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Abstract

This study presents a general approach for the multi-scale design of variable stiffness com-
posites (VSCs). The first-level problem of the multi-scale two-level optimisation strategy
(MS2LOS) is solved to determine the optimal distribution of the VSC stiffness proper-
ties at the macroscopic scale satisfying the requirements of the problem at hand. In
this phase, the VSC laminate is modelled as an equivalent homogeneous anisotropic plate
whose behaviour is described in terms of polar parameters (PPs), which vary locally over
the structure. The First-order Shear Deformation Theory is used to take into account the
influence of the transverse shear stiffness on the mechanical response of the VSC and Basis
Spline (B-Spline) surfaces are employed to represent the PPs fields. In this background,
the expression of the gradient of the buckling factor is determined analytically by exploit-
ing the properties of the polar formalism and of the B-Spline surfaces. Moreover, the
effect of the discrete variables, involved in the definition of the B-Spline surfaces, on the
performances of the optimised solution is investigated. The effectiveness of the approach
is proven on two benchmark problems dealing with the maximisation of the first buckling
load of a VSC laminate, subject to feasibility and geometric requirements, taken from the
literature. The results obtained by means of the MS2LOS based on the polar formalism
outperform those reported in the literature, which are obtained through an optimisation
strategy based on lamination parameters.

Keywords: Composite materials, Variable Stiffness Composites, Polar method, B-Spline
surfaces, Optimisation, Buckling.

1. Introduction

Nowadays, composite materials are widely used in the aerospace field because of their
outstanding properties in terms of lightness, stiffness, strength, durability, etc. The need
of having cheap and efficient structures and the development of new manufacturing pro-
cess, e.g. automated fibre placement (AFP) machines, or recent additive manufacturing
(AM) technologies, like Fused Filament Fabrication (FFF) and Continuous Filament Fab-
rication (CFF) processes, are driving the research towards new solutions and products
[1]. These innovative solutions, whose properties (mechanical, thermal, etc.) vary point-
wise over the structure, are know as variable stiffness composites (VSC) and they show
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better performances than those characterising standard straight-fibre format solutions.
However, the large amount of design variables characterising VSCs requires sophisticated
design/optimisation methodologies, as highlighted by Ghiasi et al. [2]. VSCs can be ob-
tained in different ways. One of the most interesting and commonly employed solutions is
the variable angle tow (VAT) composite manufactured through the AFP or the FFF+CFF
technologies [3]. These processes allows placing the fibre (i.e. the tow) along a curvilinear
path within the constitutive lamina, thus implying a point-wise variation of the material
properties. In this way the designer can take full advantage of the curvilinear format
by orienting the tows according to the local stress field in the most effective way. AFP
technology guarantees a great flexibility in building composite laminates with relatively
complex geometries, but it is sensitive to the manufacturing defects as discussed in Kim et
al. [4, 5], where the AFP technology is compared to the CTS (continuous tow shearing).
In these works, the advantages and drawbacks of both AFP and CTS technologies are dis-
cussed by putting the accent on manufacturing defects. Nik et al. [6] studied the influence
of the most common defects related to the AFP process, i.e. gaps and overlaps, on the
buckling load and in-plane stiffness of VAT laminates.

If, on the one hand, VAT composites present superior performances with respect to con-
ventional solutions, on the other hand, some critical issues exist. The design/optimisation
process is rather complex due to the large number of design variables involved at each
characteristic scale [7, 8], the damage mechanisms are not well-understood, neither dam-
age tolerance nor dedicated failure criteria are available in the literature, etc. As discussed
in [9], these issues are related to two intrinsic properties of composite materials, i.e hetero-
geneity and anisotropy, that occur at different scales of the structure and vary point-wise
in the case of VAT composites.
Up to now, no general guidelines are available in the literature for the multi-scale design
of VAT composites. The work by Hyer and Lee [10] represents the first attempt to explore
the advantages that can be achieved by using a curvilinear fibres-path instead of the con-
ventional straight fibre format. The authors make use of a sensitivity analysis based on
finite difference and a deterministic algorithm (DA) to determine the optimal fibres-path
that maximise the first buckling load of a plate with a circular hole in the centre. Gurdal
and Olmedo [11] presented a preliminary work on VSCs, where only the in-plane stiffness
response is considered: a linear variation of the fibre angle is assumed and closed-form
solutions are derived. The effectiveness of stiffness tailoring through the use of curvilinear
fibres-path is also analysed by Jegley et al. in [12], where a considerable reduction of the
stress concentration around the holes and a remarkable improvement of the load carrying
capacity of the plate are observed.

The first buckling load is one of the most important design criteria when dealing with
the design of lightweight composite structures. As far as the optimisation of VSCs is
concerned, two different approaches are available in the literature [2]. The first one is the
direct approach where the parameters tuning the shape of the fibres-path are considered as
design variables. The second one is the multi-level approach wherein the optimum design
of a VSC is split in two sub-problems. At the macroscopic scale the VSC is represented as
an equivalent single layer plate and its mechanical response is described by a set of suitable
parameters, related to the VSC stiffness matrices, which constitute the design variables. At
the mesoscopic scale (i.e. the fibres-path level) the goal is to determine the optimum fibres-
path, in each lamina, satisfying the optimum distribution of the macroscopic mechanical
variables. Several authors have worked on this topic by showing the great potential behind
VSCs [13–15]. The direct optimisation approach has been applied by Gurdal et al. [16]
who dealt with the effects of the stiffness variation on the in-plane and buckling response
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in flat rectangular VAT laminates employing basic fibres-path definitions based on 1-D
functions [16]. Lopes et al. [17] proved that buckling and first-ply failure loads can be
considerably increased with respect to standard solutions. An alternative representation
of the fibres-path is proposed by Wu et al. [18]: a modified version of the Rayleigh Ritz
method is implemented to study the buckling response of a VAT plate under uni-axial load
with mixed boundary conditions (mechanical and geometric) and a genetic algorithm (GA)
is used to find the optimal fibres-path maximising the first buckling load. A differential
quadrature methodology based on the Airy’s stress function was developed to study the
pre-buckling and post-buckling behaviours of VAT plates subject to axial compression and
mixed boundary conditions in [19, 20]. Coburn et al. [21] proposed an analytical model for
the buckling analysis of blade stiffened VAT panels. The results provided by this model
are in good agreement with those resulting from a finite element (FE) analysis.

Regarding the multi-level approach for optimising VSCs, recently, a review on the op-
timisation methodologies for VSCs making use of lamination parameters (LPs) has been
presented in [22]. As known, the use of LPs, as design variables, reduces the computa-
tional cost of the problem essentially because the number of variables is strongly reduced.
Setoodeh et al. [8] presented a generalised reciprocal approximation for the design of VSC
panels for maximum buckling load. In this formulation, the buckling load is approximated
using a first-order Taylor series expansion in terms of the point-wise compliance tensors.
The related maximisation problem is reduced to a simple local optimisation at any discreti-
sation point. Ijsselmuiden et al. [23] dealt with the maximisation of the first buckling load
of VSCs through a conservative approximation method that expresses the buckling load as
a linear combination of the in-plane and bending stiffness tensors and the corresponding
inverse forms. The laminate stiffness matrices are written in terms of the parameters of
Tsai and Pagano and of the LPs (which are the design variables of the problem) and the
adjoint method is used to determine the gradient of the buckling factor. Liu et al. [24]
used a DA to minimise the mass of VAT laminates under buckling and manufacturing
constraints. The buckling analysis is performed by the infinite-strip method.
Wu et al. [25] presented a two-level optimisation procedure where LPs are used as design
variables. B-Spline surfaces are used to represent the LPs fields over the VAT laminate.
The design problem was formulated as the maximisation of the first buckling factor sub-
ject to feasibility constraints on LPs. A multilevel approach to optimise the fibres-path
at each node of a FE model is presented in [26]. In this work, during the first step of
the procedure, the VAT laminate response is described in the LPs space, whilst during
the second step GaussNewton quadratic approximation is used to retrive the optimised
fibres-path corresponding to the optimum LPs found during the first step. To ensure man-
ufacturability, a constraint on the gradient of the fibre angle between nodes is imposed.
Nevertheless, in this way there is no warranty to find optimum fibres-paths satisfying both
the manufacturing constraints and the optimised LPs distribution resulting from the first
step. Moreover, the use of simplifying hypotheses as done in [25, 26], like the use of sym-
metric stacks to obtain membrane-bending uncoupling or the use of balanced sequences to
get membrane orthotropy, systematically leads to misleading solution (e.g. a symmetric
balanced stack is totally anisotropic in bending) and extremely shrinks the design space.

