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Abstract

The detection and evaluation of closed cracks are of prime interest in industry. Whereas

conventional ultrasonic methods fail to detect these defects, nonlinear methods based on

activation of the nonlinear behavior of closed cracks constitute an interesting alternative.

The aim of this article is to give a better understanding of interactions between cracks and

a longitudinal elastic wave for a quantitative investigation into nonlinear signatures. Using

a 1D approach based on the literature, the nonlinear signature of the contact interface is

analyzed in two cases. In the first, the interface is initially open and in the second, it is

initially closed before interaction with an elastic wave. These signatures were qualitatively

observed experimentally in real cracks. Next, in order to investigate the influence of the

coexistence of open and closed zones within the interface, a numerical 2D-study is proposed.

Two configurations are considered involving two steel blocks in contact, with different contact

interface morphologies. The first configuration is a perfectly plane contact interface, while

the second one involves an interface between a concave surface and a plane surface. A non-

plane wave is also considered. This study attempts to establish a link between local second

harmonic generation and interface parameters (pre-stress, gap) that can be exploited for the

nondestructive quantitative evaluation of interfaces or cracks.
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1. Introduction

The evaluation of damage at an early stage of fracture is relevant in many industrial

applications such as aeronautics or nuclear plants. Ultrasonic methods based on linear wave

scattering are efficient for detecting defects and for characterizing material elasticity, but are

less sensitive to micro-cracks or closed cracks. In this context, nonlinear acoustics constitutes

a good alternative for detection and evaluation of these defects, taking advantages of the

nonlinear behavior of contact dynamics induced by an acoustic wave if its amplitude activates

sufficiently nonlinear contact behavior.

When elastic waves and contact interfaces interact, specific nonlinear acoustic phenomena

can be observed [1] : DC-effect, subharmonics generation or hysteresis/storage effects, etc.

These non-classical effects are due to complex contact behavior: an asymmetrical normal

stiffness, the presence of asperities and multiphysical interactions on contact surfaces that

result in specific contact acoustic nonlinearity (CAN). In order to exploit these nonlinear

effects it is essential to understand the complex interactions between waves and contact

interfaces, and this can be achieved using analytical and numerical models. As it is not

possible to include the whole complexity of contact interfaces in a model, the contact effects

and study methodology have to be carefully chosen according to the objectives of the study.

Previous studies have investigated the effect of contact nonlinearity on nonlinear acoustic

signatures by considering phenomenological contact models [2][3][4]. They lead to a mean

stress/strain relation that is able to describe the observed nonlinear behavior. The advan-

tage of these approaches is that observed behavior can be described, however they do not

make it possible to understand the physical behavior of interfaces. Other approaches, called

the ”physical models”, based on physical contact behavior have been used to investigate

the nonlinear interaction of waves and contact interfaces [5][6]. Aleshin et al. included the

influence of asperities on nonlinear acoustics [7] [8], in a model based on memory-diagrams

which has been implemented in a Finite Element (FE) code.
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Richardson [9] provides an analytical study of the interaction between a longitudinal

plane wave (therefore infinite) and an infinite contact interface between two identical media

considering a unilateral contact law. It corresponds to an infinitely rigid contact that cannot

support tension and hence opens up in the tension phase [9]. In the case of an incident

sinusoidal wave, second harmonic generation efficiency (which corresponds to the ratio of

the second harmonic to the incident wave amplitude) can be determined, and shows a spe-

cific nonlinear signature. Based on this work, other studies aimed at explaining the relation

between contact nonlinearity and harmonic evolution considering an interface [10][11][12][13]

or a crack [6]. They show that nonlinear signatures provide some information on interface

parameters (contact stresses, friction induced energy dissipation, crack orientation, etc.) if

they are measurable. These studies take into account both the ”clapping” effect and sliding

with friction on a perfectly plane interface. They give a good understanding of interactions

between wave and contact in a model case, but do not take into account asperities and

non-conforming profiles that actually exists in the case of real cracks and that can play an

important role during dynamic interactions with waves.

