φi. The solution
of the velocity problem does not depend on the scalar potential used and this operation
makes it possible to reduce the discretization errors, in particular for turbulent flows where
inertia plays an important role. Writing in the form (7) of inertia makes it possible to
make this equation of motion completely symmetrical thanks to the Helmholtz–Hodge
decomposition by making possible the regrouping of the terms in gradient and in dual curl.

2.5. Reduction to Waves Equation

The strong coupling between the shear stresses defined by ∇×ψ and compression
represented by −∇φ necessarily passes through the acceleration γ = −∇φ + ∇ × ψ.
Indeed, the two operators gradient and dual curl are orthogonal and cannot directly
exchange energy. We can show that the vector Equation (5) is a wave equation. Consider
the special case where cl = ct = c and apply the Leibniz calculus formula:

∇2V = ∇∇ ·V−∇×∇×V (8)
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By using the definition of the displacement U = Uo + V dt, we obtain a form which
contains the retarded potentials at the second member:

d2U
dt2 − c2∇2U = −∇φo +∇×ψo (9)

The first member of this equation is a d’Alembertian �U:

1
c2

∂2U
∂t2 −∇

2U (10)

In solid mechanics, the celerities cl and ct are generally of the same order of magnitude
but not equal. The system (5) generalizes the wave propagation equation, in a homogeneous
medium or in a vacuum in the case of electromagnetism, to any medium, fluid or solid
with complex constitutive laws and for anisotropic media. In the general case, the celerities
depend on other variables such as temperature, time or of course the constraints themselves.
For fluids, the transverse celerity ct can be considered as zero because the relaxation times
of the shear stresses are very short, of the order of 10−12 s; the shear stress takes the
instantaneous value ψo = −ν∇×V where ν is the kinematic viscosity. The value of the
attenuation factor αt of the transverse waves is then equal to the unit. At very low time
constants, the fluid behaves as a solid of celerity ct, which makes it possible to remove the
paradox of the Stokes equation where, for an imposed shear, the stress is infinite at the
initial time.

3. Numerical Methodology

The resolution of the vector equation of the system (5) is carried out on the support of
a primal geometry of finite element type constructed from elements similar to the stencil of
Figure 1. The structured or unstructured polygonal or polyhedral mesh with any number of
facets is characterized by the number of vertices nv, the number of facets n f and the number
ne of segments Γ on which is assigned the velocity variable or rather its components.

The numerical methodology implemented to simulate the various flows or FSI prob-
lems is very close to the mimetic methods initiated by Shaskhov [12] for the diffusion
equation; since then, they have been applied successfully to different fields of physics,
mechanics, electromagnetism, etc. This method is formally very close to the ideas retained
for the discrete physical model itself; the connection between the two has been highlighted
recently [11]. This methodology is of the ready-to-use type; indeed, no discretization is
necessary to transform the discrete vector equation into an algebraic system of rank ne.
The gradient operator ∇φ represents the component of the gradient vector on the segment
Γ, which is simply calculated by ∇φ = (φb − φa)/dh. The primal curl ∇×V is evaluated
from the velocity circulation along the Γ∗ contour. The divergence of the velocity ∇ ·V is
represented by the sum of all flows associated with a vertex of the primal mesh. Finally, the
dual curl∇×ψ is calculated from the circulation of this vector on the dual contour passing
through the barycenters of the facets. The only ne unknowns are the velocity components
on the segments Γ. Solving the corresponding linear system by a method of conjugated
gradients, preconditioned or not, or even by a direct method, makes it possible to extract
the values of V. The upgrade of the potentials φo and ψo is carried out explicitly using
the operators ∇ ·V and ∇×V. The time integration is carried out by a Gear diagram of
order one or two. The nonlinear terms ∇(‖V‖2/2) and ∇× (‖V‖2/2 n) are treated in a
semi-implicit way by writing ‖V‖2 = Vn ·Vn+1 where n is the exponent representing the
time step.

The formulation has some properties including that of mimicking those of continuous
operators, i.e.,∇h × (∇hφ) = 0 and∇h · (∇h ×ψ) = 0, and this whatever the nature of the
mesh adopted. Another very important property is the discrete local and global orthogo-
nality of∇φ and∇×ψ demonstrated in [8]. In the case of a regular mesh, these properties
combine to exhibit a spatial convergence to the second order in all cases previously treated
with the aid of this formulation.
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4. Verifications

The following very simple test cases have analytical solutions which make it possible
to check that the results of the discrete Equation (5) are indeed in conformity with those of
the continuum mechanics despite a significantly different formulation. These examples also
serve to explain the role of each discrete operator by dissociating the effects of compression
from those of rotation.