To go beyond these limitations, a general multi-scale two-level optimisation strategy
(MS2LOS) for the optimum design of VSCs has been presented by Montemurro and Cat-
apano in [27]. The MS2LOS relies, on the one hand, on the use of the polar formalism
introduced by Verchery [28] and later extended to the case of higher-order theories [29–31]
for the description of the anisotropic behaviour of the composite. On the other hand,
the MS2LOS is based on the use of B-Spline and NURBS surfaces to represent both the
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laminate polar parameters (PPs) fields over the structure and the fibres-path within the
generic lamina. Moreover, the MS2LOS makes the use of a hybrid optimisation tool com-
posed by the union of a classical DA and an original GA able to deal with a special class of
optimisation problems defined over a domain of variable dimension, see [32–39]. Recently,
the mathematical framework of the MS2LOS has been enhanced by developing a suitable
formulation of the minimum admissible radius of curvature of the tow in terms of the
VAT laminate PPs in [40]. Montemurro and Catapano [9] also derived, in a closed form,
the expression of the gradient of the VAT laminate strain energy and of the feasibility
constraint by exploiting the properties of the B-Spline surfaces.

This study focuses on the first-level problem (FLP) of the MS2LOS, that aims at de-
termining, at the macroscopic scale, the optimum distribution of the VAT laminate PPs
in order to satisfy the requirements of the problem at hand. At the macroscopic scale,
the VAT laminate is modelled as an equivalent homogeneous anisotropic plate whose me-
chanical behaviour is described in terms of PPs (which vary locally over the structure).
The First-order Shear Deformation Theory (FSDT) is used to take into account for the
influence of the transverse shear stiffness on the overall mechanical response of the VAT
composite in the Finite Element (FE) model and B-Spline surfaces are employed to rep-
resent the PPs fields. The advantage of using the Vercherys polar method [28] is in the
fact that the elastic response of the structure at the macro-scale is described in terms of
tensor invariants, i.e. the PPs, having a precise physical meaning (related to the elastic
symmetries of the material).

In this study, the MS2LOS is applied to the maximisation of the first buckling load
of a VAT composite subject to feasibility constraints. The main contribution consists in
the derivation of the expression of the gradient of each physical response in terms of the
design variables involved in the definition of the B-Spline surfaces representing the PPs
distributions over the structure. In particular, the derivation of the analytical form of the
gradient of the first buckling factor is anything but trivial and exploits two main properties
of B-Spline blending functions: the strong convex-hull property and the local support
property. Thanks to the B-Spline surfaces formalism, the optimised solution are no longer
related to the mesh of the FE model, rather they are fully CAD-compatible and can be
directly passed to the G-Code behind AFP and AM processes for manufacturing purposes.
The effectiveness of the proposed approach is proven on two meaningful benchmarks taken
from the literature.

The paper is organised as follows: the overview of the design problem and a brief
reminder on the MS2LOS are reported in Section 2, while the mathematical formulation
of the first-level optimisation problem is presented in Section 3. The FE model of the
VAT laminate plate, for both benchmarks, is described in Section 4, while the numerical
results and discussed in Section 5. Finally, Section 6 is devoted to concluding remarks
and prospects.

Notation. Upper-case bold letters are used to indicate tensors (matrices), while lower-
case bold letters indicate column vectors.

2. Multi-scale optimisation of VAT composites

2.1. Problem description

The goal of the design strategy presented in this work is the maximisation of the first
buckling load of multilayer VAT plates. The effectiveness of the MS2LOS is tested on
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two benchmarks: a square plate (benchmark 1, taken from [25]) and a quarter of square
plate with a circular hole (benchmark 2). Both the structures are subjected to in-plane
compressive loads and their geometric parameters are illustrated in Fig. 1.
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Figure 1: Geometric parameters of (a) the square plate and (b) the square plate with a circular hole.

The main hypotheses [9] governing the behaviour of the VAT laminate at the macroscopic
scale are listed here below.

• Each ply of the VAT laminate is made of the same material and the same thickness.

• The number of plies is kept unchanged during the optimisation process.

• The material behaviour is linear elastic.

• The VAT laminate is quasi-homogeneous (i.e. uncoupled and with the same be-
haviour in terms of normalised membrane and bending stiffness matrices) and fully
orthotropic (both in membrane and bending) point-wise, i.e. these properties apply
locally at each point of the structure;

The properties of the T300/5208 carbon-epoxy pre-preg strip, which constitute the tow of
the lamina, are reported in Table 1 for the sake of completeness. Of course, the technical
constants of the lamina are taken from [25], while the polar parameters are calculated
accordingly.

Technical constants Polar parameters of [Q] a Polar parameters of [Q̂] b

E1 [MPa] 181000.0 T0 [MPa] 26878.6659 T [MPa] 5393.6268
E2 [MPa] 10273.0 T1 [MPa] 24738.3141 R [MPa] 1776.3732
G12 [MPa] 7170.5 R0 [MPa] 19708.6659 Φ [deg] 90.0
ν12 0.28 R1 [MPa] 21436.2608
ν23 0.42 Φ0 [deg] 0.0

Φ1 [deg] 0.0
Thickness
hply [mm] 0.127
a In-plane reduced stiffness matrix of the pre-preg strip.
b Out-of-plane shear stiffness matrix of the pre-preg strip.

Table 1: Material properties of the T300/5208 carbon-epoxy pre-preg strip.
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2.2. The multi-scale two-level optimisation strategy

In the context of the MS2LOS [9, 40], the optimum design of the VAT laminate is
articulated in two sub-problems stated at different scales. The FLP aims at determining
the optimum distribution of the VAT laminate mechanical design variables satisfying the
requirements of the design problem. At this level, the optimisation is performed at the
macroscopic scale of the VAT plate, which is modelled as an equivalent homogeneous
anisotropic continuum. The design variables are the laminate PPs [29–31], varying point-
wise over the structure, which describe the mechanical behavior of the VAT plate.
The second level problem (SLP) is devoted to the determination of a suitable lay-up which
satisfies the optimum distribution of PPs resulting from the FLP.

In this work only the FLP of the MS2LOS is faced and the related mathematical
framework, presented in [9], is extended to eigenvalue buckling problems. Inasmuch as the
SLP formulation is not affected by the modifications introduced in the FLP (and the main
steps of the related resolution strategy remain unchanged), this part will not be detailed
in the following Sections. For more details on the SLP formulation and on the related
mathematical background, the reader is addressed to [27, 40].

3. Mathematical formulation of the first-level problem

The FLP mathematical background essentially relies on the FSDT and on the B-
Spline surface theory. On the one hand, the FSDT allows for integrating the influence of
the transverse shear stiffness on the physical responses of the VAT laminate. On the other
hand, B-Spline surfaces are used to describe the PPs distribution over the structure.
The use of B-Spline surfaces to describe the PPs fields has a fundamental consequence:
the anisotropy field description is completely unrelated from the mesh of the FE model.
Therefore, a reduction of the number of the design variables, i.e. the PPs computed only
at the B-Spline surfaces control points (CPs), can be obtained with respect to classical
FE-based representation [7, 8]. Moreover, as detailed in the following of this section, the
use of B-Spline entities also allows to reduce the number of optimisation constraints to be
checked during the optimisation process. These aspects lead to a strong reduction of the
computational cost required to carry out the solution search. In particular, the advantages
related to the use of B-Spline surfaces come from two fundamental properties: the local
support property and the strong convex-hull property, see [41]. The way these properties
are exploited is clarified in the following.

Without loss of generality, the following subsections focus on a meaningful design
problem: the maximisation of the first buckling factor of the VAT laminate subject to
feasibility constraints on the PPs and to a requirement on the total thickness.