Including asperities in the model leads to difficulties of interpretation if too many pa-

rameters are involved. For example, in [7], the contact model introduces a nonlinear normal

contact stiffness in compression, and consequently other effects are introduced during the

interactions between waves and contact interfaces that, as far as we know, are not fully

analyzed and understood. The present paper considered non-conforming profile interface

between two deformable solids. A unilateral contact law with Coulomb’s friction is applied

locally in order to investigate the effect of the coexistence of open and closed zones in the

interaction zone. This is physical approaches to contact modeling. If it does not take into

account a large number of contact effects (adhesion, asperities, contact stiffness, wear), but
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it describes interface closing/opening (”clapping” effect) and sliding with friction (”sliding”

effect) with only one parameter: the friction coefficient. In the first part of the paper, a 1D

model of the nonlinear interaction between a plane wave and an infinite interface is used to

analyze second harmonic evolution as a function of pre-stress and incident wave magnitude

in the cases of closed and open contact interfaces. Next, the experimental results of second

harmonic evolution as a function of applied stress on a real crack are presented. In the third

part, the effect of the coexistence of closed and open parts within the interaction zone on

second harmonic generation is investigated numerically using a 2D-FE model. Investigation

of local contact behavior in relation to local harmonic generation is a way to go further in

the evaluation of cracks and contact interfaces.

2. 1D-Numerical study of a longitudinal wave reflected from a unilateral contact

interface

In this part, a homogeneous, isotropic elastic half-space defined as Ω is assumed to be in

perfect contact with a rigid wall on a line Γc at x = 0. The half-space and the rigid plane are

brought into contact under a given compression normal stress σ0 (σ0 < 0) or maintained open

with a normal initial displacement gap u0 (u0 < 0) (Figure 1). An incident plane longitudinal

wave is generated at x = −L and propagates linearly in Ω in the positive x-direction with

a velocity cL (approximately 6000 m.s−1 in steel). A unilateral contact law is considered at

the interface. Assuming a large enough incident amplitude, ”clapping” (alternative opening

and closing) can occur and thus affects the reflected wave nonlinearly.

With these assumptions, a 1D model of the wave propagation and reflection from the

interface is valid. Equation (1) governs wave propagation:

∂2u

∂t2
− c2L

∂2u

∂x2
= 0 , in Ω (1)

where u(t, x) refers to the displacement in the x direction.
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The initial conditions at t = 0 represent the unperturbed state in the half-space (x < 0).

When the interface is closed, a uniform pre-stress (σ0 ≤ 0) is applied to the semi-infinite

medium Ω. The incident plane wave is associated with a normal stress and displacement in

Ω. Denoting σn and un respectively normal stress and displacement at interface (x = 0), the

normal unilateral contact law can be written including σ0 and u0:



σn + σ0 ≤ 0

un + u0 ≤ 0

(σn + σ0)(un + u0) = 0

σ0u0 = 0

(2)

The first equation states that only a compression stress can be applied to the interface. The

normal stress σn is allowed to be positive although the crack is closed as long as σn ≤| σ0 |.

The second line corresponds to the non-penetration condition. In the case of an initially open

interface (u0 ≤ 0), un can be positive and the crack remain open as long as un ≤| u0 |. The

third line corresponds to a complementary equation, indicating that the contact interface

is neither open nor closed. The last condition indicates that initially the interface is either

closed or open.

(a) (b)

x = 0 

x 

Γc Ω	


x = -L 

Γt 

Source 
σ0 x 

x = 0 

Γc Ω	


x = -L 

Γt 

Source 

u0 

Figure 1: System considered for 1D-study of the interaction between a normal incidence longitudinal
wave and a contacting interface: (a) initially closed interface with a normal compression stress
σ0 ≤ 0 (gap u0 = 0) and (b) initially open contact interface with normal gap u0 ≤ 0 (σ0 = 0).

As demonstrated in [9], the solution at the interface can easily be obtained analytically
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or semi-analytically for a harmonic incident wave. In the present work, a numerical solution

using a finite difference scheme is preferred for its flexibility in particular for a tone burst

incident waveform. The numerical scheme is very similar to that presented in [14]. The

wave equation is solved in time using the classic second order finite difference approach. A

transparent boundary condition is defined at Γt. The wave equation (1) is discretized in Ω

using the classic Euler finite difference scheme. In the following results, the simulation is run

at 0.7 Current-Friedrich-Lewy condition (CFL) and the space discretization is δx = λ2ω/24

where λ2ω is the wavelength of the second harmonic. The values of the numerical parameters

were checked to ensure the convergence of the numerical solution through grid size and time

step.