4.1. Shear between a Fluid and an Elastic Media

We consider one of the simplest cases of fluid–structure interaction to study the
behavior of two media, one viscous and the other elastic. This test case has a very simple
analytical solution that highlights the behavior of the two media modeled with the discrete
description (5). The domain height h = 1 m is separated by a Σ interface located at h/2. The
velocity of the lower wall is kept at rest and the upper surface is initially set in motion with
a velocity V0 = 1 m s−1.

Let us first consider the purely viscous case of two kinematic viscosity fluids
ν1 = 1 m2 s−1 and ν2 = 4 m2 s−1; the solution obtained using the system (5) converges very
quickly towards the stationary solution. It appears as two right-hand portions satisfying
the boundary conditions and the condition ν1∇×V1 = ν2∇×V2 at the interface. Under
these conditions, the velocity at the interface is equal to Vi = 0.2. The 1D solution does not
depend on the chosen spatial approximation and the error is zero to almost machine accu-
racy. Note that the condition at the interface is implicitly provided by the ∇× (ν∇×V)
operator. The constant rotational in each medium is, respectively, equal to ∇×V1 = −1.6
and ∇×V2 = −0.4. Since the problem has no compressibility terms, only the viscous
terms independent of the first ones appear in the discrete motion equation.

The lower part of the domain is now assumed to behave as an elastic solid of celerity
c2

t = ν = 4. The upper part is occupied by a fluid whose viscosity is equal to ν = 1. The
potential vector ψo makes it possible to accumulate the shear stresses in the solid, the
constraints at the interface in the fluid being effectively transmitted and stored in the solid.
The solution converges rapidly to a strictly zero velocity field in the solid and a linear
velocity profile satisfying the condition in y = h and at zero velocity on the Σ interface.
The vector equation of the system (5) is identically satisfied with ψo = ν∇×V where V
is the velocity of the fluid and ψo = 2. The exact solution does not depend on the spatial
approximation.

Figure 2 shows the evolution of the velocity at interface Σ over time. It diminishes
quickly, enough to become zero. The velocity field is zero in the solid and linear in the
steady-state fluid. The figure also gives the displacement U of the solid at the end of the
time evolution.

While a fluid moves indefinitely under the action of shear, an elastic solid quickly
reaches a stationary displacement. The absence of interpolation at the interface between a
fluid and a solid allows us to reach the exact solution. This very simple example makes it
possible to understand the different mechanisms involved in Equation (5) and to validate
the unsteady and stationary fluid–solid interaction.

In continuum mechanics, the theoretical solution of this problem can be obtained by
considering the two media separately by imposing boundary conditions at the interface.
The equations, in a stationary incompressible regime without inertial effects, for the fluid
and solid media are, respectively:

∇ ·
(

ν f
(
∇V +∇tV

))
= 0

∇× (νs ∇×U) = 0
(11)

When the properties ν f and νs are constant, these equations are reduced to Laplacian
terms. With the assumptions adopted here, the results in the fluid are obtained with the
Navier–Stokes equation, while the solid solutions come from the Navier–Lamé equation.
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The conditions at the interface are simple, for the fluid the velocity is zero at y = h/2, while
its value is V0 at y = h. For the solid, the displacement is null at y = 0 and the constraint
is imposed at the interface y = h, chosen equal to that of the fluid side. The velocity is of
course zero in the solid domain. The solution is very simple: v(y) = V · ex = (2 y/h− 1)
and u(y) = U · ex = ν f /νs (2 y/h). As expected, the velocity solution v(y) does not depend
on viscosity, whereas the displacement depends on the ratio ν f /νs. For this simple problem,
the solutions of discrete mechanics are of course the same as in continuum mechanics.
Among the advantages of the monolithic discrete approach, the equation of motion is
unique for all media. Its acceleration formulation makes it possible to consider velocity
and displacement as simple accumulators associated with operators ∇ ·V and ∇×V.

Figure 2. Fluid–structure interaction between a viscous fluid and an elastic solid; the viscosity of the fluid is equal to
ν = 1 m2 s−1 and the solid shear modulus is equal to ν = 4 m2 s−1: (left) the velocity of the interface over time is presented;
(middle) the velocity V at steady-state regime is reported; and (right) the displacement of the solid U is plotted.