3.1. Mechanical design variables

In the framework of the FSDT [42] the constitutive law of the multilayer plate (ex-
pressed within the global frame of the laminate Γ = {O;x, y, z}) can be stated as:

r = Klamε, (1)

where r and ε are the vectors of the generalised forces per unit length and strains of the
laminate middle plane, respectively, whilst Klam is the laminate stiffness matrix (Voigt’s
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notation). In this framework, the analytical form of these arrays is:

r =


n

m

q

 , Klam =


A B O

D O

sym H

 , ε =


ε0

χ0

γ0

 . (2)

In Eq. (2), A, B and D are the membrane, membrane/bending coupling and bending
stiffness matrices of the laminate, while H is the out-of-plane shear stiffness matrix. n,
m and q are the vectors of membrane forces, bending moments and shear forces per unit
length, respectively, whilst ε0, χ0 and γ0 are the vectors of in-plane strains, curvatures and
out-of-plane shear strains of the laminate middle plane, respectively, [42]. The laminate
homogenised stiffness matrices are introduced for optimisation purposes:

A∗ :=
1

h
A, B∗ :=

2

h2
B, D∗ :=

12

h3
D, H∗ :=

1

h
H. (3)

where h is the total thickness of the plate.
Consider a quasi-homogeneous, fully orthotropic laminate (i.e. a laminate with B∗ = 0,
A∗ = D∗ and characterised by the same orthotropy type and direction for membrane and
bending stiffness matrices): it can be proved that, under these hypotheses, the overall
number of independent mechanical design variables describing its mechanical response
reduces to only three, i.e. the anisotropic moduli RA

∗
0K and RA

∗
1 and the polar angle

ΦA∗
1 (which represents the orientation of the main orthotropy axis) of the homogenised

membrane stiffness matrix A∗ [29, 30].
The description of the polar framework and its application in the context of the FSDT are
not reported in this work for the sake of brevity. The reader is addressed to [9, 29, 30] for
a detailed dissertation on the aforementioned topics.

For optimisation purposes, it is useful to introduce the dimensionless PPs:

ρ0 :=
RA

∗
0K

R0
, ρ1 :=

RA
∗

1

R1
, φ1 :=

ΦA∗
1

π/2
, (4)

where R0, R1 and Φ1 are taken from Table 1. The expression of the laminate stiffness
matrices (together with their gradient) in terms of the dimensionless PPs is given in
Appendix A. In the most general case, for a VAT composite, the three independent PPs
vary point-wise over the structure. As stated beforehand, the variation of the generic PP
ζ is expressed by means of a B-Spline scalar function:

ζ (u1, u2) =

n1∑
i1=0

n2∑
i2=0

Ni1,p1(u1)Ni2,p2(u2)ζ
(i1,i2), ζ = ρ0, ρ1, φ1. (5)

The dimensionless coordinates u1 and u2 can be arbitrarily defined: a natural choice is to
relate them to the Cartesian coordinates of the laminate global frame:

u1 =
x

ax
, u2 =

y

ay
, (6)

where aj (j = x, y) is the problem characteristic length along the j axis. In Eq. (5), ζ(i1,i2)

is the value of the dimensionless PP at the generic CP, whereas Ni1,p1(u1) and Ni2,p2(u2)
are the B-Spline blending functions computed at the dimensionless coordinates u1 and u2
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respectively. The parameters p1 and p2 are the degrees of the aforementioned blending
functions, while nj + 1 represents the number of CPs along the j-th parametric direction.
The set of the (n1 + 1)× (n2 + 1) CPs is called control net. As detailed in [41], the generic
blending function Nij ,pj (uj), with j = 1, 2, can be calculated in a recursive way. The
definition of the blending functions and, thus, of the B-Spline entity, is completed by the
introduction of the knot-vector

v(j)T := {0, . . . , 0︸ ︷︷ ︸
pj+1

, v
(j)
pj+1, . . . , v

(j)
mj−pj−1, 1, . . . , 1︸ ︷︷ ︸

pj+1

}, j = 1, 2, (7)

where the size of the knot-vector along the j-th parametric direction is mj + 1, with
mj = nj + pj + 1. It is noteworthy that the B-Spline scalar function (one for each PPs) of
Eq. (5) constitutes the third coordinate of a generic B-Spline surface [9, 41]. In particular,
for each surface, the Cartesian coordinates of every CP can be calculated by means of
the Greville’s abscissae formulae. For further details the reader is addresses to [9]. For
insights into the B-Spline surfaces theoretical framework the reader is addressed to [41].

The integer parameters of the B-Spline scalar function of Eq. (5) are set a priori and do
not take part in the optimisation process. As done in [9], also the non-trivial knot-vector
components appearing in Eq. (7) are set as evenly distributed in the interval ]0, 1[ and are
kept unchanged during the optimisation analysis. Therefore, the only design variables are
the PPs defined at the CPs which can be grouped into the following vector:

xT =
{
ρ
(0,0)
0 , · · · , ρ(n1,n2)

0 , ρ
(0,0)
1 , · · · , ρ(n1,n2)

1 , φ
(0,0)
1 , · · · , φ(n1,n2)

1

}
. (8)

In the most general case, the total number of design variables is equal to 3 × (n1 + 1) ×
(n2 + 1). Furthermore, the feasibility constraints, which arise from the combination of
the layer orientations and positions within the stack [43], must be integrated into the FLP
formulation. Inasmuch as the laminate is quasi-homogeneous [43], it is sufficient to impose
these constraints only for the PPs of matrix A∗, i.e.

−1 ≤ ρ0 ≤ 1 ,

0 ≤ ρ1 ≤ 1 ,

2ρ21 − 1− ρ0 ≤ 0 .

(9)

It is noteworthy that first and second inequalities of Eq. (9) can be taken into account as
lower and upper bounds for the dimensionless anisotropic moduli, i.e. ρ0 and ρ1. Therefore,
the expression of the resulting feasibility constraint on the laminate PPs, which must be
considered for the generic CP, is:

gij(x) = 2
(
ρ
(i,j)
1

)2
− 1− ρ(i,j)0 ≤ 0 , i = 0, · · · , n1, j = 0, · · · , n2. (10)

The strong convex-hull property of the B-Spline blending functions ensures that, if the
feasibility constraint of Eq. (10) is met on the CPs, it is satisfied for each point belonging
to the B-Spline surface (see [9] for more details). The feasibility constraint of Eq. (10)
must be imposed in order to ensure that a feasible stack, satisfying the optimal PPs fields
resulting from the FLP, could be found as a result of the SLP. The reader is addressed
to [43] for a wide discussion on feasibility constraints in the PPs space.
From Eq. (10), it is evident that, in the most general case, the total number of feasibility
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constraints is equal to (n1 + 1)× (n2 + 1).

3.2. Mathematical statement of the problem

The FLP aims at determining the optimum distribution of the laminate PPs maximis-
ing the first buckling factor of the structure and satisfying, simultaneously, the feasibility
constraints on the laminate PPs at each point of the plate. Consider the eigenvalue buck-
ling problem:

(K + λkKσ)ψk = 0, ∀ ψk 6= 0, (11)

where K is the stiffness matrix of the FE model, Kσ is the geometric stiffness matrix, λk
is the k-th buckling factor and ψk is the k-th eigenvector associated to λk. In this study,
only the first buckling factor is computed, thus k = 1. In the following the first buckling
factor λ1 is denoted as λ to simplify the nomenclature. Formally, the design problem can
be stated as a constrained non-linear programming problem (CNLPP) as:

min
x
− λ(x),

subject to:
(K + λkKσ)ψk = 0,

h =const. ,

gij(x) ≤ 0, i = 0, · · · , n1, j = 0, · · · , n2.

(12)

The design space of the FLP, together with the type of each design variable, is detailed in
Table 2. In Eq. (12) the overall thickness of the laminate h is kept constant.

Design variable Type Lower bound Upper bound

ρ0 continuous −1.0 1.0
ρ1 continuous 0.0 1.0
φ1 continuous −1.0 1.0

Table 2: Design space of the first-level problem.

In order to solve problem (12) by means of a suitable deterministic algorithm, the
derivatives of both the objective function and the constraints functions with respect to the
design variables, i.e. the laminate dimensionless PPs at each CP, must be computed. The
derivation of the gradient of the feasibility constraints of Eq. (10) is straightforward:

∂gst

∂ρ
(i,j)
0

=

{
−1 if s = i, t = j,

0 otherwise,

∂gst

∂ρ
(i,j)
1

=

{
4ρ

(i,j)
1 if s = i, t = j,

0 otherwise,

∂gst

∂φ
(i,j)
1

= 0.

(13)

Conversely, the gradient of the k-th buckling factor requires a special attention. In order
to derive its analytical expression, the local support property of the B-Spline blending
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functions [41] as well as the adjoint method [44] are exploited. To this end, consider the
following proposition.