The incident wave is a five cycle sinusoidal signal modulated by a Taper window (central

frequency 1 MHz). Figure 2(a) illustrates the solution at x = −L for a closed interface

(σ0 < 0), showing the incident and the reflected wave. As σinc ≥| σ0 |, ”clapping” is

activated and the reflected wave is distorted. Incident and reflected waves are then windowed

and converted to frequency domain using a FFT (Fast Fourier Transform) (Figure 2(b)).

As expected, the reflected wave spectrum contains higher harmonics due to the nonlinear

behavior at contact interface.

In the following, the evolution of the second harmonic in the reflected wave is studied for

both open and closed interfaces. The part of the spectrum that corresponds to the second

harmonic is filtered and transformed back to the time domain using an IFFT (Inverse FFT).

Second harmonic magnitude A2 is extracted from the envelope of the filtered temporal signal.

It is then normalized using the incident wave magnitude, defining second harmonic efficiency

as η = A2

uinc
.

In the case of an initially closed interface, the condition for ”clapping” to be activated is

that maximum magnitude of incident stress exceeds the absolute value of σ0 (σinc ≥| σ0 |). If
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Figure 2: Numerical results for a closed interface with σ0 = −1.4 MPa. The incident wave is a
Taper windowed 5-cycle longitudinal wave of maximal magnitude uinc = 5 nm which corresponds
to σinc = 3 MPa. (a) Displacement at x=-L and (b) the associated spectrum for the incident and
reflected waves. The spectrum is normalized using the incident harmonic amplitude Ainc.

not, the interface stays closed all the time, giving rise to a linear behavior of the interface and

no harmonics will appear in the reflected wave spectrum. As in [9], a dimensionless parameter

ξ ≥ 0 is defined as the ratio of initial pre-stress to maximum magnitude of incident wave:

ξ =
| σ0 |
σinc

(3)

In the case of an initially open interface, the condition for ”clapping” to be activated is

that maximum magnitude of incident displacement at the interface exceeds absolute value

of the initial gap u0 (uinc ≥| u0 |). Otherwise, the interface will stay open all the time and

behave as a linear reflector. Thus, a dimensionless parameter ψ ≥ 0 can be defined as :

ψ =
| u0 |
uinc

(4)

Figure 3 shows the evolution of harmonic efficiency η as a function of ξ and ψ, for a

closed and open interface respectively. In both cases, there is nonlinearity for (ξ;ψ) ∈ [0; 1]2.

In the case of a closed crack, the second harmonic efficiency exhibits a maximum value for

ξ = 0.35, corresponding to a configuration of maximum ”clapping” [9]. For an initially open
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interface, η decreases as ψ increases. As expected, η is greater in the case of a closed interface

and the point ξ = 0 and ψ = 0 corresponds to the same case where the interface is in perfect

contact: u0 = 0 and σ0 = 0. To explain these evolutions, it should be remebered that

harmonic efficiency is linked to the distortion of the incident wave due to the intermittent

closing and opening of the interface. The numerical solution for an initially open interface

shows that after one or two intermittent of openings and closings (depending on u0), the

interface remains open during the rest of the contact/wave interaction. This explains why

the harmonic efficiency η decreases as ψ increases. For the case of an initially closed interface,

when ξ increases, the duration of the closed state of the interface increases gradually. Thus

for a value of ξ between 0 and 0.35, this has the effect of increasing η. Then for values

of ξ between 0.35 and 1, the interface then switches to a mainly closed configuration, with

fewer and fewer opening phases. Consequently, η decreases to 0 for the extreme case of a

completely closed interface ξ = 1. As the evolutions of η are different for open and closed

interfaces, they constitute specific acoustic signatures, which could be exploited to determine

qualitatively the state of the interfaces. It can be noticed that the amplitude of η is not

perfectly equal to 0 for ξ > 1 and ψ > 1. These observed non-zero values of η for values of

σ0 or u0 that would provide a linear behavior is explained by the presence of sidelobes on

the spectrum, leading to a non-zero value of the second harmonic amplitude. Nevertheless,

this amplitude value can be considered negligible.