4.2. Compression of an Elastic Solid by a Fluid

Consider the case of a square cavity of dimension [0, 1]× [0, 1] filled with two media:
(i) a fluid of density ρ1 = 1.1768 kg m−3 in the upper half; and (ii) a solid of density
ρ2 = 1.1768 kg m−3 in the lower part. The longitudinal velocity of the fluid considered as
an ideal gas is equal to cl =

√
r T0 m s−1 where T0 is the constant temperature of the whole

system; the celerity of the solid is imposed as cl = 5000 m s−1. The evolution is therefore
considered as isothermal.

At the instant t = 0, we inject air at the velocity V0 = −0.01 ey whose density is equal
to ρ0 = ρ1 by the upper surface. The divergence of the velocity is uniform and constant
over time and equal to ∇ ·V = −V0 S/[Ω]. The compression of the fluid is homogeneous
taking into account the very slow variations of the variables; the density as the pressure
are uniform in each of the two domains. As the walls of the cavity are strictly rigid, the
compression of the solid is uniaxial. The effects of shearing are strictly null. The system (5)
reduces to the following equations:

γ = −∇
(

φo − dt c2
l ∇ ·V

)
φo − c2

l dt∇ ·V 7−→ φo
(12)

The classic solution of this problem in the concept of continuous media, obtained
by considering the evolution as isothermal and the gas as ideal, is simple and gives the
evolutions of the variables of the problem as a function of time:

p1(t) = p0 (1−∇ ·V t)

ρ1(t) = ρ0 (1−∇ ·V t)
(13)

where ρ0 = 1.1768 kg m−3 is the density of the injected fluid and p0 is equal to 1.0135 · 105 Pa.
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In discrete mechanics the variables of the problem are (V, φo). The pressure p and
the density ρ are replaced by the single variable φo but these two quantities can possibly
be calculated a posteriori by an integration in time of the divergence of the velocity used
to upgrade the scalar potential. The problem is solved from the system (12) and initial
conditions (V = 0, φo = 0). Figure 3 shows the solution obtained at the end of a simulation
time of t = 100 s according to the vertical coordinate y. The scalar potential φo and the
density ρ evolve linearly over time.

Figure 3. Evolutions of the density ρ and of the scalar potential 10−5 × φ as a function of the vertical
coordinate y for a time t = 100 s and an injection velocity V0 = −0.01 m s−1 for a mesh of 322 cells.

At the end of the simulation, the density in the fluid is equal to ρ = 3.5224 kg m−3 and
that of the solid is equal to ρ = 1.1849 kg m−3. The value of the potential is strictly constant
in the whole domain and equal to 1.7161 · 105 m2 s−2. The density of the fluid increased
according to the isothermal compression law of an ideal gas while that of the solid only
varied by ∆ρ = 0.0081 kg m−3. These values correspond to the theoretical solution of
the problem.

As shown in Figure 3, the scalar potential is uniform in the cavity; this means that the
energy produced by the injection of the fluid is distributed uniformly in the solid and the
fluid. The concept of pressure that could possibly be given depends on the definition given
to it; if we adopt the law p = ρ0 φo then it will also be uniform in the two media. In fact,
this distinction is inconsequential because the pressure p has no influence on the solution
of the problem; it is only a secondary variable which one can do without.

In conclusion, this case of isothermal uniaxial compression treated using the equation
of discrete mechanics (5) allows finding the exact solution provided by the mechanics
of continuous media. The discrete equation is both an equation of motion and a law of
conservation of mechanical energy, compression and shear.

5. Validation

The validations of the discrete formulation in its previous version were carried out on
standard test cases from the literature (e.g., [6,7]). More recent cases [8] have validated the
current form of discrete equations on the FSI in addition to more specific examples devoted
to the inertial term [9] or heat transfer at small scales. The case presented here is one of the
benchmarks often used in FSI.

Lid-Driven Open Cavity Flow with Flexible Bottom Wall

The lid-driven cavity with flexible bottom is an example that we can reasonably
deal with. This case corresponds to that proposed in [13]. It was also considered by
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others authors [2,14]. A fluid, characterized by its kinematic viscosity ν = 10−2 m2 s−1, is
driven by the velocity boundary condition of the top of the cavity which varies with time:
u(x, t) = 1− cos(2 π t/T), where the period is equal to T = 5 s.