Proposition 3.1. Consider a deformable anisotropic plate subject to given external loads.
Under the hypotheses of small generalised displacements and strains, the gradient of the
k-th buckling factor λk reads:

∂λk
∂ζ(i,j)

=
λk
wk

∑
e∈Sij

∂ζe

∂ζ(i,j)

(
w∗ek + λks

T
ek

∂Klame

∂ζe
ε0e

)
+ µT ∂K

∂ζ(i,j)
d0

 , ζ = ρ0, ρ1, φ1,

Kµ = −λkηk.
(14)

where µ is the solution of the adjoint system.

The proof of proposition 3.1, the meaning of the quantities appearing in Eq. (14) and
the pseudo-code of the algorithm used to compute the gradient of λk are provided in
Appendix B.

Remark 3.1. In Eq. (14), ζe represents the generic dimensionless PP of Eq. (5) evaluated
at the element centroid, i.e. ζe = ζ (u1e, u2e), whilst, according to Eq. (5), its derivative
reads:

∂ζe

∂ζ(i,j)
= Ni,p1(u1e)Nj,p2(u2e). (15)

Remark 3.2. In Eq. (14), Sij is the discretised version of the generic CP local support
defined as:

Sij :=
{
e : (u1e, u2e) ∈

[
U

(1)
i , U

(1)
i+p1+1

[
×
[
U

(2)
j , U

(2)
j+p2+1

[}
. (16)

The local support property of B-Spline blending functions relates the control net, which af-
fects the shape of the B-Spline surface, to the mesh of the FE model through the definition
of an influence zone for each CP, i.e. the so-called local support. Therefore the variation
of the generic dimensionless PP assigned to a given CP influences only the elements be-
longing to the local support of such a CP. As discussed in [9], the size of the local support
zone depends on the B-Spline surface discrete parameters, i.e. the degrees of the blending
functions and the number of CPs.

Remark 3.3. In Eq. (14), d0 is the vector of the nodal generalised displacements, solution
of the preliminary linear static analysis:

Kd0 = f0, (17)

where f0 is the vector of external nodal forces (of arbitrary value, generally a unit value
is used). ε0e, (e = 1, · · · , Ne) is the vector of generalised strains of Eq. (2) evaluated for
each element composing the FE model (the number of elements is Ne). The solution of
Eq. (17) is used to compute the pre-stress state involved in the definition of the geometric
stiffness matrix Kσ. All details are provided in Appendix B.

3.3. Numerical strategy

Problem (12) is a non-convex CNLPP in the space of the laminate PPs. Its non-
linearity is due, on the one hand, to the nature of the objective function, the buckling

10



factor, which is a non-convex function with respect to the orthotropy orientation field. On
the other hand, the complexity of such a problem is also due to the non-linear feasibility
constraints imposed on the PPs of the plate, see Eq. (10).

For the resolution of problem (12) a hybrid optimisation tool called VISION (VarIable
Stiffness composItes Optimisation based on NURBS ), developed by Montemurro [32] and
made by the union of the ERASMUS (EvolutionaRy Algorithm for optimiSation of Mod-
Ular Systems) algorithm [32] and a general deterministic algorithm, is employed. VISION
is available in both MATLAB and Python versions. In this work, the Python version has
been further developed through the implementation of the objective function derivatives in
Appendix B in order to deal with problem (12). The Sequential Least Square Quadratic
Programming (SLSQP) algorithm available in Numpy package, from the Python-based
environment Scipy, has been used as a deterministic algorithm [45]. VISION is interfaced
with the FE model of the VAT plate (used essentially to compute the physical/geometrical
responses involved into the definition of objective function and constraint functions), see
Fig. 2.

Figure 2: VISION flowchart[32].

The VISION tool is composed of three main phases: pre-processing phase (steps 1-5),
optimisation solvers (steps 6-8) and post-processing phase (step 9). A synthetic description
of each step is given here below.

1. B-Spline surfaces parametrisation. During this phase the user must set the discrete
parameters (number of CPs, degrees of the blending functions) tuning the shape of
the B-Spline surfaces representing the laminate PPs fields as well as the values of the
non-trivial components of each knot-vector. The above quantities are just geometric
parameters of the B-Spline blending functions which are not included in the vector
of design variables. If the user does not provide the knot-vector components, they
are uniformly distributed in the interval [0, 1].

2. FE model information. The FE model of the problem at hand must be properly pre-
pared in the external FE code, in terms of both geometry and mesh of design regions
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(DRs) and non-design regions (NDRs). Once the mesh is generated, the elements
belonging to DRs are selected and their data are passed to the MATLAB/PYTHON
environment. For each element, the relevant information are: its identifier, the
Cartesian coordinates of its centroid as well as its area (shell element) and volume
(solid element).

3. Identification of DRs and NDRs. Not all the zones of the structure have to be
optimised and this requirement can be fulfilled by forecasting proper NDRs within
the FE model at specific locations. Therefore, including the PPs defined at all CPs
(even those CPs whose local support falls within NDRs) among the design variables
is useless. To this purpose, before launching the optimisation, a dedicated function
checks all CPs local supports. Consider the local support of the generic CP Sij : if
the dimensionless coordinates (u1e, u2e) of at least one element centroid belonging to
the DR are in Sij , then the corresponding PPs defined at that CP are inserted in the
design variables array; otherwise, they are deleted from this array. The discarded
PPs are set equal to their lamina counterparts for those CPs whose local support is
the empty set.

4. Symmetries Application. Symmetries can be interpreted as variables saving from
a computational viewpoint. Only independent CPs are effectively collected in the
design variables array.

5. Reference Quantities. Geometrical, physical and manufacturing responses used to
obtain dimensionless objective and constraint functions are set here. Their definition
is not unique and the algorithm allows the external user to define the reference
quantities. However, pre-set strategies can be selected for the most common problems
(compliance minimisation, first buckling load maximisation, etc.).

6. Responses evaluation. The system responses involved into the definition of both
objective function and constraint functions can be of different nature: geometri-
cal, physical and technological. The user can implement some of them directly into
the MATLAB/PYTHON environment (e.g. geometrical and technological require-
ments). For those responses requiring a FE analysis to be computed (e.g. buckling
load, compliance, natural frequencies, etc.) an automatic interface between the op-
timisation algorithms (both meta-heuristics and deterministic) and the FE codes
(both commercial and in-house codes) has been implemented into the VISION tool.

7. Genetic optimisation. During the first phase, solely the ERASMUS GA is interfaced
with the FE model of the VAT composite: for each individual at each generation, a
FE analysis is invoked for the evaluation of the physical responses. The FE model
makes use of the design variables, given by the GA and elaborated by the MAT-
LAB/PYTHON code which generates the B-spline surfaces representing the dimen-
sionless PPs fields. These fields are then projected over the FE model of the VAT
plate in order to calculate the desired physical response as well as the feasibility
constraint at each CP. At the end of the FE analysis, the GA elaborates the re-
sults provided by the FE model in order to execute the genetic operations. These
operations are repeated until the GA meets the user-defined convergence criterion.

8. Deterministic optimisation. Due to the strong non-convex nature of the VAT design
problem, the aim of the genetic calculation is to provide a potential sub-optimal point
in the design space, which constitutes the initial guess for the subsequent phase, i.e.
the local optimisation, where a suitable deterministic algorithm is interfaced with
the same FE model of the VAT composite. In this case, the optimisation calculation
is speed-up by giving explicitly the expression of the gradient of both constraint
functions and objective function. The convergence of the optimiser is achieved when
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constraints are met (or barely met, i.e. the optimum solution is on the boundary
of the search domain) and one of the following conditions occurs: (a) the predicted
change of the objective function is lower than a prescribed tolerance (10−6); (b) the
norm of the gradient of the Lagrangian functional related to the problem at hand is
very close to zero (10−6); (c) the predicted change of design variables is lower than
a prescribed threshold value (10−6); (d) a maximum value of iterations (set by the
user) has been attained. The upper bound on the iterations number is 250 for the
benchmarks presented in this study.

9. Results visualisation. The optimised distribution of the laminate PPs can be con-
verted in two different standard formats: IGS file (which can be easily imported in a
CAD environment) and VTK format. The latter can be exploited and manipulated
into the ParaView R© environment. In the benchmarks considered in this study, the
VTK format has been chosen to visualise the PPs fields.

For each benchmark, two cases have been considered.

• Case 1. Only φ1 varies over the structure, whilst ρ0 and ρ1 are considered uniformly
distributed. In this case, the overall number of design variables for problem (12) is
2 + (n1 + 1)× (n2 + 1). Of course, in this case there is only one feasibility constraint
on the laminate PPs to be checked.