3. Experimental evidence of different evolutions of the second harmonic for a

real fatigue crack

In this section, experimental results are presented for the second harmonic generation of

a real fatigue crack. The experimental set-up and cracked sample are shown in Figure 4 (a)

and (b) respectively. Compression force loading is applied to the sample using a threaded

rod and nuts. This force is monitored through a load-cell located between the screw thread
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Figure 3: Second harmonic efficiency η as a function of dimensionless parameters ξ and ψ for initially
closed and open interface respectively.

and the sample. In practice the system is mounted horizontally to allow the application of

loads lower than the sample weight. A 32 mm diameter broadband longitudinal transducer of

center frequency 1 MHz (V102, Panametrics, Waltham, MA, USA) sends a tone burst from

the left-hand side. A 2 MHz transducer (V104, Panametrics, Waltham, MA, USA) is used

as a receiver on the right-hand side of the sample. The input signal is generated by a wave

generator (33120A, Agilent Tec., Santa Clara, CA, USA) and the received signal is measured

on an oscilloscope (LT224, Lecroy, Chestnut Ridge, NY, USA) with both communicating

with the computer over a GPIB interface. The excitation signal sent to the transducer

is a 10-cycle tone burst with a Taper window which is amplified (GA-2500A, Ritec Inc.,

Warwick, RI, USA). The number of cycles and the window of the excitation signal were

chosen to maximize the value of the second harmonic generated by contact nonlinearity and

to enable the separation of echoes in the sample. The cracked sample is a non-normalized

CT-specimen designed especially for this study (Figure 4 (b)). An open crack was created

by fatigue test (R = σmin/σmax = 0.1, with a frequency of 5 Hz and a maximum force of

47 kN). An extensometer indicated a crack length of 44 mm during the test. Four positions
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were considered for the transmitter and the receiver (Figure 4 (b)) for the study: including

wave propagation through cracked zones for two configurations (zone 1 and zone 2). The

third zone is a priori away from the crack and the fourth zone is an undamaged reference

zone.

The amplitude of the incident longitudinal wave at the interface is of prime importance

for the results, as shown in section 2, see equations 3 and 4. In this configuration, it is not

possible to measure incident wave magnitude at the interface, but it was measured on the left

edge of the sample in zone 4 (Figure 4(b)), supposed to be flawless. For this measurement,

the sample is unloaded. The source is the same as in Figure 4. The displacement amplitude

is measured on the free surface of the sample (i.e transmitted through the flawless part of

the sample) using a laser vibrometer (OFV 353, Polytec, Waldbronn, Germany). In this

configuration, the maximum measured displacement is 28 nm. Thus assuming that both

absorption and beam spreading are neglectable, the incident wave displacement amplitude

is equal to 14 nm in the sample and the associated normal incident stress amplitude equal

to 4 MPa.

(a) (b)

Force (kN) 

Force 
sensor 

1MHz 
longitudinal 
transducer 

2MHz 
longitudinal 
transducer 

Sample 

Generator 

Amplifier 
Oscilloscope 

Computer 
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40 mm 

44
 m

m
 

zone 1 

zone 2 

zone 3 

zone 4 

20 mm 

20 mm 

Figure 4: (a) Experimental set-up and (b) cracked sample scheme showing the four zones of study
(dotted lines) and the fatigue crack (red line).

The experimental procedure consists in increasing normal load while the amplitude of the
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incident wave is maintained constant at its highest level. In order to ensure reproducibility

of measurements, the sample is subjected to ten loading-unloading cycles prior to ultrasonic

measurements to ensure more stable contact conditions at the crack interface. Measurements

for increasing forces are repeated three times for each configuration (zone of measurement),

each time removing and replacing both transducers. Springs that applied constant stress

on both transducers ensure reproducible generation and measurement conditions. Figure 5

shows temporal signals and associated spectra for a 2 kN load for each zone. As expected,

the amplitude of the signal transmitted through the sample is maximal for zone 4 (with no

crack). In the cracked zone, the amplitude of the signal increases from zone 1 to zone 3,

indicating that the crack is open and certainly more open from the notch to the edge of the

crack. In the frequency domain, the level of the second harmonic (-40 dB) is the same in

zone 3 and 4, indicating that this is probably due mainly to classical material nonlinearity.