The elastic structure density is ρs = 500 kg−1 m−3, the Young’s modulus is E = 250 Pa
and the Poisson coefficient is σ = 0. The fluid is considered as incompressible. Neumann
boundary conditions are imposed on the two holes localized at the top of the vertical walls.
As we resolve at the same time the velocity field and the displacement field in the fluid and
the elastic membrane, respectively, using a fixed grid, we have to take a relatively large
thickness for the membrane (2% of the cavity length) compared to other simulations of the
literature, in order prevent a use of a very fine grid. The solution is obtained from zero
fields from the system of Equation (5).

The differential discrete operators, such as gradient, divergence and rotational prop-
erties have the properties of continuum ∇ · ∇ × ψ = 0 and ∇×∇φ = 0 on every type
of unstructured polyhedral meshes. This methodology is similar to what is proposed in
the discrete exterior calculus [5]. In the present case, adaptive quadrangle mesh is used
with initially 2562 cells. The resolution of the motion equation of the fluid allows obtaining
the pressure on the top surface of the membrane, the lower surface being maintained at a
constant pressure p = 0. The force acting on the membrane, proportional to the pressure
difference, allows to calculate its displacement. The mesh is then modified at each time
step. This is what we call the Arbitrary Lagrangian Eulerian method. The results obtained
are presented in Figure 4 where the horizontal velocity maps in the fluid and the membrane
shape are shown together with the streamlines for different time steps. After an unsteady
phase of a few cycles, the regime becomes totally periodic, of period T = 5 s (Figure 5).
The divergence of the velocity remains less than 10−8 throughout the calculation. The
celerity of air, which is equal to c ≈ 340 m s−1, maintains the flow in the incompressibility
approximation for the selected time period dt = 10−2 s. Indeed, the discrete model clearly
shows that the Mach number M = v/c does not define the incompressibility of a flow: this
is the product dtc2

l . For example, water, an essentially incompressible fluid, propagates the
waves at a celerity of cl ≈ 1500 m s−1, which induces the fact that water is a compressible
medium if the observation time constant dt is sufficiently low.

Depending on the author, the results may be different; the cavity can be globally
suppressed with respect to the outside, this is the case for the work of Bathe [1] where the
vertical positions of the membrane are alternately positive and negative. The comparison
with the previous simulations by Gerbeau [13] or Kassiotis [14] are on the other hand in
good qualitative agreement with those obtained in this study; the amplitude of the varia-
tions of the position of the membrane is close to that of these authors and the position of the
interface always positive. The form of bottom flexible wall at different times corresponds
well to that shown by Kassiotis [14] despite very different numerical methodologies.

The case of rigid lid-driven cavity flow was compared very precisely with the results
of Bruneau et al. [18]. In general, the numerical methodology associated with the discrete
model is of order two in space and time; in parallel, the fluid structure coupling also showed
that this precision could be maintained [8] for the analytical solution of Sugiyama [10].
The differences however reduced in the case presented here with those of Kassiotis are
explained by differences in the treatment of the fluid–structure coupling.



Fluids 2021, 6, 95 12 of 13

Figure 4. Vertical displacement at mid-point of flexible plate in lid-driven open cavity flow with
flexible bottom wall, velocity and streamlines at t = 2.5, 15, 20 s.

Figure 5. Lid-driven open cavity flow with flexible bottom wall. Evolution of maximum deviation of
membrane ym over time.

6. Conclusions

The unique discrete Formulation (5) to represent the motions of fluids and the dis-
placements of solids in large deformations has the advantage of allowing a monolithic
treatment of fluid–structure interaction. The celerities cl and ct and the attenuation factors
of the waves αl and αt make it possible to describe all the phenomena including for complex
constitutive laws. The state laws of the mediums and their rheological laws are not part of
the system of equations; only the four physical parameters depending on time and space
allow modifying the local state of the medium. The double representation in velocity V
and displacement U makes the computation of the compression and shear stresses possible;
these constraints are the respective energies per unit mass. Thus, the total energy is strictly
conserved during a simulation.

The unification of the laws of fluid and solid mechanics can be extended to the
propagation of waves of all kinds: swells, sound waves, shock waves, electromagnetism,
etc. The equation of motion thus becomes an equation of waves where only acceleration
is at the origin of transformations from one form of energy to another. The principle of
relativity applied to velocity and acceleration induces invariances respected by the discrete
equation of motion.
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