• Case 2. This represents the most general case wherein ρ0, ρ1 and φ1 vary over the
structure. The overall number of design variables is 3 × (n1 + 1) × (n2 + 1), while
the number of optimisation constraints is (n1 + 1)× (n2 + 1)

Inasmuch as problem (12) is highly non-convex, the optimised solution strongly de-
pends upon the choice of the initial guess x0. In this work, the initial guess x0 is gener-
ated in three different ways. In the first case, x0 is null, which means that an isotropic
initial guess is selected. In the the second case, x0 is the best individual resulting from the
genetic optimisation performed by means of the ERASMUS algorithm [32]. In particular,
the generic individual of the GA represents a potential solution for the problem at hand.
In the most general case, the genotype of the individual for problem (12) is composed of
(n1 + 1) × (n2 + 1) chromosomes with three genes coding the dimensionless PPs at each
CP of the B-Spline surface. In the third case, the initial guess is randomly generated.

It is noteworthy that, since problem (12) involves a requirement on the first buckling
factor, the well-known mode switching phenomenon [46], typical of eigenvalue problems,
can occur during the iterations of the optimisation process. For example, the mode switch-
ing phenomenon (together with the spurious mode phenomenon) affects topology optimi-
sation [46] when considering eigenvalue problems (i.e. buckling or modal analyses). As
far as topology optimisation problems involving requirements on critical buckling loads
(or natural frequencies) are concerned, the most common numerical strategies available
in the literature to deal with the mode switching issue have been integrated in a new
topology optimisation method coupling NURBS hyper-surfaces with the classical Solid
Isotropic Material with Penalisation (SIMP) method developed by Montemurro and co-
workers [46–48]. In particular, in [46], dedicated numerical artefacts and guidelines to
avoid the mode switching during the topology optimisation for problems involving modal
analysis are provided.

Fortunately, in the case of VSCs the situation is not as complicated as in topology
optimisation problems. In particular, only the buckling mode (eigenvector) associated to
the lowest buckling factor (eigenvalue) is considered at each iteration during the optimi-
sation. Therefore, if a mode switch occurs in between two iterations, in the next one, the
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correct buckling mode (i.e. that associated to the lowest eigenvalue) is considered (for
the expression of the objective function and the related gradient). Moreover, a further
check is introduced within the SLSQP algorithm to ensure that the lowest buckling fac-
tor of the structure continuously increases (and, thus, the merit function of problem (12)
monotonically decreases) during iterations. Particularly, if the mode switching occurs and
the value of the merit function of problem (12) at the current iteration is greater than
that of the previous iteration, a new descendent direction is calculated in order to get a
non-increasing value of the merit function along iterations.

Of course, a sound alternative could be to consider a different objective function in-
volving a linear combination (i.e. a weighted sum) of the first N buckling factors, or to
introduce a suitable constraint on the imposed gap between two consecutive eigenvalues.
Both strategies reveal effective for topology optimisation problems as discussed in [46].
However, for the test cases presented in this work the simplified strategy discussed above
is sufficient to correctly take into account for the mode switching phenomenon.

4. The finite element model

In order to assess the buckling factor and its gradient, an eigenvalue buckling analysis
has to be carried out for the FE model of the VAT composite. The FE model is generated
in ANSYS R© environment by using SHELL181 elements, which have four nodes and six
degrees of freedom (DOFs) per node. The FE model is capable of updating the mechanical
properties of each element of the mesh through the use of the PPs distributions at each
iteration of the optimisation problem. The FE models of the benchmarks analysed in this
work are shown in Fig. 3.

Fx

x

y

Fx

A B

CD

(a)

y

x

fx

fy

A B

CD

E

(b)

Figure 3: FE model and related BCs for (a) the square plate and (b) the square plate with a hole subject
to bi-axial compression loads.

For each benchmark, the BCs are set as follows.

• Benchmark 1 is a VAT composite square plate taken from the literature [25]. In
this case, the plate is subjected to an uni-axial external compressive load Fx applied
on nodes located at: x = 0, y = a/2 and x = a, y = a/2; see Fig. 3a. In order
to get a uniform displacement ux for sides AD and BC as done in [25], constraint
equations are imposed on nodes located at x = 0, a. The mesh size is chosen after a
preliminary mesh sensitivity analysis (not reported here for the sake of brevity) on
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the convergence of the first buckling load, for the set of BCs reported in Table 3. It
has been observed that a mesh having 12005 DOFs is sufficient to properly evaluate
the first buckling load of the structure.

• Benchmark 2 represents a quarter of a square plate with a hole subject to bi-axial
compressive loads; The BCs on the generalised displacements are given in Table 3,
while the uniform compressive forces per unit length, i.e. fx and fy, are applied on
nodes located on sides BC and CD, respectively. Also in this case the mesh size is
the result of a sensitivity analysis (not reported here for the sake of brevity): an
overall number of 2480 DOFs is sufficient to correctly assess the first buckling factor.

Benchmark 1 Benchmark 2

Sides geometric BCs Sides geometric BCs

AB, CD Uy = Uz = θy = θz = 0 AB Uy = θx = θz = 0
CD Ux = Uz = 0

BC, DA Uy = Uz = θx = θz = 0 BC Uy = Uz = 0
Ux(0, y) = Ux(0, a/2), Ux(a, y) = Ux(a, a/2) ∀y ∈ [0, a

2
[∪]a

2
, a] DE Ux = θy = θz = 0

Table 3: BCs on generalised displacements for benchmarks 1 and 2.

It is noteworthy that a module composed of appropriate routines defining a general B-
Spline surface has been coded in Python (within the VISION tool) and interfaced with the
FE model of the VAT plate. The following algorithm has been implemented to compute
the local stiffness properties of each element of the FE model and to determine the buckling
factor and its gradient.

Algorithm 1 Buckling analysis of VAT laminates through B-Spline surfaces and polar
parameters.

1: For a given set of dimensionless PPs defined at each CP, build the corresponding
B-Spline surfaces.

2: Discretise the plate into Ne elements.
3: Retrieve the Cartesian coordinates of the e-th element centroid, i.e. (xe, ye) and cal-

culate the corresponding dimensionless coordinates (u1e, u2e) according to Eq. (6).
4: Determine the dimensionless PPs (and hence the Cartesian components of the laminate

stiffness matrices) according to Eq. (5) and assign material properties to element e;
5: If e < Ne set e = e+ 1 and go to step 3, otherwise stop.
6: Execute Algorithm 2 (see Appendix B) for assessing the buckling factor and its gradi-

ent.

5. Numerical results

5.1. Benchmark 1: square plate subject to bi-axial compressive loads

This first benchmark refers to the geometry illustrated in Fig. 1a and it is used to assess
the effectiveness of the MS2LOS by comparing the optimised solutions with those available
in [25]. It is noteworthy that, since a quasi-homogeneous fully orthotropic laminate is
considered in this work, the feasible region, described by the inequality of Eq. (10), is
smaller than that considered in [25]
The plate edge length is a = 254 mm, while its overall thickness is h = 1.524 mm. The BCs
on the generalised displacements are given in Table 3. The value of the axial compressive
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loads applied to the VAT laminate nodes is equal to the first buckling load evaluated
for a quasi-homogeneous isotropic laminate subject to the same BCs, which is equal to
Fx = F cr

x−ISO = 2700.81 N. As done in [25], results are reported in terms of the buckling
load of the VAT plate normalised with respect to this value:

Kcr = F crx−VAT/F
cr
x−ISO (18)

Firstly, the results concerning Case 1 of Section 3.3 are presented (φ1 variable over the
structure and ρ0 and ρ1 uniformly distributed). The sensitivity of the optimised normalised
buckling load Kcr to the size of the control net together with the number of iterations to
get convergence are reported in Table 4, where a comparison with those available in the
literature [25] is also provided. The starting point (for each number of CPs) is the isotropic
solution (i.e. ρ0 = ρ1 = 0.0), referred as ISO in the following. For each number of CPs,

Kcr Iterations

ISO 1.00 −
VAT 5× 5, [25] 1.88 −
VAT 7× 7, [25] 1.96 −
VAT 9× 9, [25] 2.02 −
VAT 5× 5 - Case 1 2.12 (+12.8%) 158
VAT 7× 7 - Case 1 2.22 (+13.3%) 144
VAT 9× 9 - Case 1 2.35 (+16.3%) 118

Table 4: Benchmark 1 - Case 1 : sensitivity of the optimum normalised buckling load to the number of
CPs (the percentages in parentheses indicate the improvements with respect to corresponding the literature
solutions).

the optimal value of the dimensionless anisotropic moduli are reported in Table 5, while
the optimal distribution of the polar angle ΦA∗

1 is illustrated in Fig. 4.