The second harmonic reaches -22 dB for zone 2 and -28 dB for zone 1, indicating that a

contact nonlinearity is activated in these zones.
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Figure 5: (a) Received time signals and (b) corresponding normalized FFT in dB for the 4 zones
and an applied force of 2 kN.

To obtain the signatures of previous analyses (in section 2) experimentally, the normal

load is gradually increased. If the interface is initially open, increasing normal load has the
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effect of decreasing the initial gap | u0 | and thus the parameter ψ. In the case of an initially

closed interface, an increasing the normal load will increase normal contact stress | σ0 | and

the parameter ξ. Experimentally, second harmonic efficiency is defined as the ratio of the

second harmonic measured by the receiver transducer to the maximal signal value received

on zone 4 (far from the crack). Figure 6 shows the evolution of second harmonic efficiency

(ηexp = A2/Ainc−zone4) as a function of the applied force for the four zones (1-4) of study.

First, for zones 3 and 4, ηexp does not depend on applied force, thus confirming that

nonlinearity comes mainly from material nonlinearity. For zone 1, ηexp remains quite low

but increases slowly with the increasing load until it reaches an almost constant value. This

evolution of ηexp qualitatively follows the signature of an open interface for a decreasing initial

gap | u0 |. Finally, for zone 2, ηexp values are higher and its evolution shows an undeniable

maximum for a load of 3.3 kN, as in the signature of a closed interface in section 2 for an

increasing ξ.

Experimental results highlight different evolutions of the second harmonic efficiency de-

pending on the location of the transducers and suggest that they may be related to the

general behavior of the interface: open interface and closed interface, which might be de-

scribed numerically with a unilateral contact law. This law, describing elementary behaviors

of opening and closing of the interfaces, associated to a 1D-description of the problem appears

to be able to provide acoustic signatures which are qualitatively similar to the experimental

results.

Nevertheless, when considering real cracks, assumptions made for this numerical model

are strong: asperities in contact, non-plane interface morphology, different contact effects

are not taken into account and can explain differences in measured A2 magnitudes and

evolutions versus applied load. In the literature, more realistic models are proposed to take

into account these different aspects, asperities for instance [3][7], but the unilateral aspect is

generally lost, which means that a weak but non-zero stress is generally applied in traction.

12



0 1 2 3 4 5 6
6
7
8
×10-3

0 1 2 3 4 5 6

0.015

0.016

0 1 2 3 4 5 6
5
6
7
×10-3

zone 1 

zone 2 

zone 3 

zone 4 

η
ex

p=
 A

2 /
A

in
c-

zo
ne

4 

Applied load [kN]  

Figure 6: Experimental second harmonic efficiency ηexp as a function of applied force for the four
studied zones. Experimentally, the second harmonic efficiency is defined as the ratio of the second
harmonic measured by receiver transducer to the maximal value of signal received on the fourth
zone (far from the crack)

Supplementary parameters are needed to describe the contact interface. In this paper, we

take into account the fact that the interface includes open and closed zones while keeping

a unilateral contact law. In this way the number of parameters for the study is kept low.

Thus, in the following, a numerical analysis of the influence of the interface morphology

on the second harmonic evolution is proposed, keeping the same contact law. In the zone

of interaction between contact interface and longitudinal wave, coexisting open and closed

parts will both contribute to the nonlinear distortion of transmitted wave. By applying

an external compression load, the contact configuration and the interface morphology will

evolve and may result in modifications to the second harmonic efficiency.

13



4. 2D-Numerical study of a longitudinal wave interacting with contact interfaces

of different morphologies

Two configurations (Figure 7) are considered both including two steel blocks in contact.

They differ in their contact interface morphologies. The first configuration (Figure 7(a))

consists in a perfectly plane contact interface, while the second involves an interface between

a concave surface and a plane surface (Figure 7(b)). For the plane interface, the normal

applied force will result in a quasi-uniform pre-stress. In this case, the interface will remain

closed whatever the applied force. Conversely, for a concave interface, the central zone of

the interface is initially open. Depending on the applied force, contact conditions will be

changed, with the open part of the interface being gradually reduced from the sides to the

center. For both cases (plane and concave interfaces), the interaction of the contact interfaces

with a longitudinal wave is studied for different values of normal applied forces.