ρ0 ρ1

VAT 5× 5 - Case 1 0.73 0.93
VAT 7× 7 - Case 1 0.81 0.95
VAT 9× 9 - Case 1 0.80 0.95

Table 5: Benchmark 1 - Case 1 : dimensionless anisotropic moduli for the optimised solutions.

The following considerations can be inferred from the analysis of these results.

• From Table 4, one can infer that the results obtained by means of the MS2LOS based
on the polar formalism outperform those reported in the literature. When comparing
results with the same CPs number, the increase of the normalised buckling factor
varies between 12.8% (in the case of 25 CPs) and 16.3% (in the case of 81 CPs) with
respect to the literature solution [25].

• Table 5 and Fig. 4 show that, even if the solutions with 49 CPs and 81 CPs are
very close in terms of dimensionless anisotropic moduli values, the refined optimal
distribution of the polar angle ΦA∗

1 for the case with a higher number of CPs brings
to an increment of 5.86% of the normalised buckling load with respect to the case of
a lower number of CPs.

As a consequence, a 7 × 7 control net has been chosed for the following optimisation
analyses concerning benchmark 1. This choice represents the best compromise between
computational costs and performances.
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Figure 4: Benchmark 1 - Case 1 : optimal distribution of the polar angle ΦA∗
1 .

Two analyses are performed in the most general case (Case 2 reported in Section 3.3)
wherein ρ0, ρ1, and φ1 vary over the structure, by considering two different starting points.
In this case, the CNLPP is characterised by 147 design variables and 49 optimisation
constraints. In particular, Case 2a makes use of a quasi-homogeneous isotropic solution
as initial guess, while Case 2b considers, as starting point, a random-generated feasible set
of PPs. It must be noticed that, for Case 2b, the random starting point has been selected
as the best solution (in terms of initial value of the buckling load) among twenty different
(feasible) PPs distributions generated randomly.

The normalised buckling load Kcr of the optimised solutions and the number of itera-
tions to achieve convergence are reported in Table 6, where it is compared to that of the
quasi-homogeneous isotropic solution and to that of the corresponding Case 1 solution of
Table 4. The optimal PPs fields related to the optimised solutions Case 2a and Case 2b
are illustrated in Figs. 5 and 6, respectively.

By looking at the distributions of Figs. 5 and 6 and by considering the results listed
in Table 6, the following remarks can be done.

• As expected, the solutions obtained in Case 2a and Case 2b are different. Indeed,
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Kcr Iterations

ISO 1.00 −
VAT 7× 7 - Case 1 2.22 144
VAT 7× 7 - Case 2a 2.22 192
VAT 7× 7 - Case 2b 2.30 166

Table 6: Benchmark 1 - Case 2 : optimised solutions.
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Figure 5: Benchmark 1 - Case 2a: optimal distribution of the PPs over the structure.

the buckling factor is a non-convex function in the PPs space, thus the optimised
solution depends upon the choice of the initial guess.

• Table 6 shows that both optimised solutions are better than the reference one. The
solution obtained in Case 2a (when the ISO solution is used as initial guess) has a
normalised buckling load 2.22 times higher than that of the ISO solution. In this
case, the optimised value of Kcr is identical to the one obtained in case Case 1, as
well as the distributions of RA

∗
0K , RA

∗
1 and ΦA∗

1 (compare results reported in Fig. 5
to those in Table 5 and Fig. 4b).

• When the initial guess is randomly generated, the algorithm converges towards a
different solution characterised by a normalised buckling load 2.30 times higher than
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Figure 6: Benchmark 1 - Case 2b: optimal distribution of the PPs over the structure.

the reference value. As it can been inferred from Fig. 6, the orthotropy type contin-
uously changes over the structure because of the variation of the dimensionless polar
moduli ρ0 and ρ1.

As a final remark, it must be highlighted that, although problem (12) is formulated
in a smaller design space (when compared to that used in [25]), more efficient results (in
terms of the first buckling factor) have been found in this study. How is it possible? The
reason is twofold.
Firstly, LPs are not as effective as PPs, which are tensor invariants, in describing the elastic
symmetries of a tensor [9, 27, 29–31, 40]. Therefore, when PPs are used as design variables
of the FLP, the optimisation algorithm has a direct control on the elastic symmetries of
tensors and it is able to search for the optimum distribution of orthotropy type (by means
of the polar moduli ρ0 and ρ1) and orientation (by means of the polar angle φ1) maximising
the first buckling factor of the VSC. Conversely, the optimisation algorithm has no control
on the orthotropy type and orientation when LPs are used as design variables of the FLP
as done in [25]. Accordingly, in this case the optimisation algorithm is, probably, trapped
in a feasible local minimum characterised by a value of the first buckling factor lower than
that characterising the local minimiser in the PPs space.
Secondly, as discussed in [9, 27, 29–31, 40], a thin (or moderately thick) VSC (but also a
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standard composite reinforced with straight fibres) show an “optimal” response (in terms
of strain energy, buckling factor, strength, etc.) when the membrane and bending tensors
tend to exhibit the same elastic behaviour. Therefore, using a quasi-homogeneous laminate
with the same orthotropic behaviour in membrane and bending (i.e. A∗ = D∗) helps in
speeding up the convergence of the algorithm towards an efficient feasible local minimiser,
i.e. a VSC configuration characterised by a very good value of the first buckling factor
corresponding to an optimised membrane/bending behaviour.

5.2. Benchmark 2: square plate with a hole subject to bi-axial compressive loads

This second benchmark, taken from [40], refers to the geometry illustrated in Fig. 1b.
The values of the characteristic problem sizes are: a = 90 mm, r = 30 mm and the
plate thickness is h = 3 mm. The applied BCs are those listed in Table 3. The value
of the bi-axial compressive loads applied to the VAT laminate middle plane corresponds
to the buckling load of a quasi-homogeneous isotropic laminate (indicated as ISO in the
following), which is equal to fx = fy = f crISO = 118.78 Nmm-1.
For benchmark 2, a preliminary study on the convergence of the normalised buckling load
Kcr to the control net size is done in order to determine the number of CPs to be used
during optimisation. This sensitivity analysis has been conducted by considering that only
φ1 varies over the structure, whilst ρ0 and ρ1 are uniformly distributed. The starting point
(for each number of CPs) is the ISO solution.

Kcr Iterations

ISO 1.00 −
VAT 4× 4 1.66 28
VAT 5× 5 1.67 46
VAT 6× 6 1.79 37
VAT 7× 7 1.79 83
VAT 8× 8 1.80 90

Table 7: Benchmark 2 - Sensitivity of the normalised buckling load to the number of CPs.

The results of this sensitivity analysis are given in Table 7. It has been observed that the
model with 6×6 CPs represents the best compromise between accuracy and computational
costs. Therefore, this choice results in 38 design variables and one feasibility constraint
for Case 1 and 108 design variables and 36 feasibility constraints for Case 2.

• Case 1 - Two analyses are performed in this case, by considering two different
starting points. In particular, Case 1a makes use of the ISO solution as a start-
ing point, whilst for Case 1b the initial guess is the best solution provided by the
ERASMUS algorithm at the end of the genetic search. Table 8 lists the normalised
buckling load of the ISO solution and of the ERASMUS initial guess in the optimised
configurations together with the number of iterations to achieve convergence.

Kcr Iterations

ISO 1.00 −
ERASMUS - GA 2.29 −

Case 1a 1.79 37
Case 1b 3.23 57

Table 8: Benchmark 2 - Case 1 : optimised solutions.
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The values of the optimised dimensionless anisotropic moduli are reported in Table 9,
whereas the optimal distributions of the polar angle ΦA∗

1 over the structure for Case
1a and Case 1b are illustrated in Fig. 7.

ρ0 ρ1

Case 1a −0.70 0.39
Case 1b 1.00 1.00

Table 9: Benchmark 2 - Case 1: dimensionless anisotropic moduli for the optimised solution.
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Figure 7: Benchmark 2: optimal distribution of the polar angle ΦA∗
1 over the structure for Case 1a (a)

and Case 1b (b).

From an analysis of the results reported in Tables 8 and 9 and by looking at the
polar angle fields of Fig. 7, the following remarks can be inferred.

– The two optimisation calculations converge towards different local minima,
showing, again, the non-convex nature of the problem at hand.