(a) (b)

46mm 

11
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m
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Reception zone 

Figure 7: Schematic of the studied system : (a) perfectly plane interface and (b) concave interface
on a plane interface including an open zone at the center and closed zones at either side.
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4.1. Numerical modeling

PLAST2 is an explicit dynamic finite element code in 2D designed for large deformations

and nonlinear material behavior [15]. It uses a forward Lagrange multiplier method for the

contact between deformable bodies. For this dynamic study, the formulation is discretized

spatially using a finite element method and discretized temporally by using a β2 method.

The contact algorithm uses slave nodes (located on the contact surface of the first block)

and target surfaces (located on the contact surface of the second block) described by four

node quadrilateral elements with 2×2 Gauss quadrature rule. Elementary target segments

are described by two nodes and approximated by bicubic splines [16].

The contact dynamic generated along the contact interface is modeled by a unilateral

contact with Coulomb’s friction law, which gives the relations between contact stresses and

displacements at the interface. Three states can be observed simultaneously at different

nodes of the interface: ”separation”, ”sliding” and ”sticking”. Switches between the differ-

ent contact states introduce nonlinearity in the model. These boundary conditions can be

referred to as non-smooth contact dynamics [17]. The top and bottom faces of the interface

are denoted by i = 1, 2 respectively. Let ui be the displacement and ni the outward normal

vector of face i of the crack, then the normal gap of displacements is defined by:

[un] = u1 · n1 + u2 · n2 = (u1 − u2) · n1 (5)

The incident wave creates stresses represented by the Cauchy stress tensor σ(ui). Denoting

its normal component by σn(ui) and its tangential component τ(ui), the unilateral contact
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law is given by the following equation (similarly to equation 2):


σn(ui) ≤ 0

[un] ≤ 0

(σn(ui)).[un] = 0

(6)

Denoting the friction coefficient by µ and the tangential jump of displacements by [ut],

the Coulomb’s law is used to describe the tangential behavior:



| τ(ui) |≤ µ | σn(ui) |

If | τ(ui) |< µ | σn(ui) | ⇒ sticking: [ut] = 0

If | τ(ui) |= µ | σn(ui) | ⇒


sliding: ∃α ≥ 0; [ut] = −ατ(ui)

τ(ui) = ±µ | σn(ui) |

(7)

In order to induce sliding, the shear stress | τ | has to be equal to µ | σn |. When sliding

occurs, the value of the shear stress depends on the global normal stress σn.

4.2. Numerical evolution of second harmonic efficiency as a function of the applied load

Calculations for each configuration and applied force values are performed in two steps.

First, a normal force is applied. For the plane interface, it leads to a quasi-uniform pre-stress

σ0. For the concave interface, it leads to non-uniform distributions of pre-stress σ0(x) and

initial gap |u0(x)| along the interface (Figure 8). Note that for a force greater than 1kN, the

interface is completely closed.

In a second step, a longitudinal wave of five cycles is generated on the upper surface of

the first block on a segment of 32 mm (diameter of experimental transducer) and propagates

from top to bottom. The central frequency of this tone burst is 1 MHz and the displacement

magnitude is set to uinc =11 nm. The transducer of finite size generates a non-plane incident
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Figure 8: (a) Distribution of initial normal pre-stress σ0(x) along the contact interface and (b) initial
normal gap for the concave interface for different normal forces.

wave. As a result, the distribution of the maximal normal stress associated with the incident

wave at the interface is not uniform in the x-direction (as it can be seen in Figure 9).
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Figure 9: Distribution of the absolute value of maximal normal stress due to the incident wave at
the interface. This distribution is obtained in the case of a perfect plane interface (continuity of
stresses and displacements at the interface).

Normal velocity is recorded at the lower surface of the second block at each node of a

segment of 10 mm. Measured signals are then summed and post-processed in order to extract

the amplitude of the second harmonic A2, as explained in section 2. Finally, numerical second
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harmonic efficiency ηnum is defined as the ratio of the second harmonic extracted from the

integrated signal on the reception zone to the maximal value of the signal recorded at the

interface in the case of a perfect plane interface(continuity of stresses and displacements at

the interface). It is represented in Figure 10 as a function of the applied force for both

interfaces morphologies. As expected, the evolution of ηnum for the plane interface is similar

to the evolution of a closed interface obtained previously. Nevertheless, the position of

the maximum is slightly different due to the non-uniform distribution of incident normal

stress. For the second configuration, although the evolution of ηnum reaches a maximum for

F 3.8kN , it shows two slope discontinuities: one at F ' 0.5 kN and another at F ' 1 kN .

The evolution of this curve, including these two slope discontinuities, can be interpreted by

a local contact analysis which is proposed in the following section.
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Figure 10: Numerical second harmonic efficiency ηnum as a function of applied force for plane and
concave interfaces. Numerical second harmonic efficiency is defined as the ratio of the second
harmonic extracted from the integrated signal on the reception zone and the maximal value of
signal recorded at the interface in the case of a perfect plane interface.
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5. Local analysis of Contact Acoustic Nonlinearity and harmonic generation

In this part, a local analysis of CAN is proposed through local dimensionless parameters

ξL(x) and ψL(x) along a contact interface defined as:

ξL(x) =
|σ0(x)|
σmax
inc (x)

(8)

ψL(x) =
|u0(x)|
umax
inc (x)

(9)

where σmax
inc (x) and umax

inc (x) correspond to maximal values of incident stress and displacement

respectively. These parameters are dependent on x as the incident wave is non-plane (Figure

9), and the pre-stress and initial normal gap are non-uniform in the concave case (Figure 8).

In the case of a plane interface, the initial gap is null and normal stress is constant along the

interface. These parameters are introduced here in order to generalize the analysis provided

by Richardson [9] and in section 2.

Case of plane interface. - Figure 11(b) shows the distribution of ξL(x) along the interface for

different load values. It is compared to the value of optimal ξoptL = 0.35, which corresponds

to a maximal value of second harmonic efficiency ηnum = A2/Ainc in the case of a plane

wave (presented in section 2). For a compression force of 3kN, ξL ' ξoptL at the center of the

interface, the incident wave causes a maximum normal stress at the interface. This leads to

a maximal value of second harmonic efficiency ηnum (Figure 10). From a compressional force

of 8.5 kN (not plotted), ξL(x) > 1 everywhere at the interface, indicating that ”clapping” is

not activated at the interface. Thus contact is permanent during wave transmission along

the whole interface and ηnum ' 0.

Figure 11(a) represents the distribution of the second harmonic efficiency η(x) = A2(x)/Ainc(x).

For both configurations, particle velocities are recorded for each slave node of the interface
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and band-pass filtered in order to extract the second harmonic amplitude A2(x). For an

applied load of 2kN, the position of the maxima of η(x) corresponds to the intersection

between ξL(x) and ξoptL . For an applied load of 3 kN, η(x) is maximal at the center of the

interface, where ξL(x) = ξoptL . Finally, for a load of 5kN, η(x) decreases like ξL(x) ≤ ξoptL

along the whole interface. There appears to be a strong link between the distribution of

second harmonic efficiency and the parameter ξL(x).
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Figure 11: (a) Distribution of ratio η(x) = A2(x)/Ainc(x) for three different compression loads and
(b) distribution of ξL(x) along plane interface. Remarkable values for ξL(x) = 1 and ξL(x) = ξoptL =
0.35 are represented by red and green lines respectively.

Case of concave interface. - As this interface contains a priori open and closed zones, two

analyses are here necessary: one for the initially open zone using parameter ψL(x) and one

for the initially closed zone using the parameter ξL(x). As shown in section 2, the second

harmonic efficiency is greater for closed interfaces than for open ones. Moreover, nonlinear

effects contribute more to the second harmonic efficiency when ”clapping” is activated in the

central zone than when it is at the edge of the interface due to the distribution of incident

energy along the interface.

For the initially open zone, the nonlinear behavior of the interface is driven by parameter
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ψL(x) (Figure 12). For an applied load less than 0.4 kN, ”clapping” is activated only in

small zones at the edge of the interface. At the center of the interface, incident displacement

amplitude is not sufficient to activate ”clapping”. Thus the contribution to ηnum is weak. For

an applied load of 0.5kN, ”clapping” is activated along virtually the entire interface and ηnum

increases significantly. From an applied load of 1kN, the whole interface is closed and the

nonlinear behavior is governed by ξL(x). This corresponds to the second slope discontinuity

in the variation of ηnum in the case of a concave interface, observed in Figure 10.
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Figure 12: (a) Distribution of ratio η(x) = A2(x)/Ainc(x) for F=0.1 kN, 0.4 kN, 0.5 kN and 0.6 kN,
in the open zone of the interface (for |u0| > 0). (b) Distribution of ψL(x) along the plane interface.
ψL(x) = 1 is represented by a red line.