– Both the optimised solutions are better than the reference one. In particular,
when the solution provided by the GA is used as initial guess, the normalised
buckling load of the optimised solution is 3.23 times greater than the ISO solu-
tion and almost two times greater than that obtained by using the ISO solution
as initial guess. Moreover, the optimised solution of Case 1b compared has a
normalised buckling load which is about 41% greater than that of the initial
guess resulting from the GA calculation.

– The solution of Case 1a is characterised by a special orthotropic behaviour with
KA∗

= 1 because the optimised value of ρ0 is negative. The main orthotropy
axis direction is aligned with the direction of the x axis of the plate almost
everywhere over the VAT laminate. Conversely, the solution of Case 1b shows
a standard orthotropic behaviour characterised by a unit value of the dimen-
sionless anisotropic moduli and by an angular field which follows the boundary
of the hole.

• Case 2 - This is the most general case where all the three dimensionless PPs vary
over the structure. As in the first case, three different starting points have been
considered corresponding to: (a) the ISO solution (Case 2a); (b) the best solution
provided by the ERASMUS algorithm (Case 2b); (c) a feasible initial guess randomly
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generated (Case 2c). The normalised buckling load relative to all initial guess and
the optimised solutions are reported in Table 10.

Kcr Iterations

ISO 1.00 −
RANDOM 1.02 −

ERASMUS- GA 2.44 −
Case 2a 3.29 232
Case 2b 3.29 99
Case 2c 3.29 86

Table 10: Benchmark 2 - Case 2: optimised solutions.
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Figure 8: Benchmark 2 - Case 2: optimal distribution of the PPs over the structure.

As it can be immediately inferred from the analysis of these results, regardless of the
initial guess, the optimiser converges towards the same local minimum. Accordingly,
the optimal PPs fields are identical for each considered case and are illustrated
in Fig. 8. In this case, the normalised buckling load of the optimised solution is
increased of about 25.8% with respect to the solution found by the GA. Of course,
the number of iterations to achieve convergence depends on the distance between the
initial guess and the local minimum. It can be remarked that, also for benchmark 2,
the point-wise variation of the anisotropic polar moduli over the structure does not
necessarily imply a significant increase in the Kcr factor (the percentage difference
between the two best solutions provided in Tables 8 and 10 is about 1.6%). This
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means that the influence of the point-wise variation of the main orthotropy axis
orientation (related to the polar angle ΦA∗

1 ) on Kcr is predominant over that of the
anisotropic moduli. In fact, when looking at the optimal PPs distributions shown in
Fig. 8, one can notice that the anisotropic moduli are almost uniformly distributed
over the plate (apart for a variation of the RA

∗
1 field near the upper right vertex of

the plate). The optimised VAT laminate shows a standard orthotropic behaviour in
each point.

5.2.1. Benchmark 2: effect of the loading condition on the optimised solution

The influence of the loading conditions on the optimised solutions is evaluated here.
For the sake of brevity, the optimisation analyses have been performed only for the case of
uniform dimensionless anisotropic moduli and point-wise variable normalised polar angle.
Three values of the load ratio (LR := fy/fx) have been considered: 0 (i.e. only fx is
applied), 0.5 and 1. For each case, the isotropic solution has been considered as a starting
guess.

The normalised buckling load of the optimised solutions, the optimised anisotropic
moduli and the number of iterations are listed in Table 11, for each value of LR. The
effect of LR on the optimal distribution of the polar angle ΦA∗

1 and on the first buckling
mode shape are reported in Figs. 9 and 10, respectively.

LR Kcr ρ0 ρ1 Iterations

0 3.93 −1.0 0.0 64
0.5 2.08 −1.0 0.0 43
1.0 1.79 −0.70 0.39 37

Table 11: Effect of the loading conditions on the optimised solutions.

By looking at Figs. 9 and 10 and by considering the results listed in Table 11, the
following remarks can be done.

• Each optimised solution is better than the ISO solution (for a given value of LR). The
solution with LR = 0 presents the biggest improvement in the normalised buckling
load.

• The optimised solutions with LR = 0 and LR = 0.5 have the same optimised
anisotropic moduli and a quite similar distribution of the polar angle ΦA∗

1 . These
solutions represent a VAT laminate characterised by a square symmetry with the
main orthotropy axes oriented at ±45 deg with respect to the local value of ΦA∗

1 , see
[29, 30].

• The LR = 1 case corresponds to the Case 1a reported in Table 9. As discussed
beforehand, the optimisation algorithm stops into a local minima when the ISO
solution is used as a starting guess. In this case a better result can be obtained by
using the best individual provided by the ERASMUS code as a starting point.

6. Conclusions

In this work the FLP formulation of the MS2LOS for VAT composites has been ex-
tended in order to deal with eigenvalue buckling problems. In particular, the main con-
tribution of this study consists of the derivation of the analytical form of the gradient
of the buckling factor by taking advantage of the B-Spline surface properties, which are
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Figure 9: Optimal distribution of the polar angle ΦA∗
1 over the structure for the optimised solution listed

in Table 11.

used to represent the laminate PPs fields of the VAT composite. The considered design
problem focuses on the maximisation of the first buckling load of a VAT laminate subject
to feasibility constraints and geometrical requirements. The closed-form expression of the
buckling factor gradient with respect to the design variables has been analytically derived
by exploiting the properties of the B-Spline blending functions. The algorithms required
for the buckling factor gradient assessment have also been presented in this study: they
ensure the minimum number of operations for the computation of the derivatives in order
to speed-up the optimisation process while guaranteeing a high accuracy.
Two test cases have been analysed to prove the effectiveness of the MS2LOS based on
the polar formalism. The first benchmark problem, taken from the literature, has been
considered to validate the performances of the optimised solutions resulting from the FLP
of the MS2LOS through a comparison with those resulting from multi-level approaches
based on LPs. The numerical results found in this work show that the optimised solutions
provided by the MS2LOS based on the polar formalism outperform those presented in the
literature: the improvement in the normalised buckling factor varies from 12.8% (when
using a B-Spline surface with 25 CPs to describe the polar angle distribution) to 16.3% (in
the case of 81 CPs). In particular, the results presented in this study are very encouraging
and show that a significant increase in the buckling strength of VAT composites can be
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(a) LR = 0 (b) LR = 0.5

(c) LR = 1

Figure 10: Mode shape related to the first buckling load for the optimised solutions listed in Table 11.

obtained with respect to a reference quasi-homogeneous isotropic solution: up to 130%
for benchmark 1 and up to 229% for benchmark 2. The advantages related to the use of
B-Spline surfaces and to the polar formalism in the context of the MS2LOS, presented
in previous publications on the topic (i.e. a strong reduction of the computational costs
when compared to FE-based approaches and the continuity of the PPs fields) are once
again confirmed in this work. In addition, two important aspects of the MS2LOS based
on the polar formalism should be pointed out: (a) the effectiveness of the representation
of the anisotropy based on PPs which allows determining locally the optimal symmetry
group; (b) the absence of simplifying hypotheses either on the nature of the stack or on the
kind of orthotropy of the laminate stiffness tensors during the FLP (unlike the approaches
based on the use of LPs).

Regarding the prospects of this study, some aspects of theoretical, numerical and tech-
nological nature deserve a particular attention. The optimisation strategy needs to be
tested on more complex benchmarks, e.g. a representative stiffened panel extracted either
from the wing or from the fuselage of an aircraft made of VAT composites. In addition,
the design problem requires the formalisation of further technological constraints (e.g. gap
and overlap between adjacent tows, tow width, the variation of the fibre volume fraction
due to imperfections, etc.), related either to the AFP process or to the FFF+CFF tech-
nologies, in the FLP theoretical framework in order to get not only an optimised solution
but also a manufacturable one. Research is ongoing on these aspects.
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Appendix A. Analytical expression of the laminate stiffness matrices and of
their gradient

Under the hypothesis of quasi-homogeneous laminate, i.e. B∗ = 0 and A∗ = D∗, the
expression of the homogenised membrane stiffness matrix in terms of the dimensionless
PPs reads:

A∗ := A∗0 +R0ρ0A
∗
1 +R1ρ1A

∗
2, (A.1)

where matrices A∗0, A∗1, A∗2 are defined as

A∗0 :=

 T0 + 2T1 −T0 + 2T1 0
T0 + 2T1 0

sym T0

 , A∗1 :=

 c4 −c4 s4
c4 −s4

sym −c4

 ,
A∗2 :=

 4c2 0 2s2
−4c2 2s2

sym 0

 ,
(A.2)

with

c2 = cos (πφ1) , s2 = sin (πφ1) , c4 = cos (2πφ1) , s4 = sin (2πφ1) . (A.3)