Figure 13(b) shows the distribution of ξL(x) along the interface for three different applied

loads. It can be seen that for an applied load of 3.5 kN, ξL(x) reaches ξoptL at the center of

the interface, as was the case for the plane interface, resulting in a high value of ηnum, close

to the optimal value obtained for a force of 3.8 kN. For F = 2 kN, ξL(x) reaches ξoptL but

in a zone where maximal incident normal stress is quite low (see Figure 9). Considering

the case of a force of 5 kN, ξL(x) is higher than ξoptL everywhere on the interface, explaining

why ηnum is lower than for F = 3.5 kN. Considering the local distribution of η(x), as for the

plane interface, Figure 13(a) shows that it presents maxima where ξL(x) reaches ξoptL .
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Figure 13: (a) Distribution of ratio η(x) = A2(x)/Ainc(x) for three different compression loads
and (b) distribution of ξL(x) along the concave interface. Remarkable values ξL(x) = 1 and
ξL(x) = ξoptL = 0.35 are represented in red and green lines respectively.

These results show that the distribution of η(x) can be directly related to the distributions

of ψL(x) and ξL(x). Thus this relation between these quantities suggests a strong potential

for quantitative nondestructive evaluation of cracks or interfaces.

Figure 14 illustrates how the evolution of A2 recorded at one point (here at the center

of the interface) can be exploited. First, when |u0(0)| > uinc, the amplitude of the second

harmonic is low. It increases significantly when |u0(0)| ' uinc. As the applied load is sufficient

to close the interface, A2 increases with a noticeable change of slope until a maximum reached

for F = 4 kN. According to the analysis proposed above, the position of the maximum should

correspond to ξL(x) = ξoptL = 0.35. From this, if the incident wave amplitude were known,

it would be possible to assess the pre-stress amplitude |σ0| = 0.35 ∗ σinc = 1.48 MPa.

This calculated value is very close to the one recorded in the numerical simulation after

stabilization of the first step of calculation (application of the normal load): |σ0(0)| =

1.45 MPa. Thus, using the evolution of A2(x), some information about u0(x) and σ0(x)

can be extracted. This is possible if the whole variation of the signature is available, if the
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Figure 14: (a) Evolution of the gap at the center of the interface |u0(0)| and (b) Evolution of A2(0)
as a function of normal force. The three arrows highlight the three forces identified in (a) where
(from left to right) u0(x) > uinc, u0(x) ' uinc and u0(x) = 0.

incident magnitude is known and if contact behavior can be modeled by a unilateral contact

law. It can be noted that there is an experimental issue for the assessment of A2(x) along

the interface, as it is often a confined/internal zone. Nevertheless, solutions exist and can

be used to evaluate A2(x) at the interface from measurements carried out at the surface of

the solid blocks. This will be the subject of a future paper.

6. Conclusion

In this paper, the interaction of a longitudinal wave and a unilateral contact interface

has been analyzed. First, a 1D analysis was carried out to retrieve evolutions of the second

harmonic as a function of the dimensionless parameters ξL and ψL already described in the

literature. These evolutions were compared to some experimental results in a sample with

a real crack for different transmitter and receiver positions. These results motivated a 2-D

FE analysis considering two blocks in contact with two different morphologies: a perfectly

plane interface and a concave surface on a plane interface. By analyzing the local form
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of the dimensionless parameters ξL(x) and ψL(x) the evolution of ηnum and η(x) could be

explained. The link established in this paper between η(x) and ξL(x) and ψL(x) can be

exploited in view of a quantitative evaluation of interfaces or cracks (pre-stress, gap) under

certain conditions. To apply this experimentally, a method needs to be developed where

η(x) can be assessed at the interface from measurements made far from the interface where

it is possible and easy to measure signals. This will be the subject of a further paper.
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