Similarly, matrix H∗ can be decomposed as:

H∗ := H∗0 +Rρ1H
∗
1, (A.4)

where matrices H∗0 and H∗1 are defined as:

H∗0 :=

[
T 0

sym T

]
, H∗1 :=

[
cH

∗
2 sH

∗
2

sym −cH∗
2

]
, (A.5)

with

cH
∗

2 = cos
(

2ΦH∗
)
, sH

∗
2 = sin

(
2ΦH∗

)
, ΦH∗

= Φ + Φ1 −
π

2
φ1. (A.6)

It is noteworthy that the quantities T0, T1, T , R, Φ1 and Φ, appearing in Eqs. (A.1)-(A.6),
are the PPs of the pre-preg tow listed in Table 1.
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Taking into account for the above expressions, the derivatives of matrices A∗ and H∗

read:

∂A∗

∂ρ0
= R0A

∗
1,

∂A∗

∂ρ1
= R1A

∗
2,

∂A∗

∂φ1
= 2πR0ρ0

 −s4 s4 c4
−s4 −c4

sym s4

+ πR1ρ1

 −4s2 0 2c2
4s2 2c2

sym 0

 , (A.7)

∂H∗

∂ρ0
= O,

∂H∗

∂ρ1
= RH∗1,

∂H∗

∂φ1
= −πRρ1

[
−sH∗

2 cH
∗

2

sym sH
∗

2

]
.

(A.8)

Moreover, inasmuch as the quasi-homogeneity hypothesis holds, the derivatives of matrix
B∗ are null, while those of matrix D∗ are equal to those of matrix A∗. Finally, the
derivative of the laminate stiffness matrix Klam of Eq. (1) with respect to the generic PP
ζ reads:

∂Klam

∂ζ
= diag

(
∂A∗

∂ζ
,
∂D∗

∂ζ
,
∂H∗

∂ζ

)
, ζ = ρ0, ρ1, φ1. (A.9)

Appendix B. Buckling factor gradient

The details of the proof of Proposition 3.1 are given here below.

Proof. Inasmuch as external forces do not depend upon the laminate dimensionless PPs,
the derivative of the right-hand side of Eq. (17) is

∂f0

∂ζ(i,j)
= 0. (B.1)

Consider, now, the following functional:

z := ψT
k (K + λkKσ)ψk + µT (Kd0 − f0) = 0, with : µ 6= 0. (B.2)

In the above equation, z is identically null because Eqs. (11) and (17) holds. Moreover,
µ is the arbitrarily defined adjoint vector. The derivative of Eq. (B.2) reads:

∂ψT
k

∂ζ(i,j)
(K + λkKσ)ψk +ψT

k (K + λkKσ)
∂ψk

∂ζ(i,j)
+

+ψT
k

∂ (K + λkKσ)

∂ζ(i,j)
ψk + µT

(
∂K

∂ζ(i,j)
d0 + K

∂d0

∂ζ(i,j)

)
= 0.

(B.3)

The first two terms of Eq. (B.3) are identically null due to Eq. (11); thus Eq. (B.3) simplifies
to:

ψT
k

∂K

∂ζ(i,j)
ψk+λkψ

T
k

∂Kσ

∂ζ(i,j)
ψk+

∂λk
∂ζ(i,j)

ψT
k Kσψk+µT

(
∂K

∂ζ(i,j)
d0 + K

∂d0

∂ζ(i,j)

)
= 0. (B.4)
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By multiplying both sides of Eq. (11) to ψT
k one obtains:

ψT
k Kσψk = −

ψT
k Kψk

λk
:= −wk

λk
. (B.5)

Therefore, by injecting the above formula in Eq. (B.4), the derivative of the k-th buckling
factor reads:

∂λk
∂ζ(i,j)

=
λk
wk

(
ψT

k

∂K

∂ζ(i,j)
ψk + λkψ

T
k

∂Kσ

∂ζ(i,j)
ψk + µT ∂K

∂ζ(i,j)
d0 + µTK

∂d0

∂ζ(i,j)

)
. (B.6)

As discussed in [8], the geometric stiffness matrix of the generic element can be expressed
as:

Kσe =
8∑
i=1

r0eiKi, (B.7)

where r0ei is the i-th component of the vector of generalised forces per unit length of
Eq. (2), for the generic element e, whilst Ki are matrices which depend only of the geometry
of the element. The expression of each Ki is given in Appendix C. The vector of generalised
forces per unit length r0e is obtained as solution of the system (17), i.e.

r0e = Klameε0e = KlameBeLed0. (B.8)

In Eq. (B.8), Klame is the laminate stiffness matrix of Eq. (2), computed for the generic
element, while ε0e is the vector of the generalised strains of the laminate middle plane. Be

is the product of the linear differential operator and the shape function matrix (see [42])
for element e, whilst Le is the connectivity matrix of element e. Therefore, the geometric
stiffness matrix of the structure Kσ can be expressed as:

Kσ =

Ne∑
e=1

LT
e KσeLe =

Ne∑
e=1

LT
e

8∑
i=1

r0eiKiLe. (B.9)

Consider, now, the term ψT
k

∂Kσ

∂ζ(i,j)
ψk in Eq. (B.6). By taking into account for Eq. (B.9),

it reads:

ψT
k

∂Kσ

∂ζ(i,j)
ψk =

Ne∑
e=1

ψT
k LT

e

8∑
i=1

∂r0ei
∂ζ(i,j)

KiLeψk. (B.10)

By introducing the following definition

sTek := {ψT
ekK1ψek, · · · ,ψT

ekK8ψek}, with : ψek = Leψk, (B.11)

Eq. (B.10) simplifies to:

ψT
k

∂Kσ

∂ζ(i,j)
ψk =

Ne∑
e=1

sTek
∂r0e

∂ζ(i,j)
. (B.12)
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By injecting Eq. (B.8) into the above formula and by taking into account for the local
support property of Eq. (16), one obtains:

ψT
k

∂Kσ

∂ζ(i,j)
ψk =

∑
e∈Sij

∂ζe

∂ζ(i,j)
sTek

∂Klame

∂ζe
ε0e + ηTk

∂d0

∂ζ(i,j)
, (B.13)

where
∂ζe

∂ζ(i,j)
represents the partial derivative of the generic dimensionless PP expressed

through a B-Spline scalar function, given in Eq. (15), whilst
∂Klame

∂ζe
is the partial deriva-

tive of the laminate stiffness matrix with respect to the dimensionless PPs evaluated at the
element centroid, whose expression is reported in Appendix A. In Eq. (B.13), the vector
ηk is defined as:

ηTk :=

Ne∑
e=1

sTekKlameBeLe. (B.14)

Consider, now, the term ψT
k

∂K

∂ζ(i,j)
ψk in Eq. (B.6). As discussed in [9], the partial deriva-

tive of the structure stiffness matrix reads:

∂K

∂ζ(i,j)
=
∑
e∈Sij

∂ζe

∂ζ(i,j)
LT
e

∫
Ae

BT
e

∂Klame

∂ζe
BedS Le, (B.15)

where Ae represents the area of the generic shell element. By injecting the above formula

into the product ψT
k

∂K

∂ζ(i,j)
ψk, one obtains:

ψT
k

∂K

∂ζ(i,j)
ψk =

∑
e∈Sij

∂ζe

∂ζ(i,j)
w∗ek, (B.16)

where w∗ek is defined as

w∗ek := ψT
k LT

e

∫
Ae

BT
e

∂Klame

∂ζe
BedS Leψk =

∫
Ae

εTek
∂Klame

∂ζe
εekdS. (B.17)

In the above expression, εek represents the vector of the generalised strains of element e
for the k-th mode shape. By injecting Eqs. (B.13) and (B.16) in Eq. (B.6), one obtains

∂λk
∂ζ(i,j)

=
λk
wk

∑
e∈Sij

∂ζe

∂ζ(i,j)

(
w∗ek + λks

T
ek

∂Klame

∂ζe
ε0e

)
+ µT ∂K

∂ζ(i,j)
d0 +

(
µTK + λkη

T
k

) ∂d0

∂ζ(i,j)

 .
(B.18)

The adjoint vector µ can be chosen in such a way that the term multiplying
∂d0

∂ζ(i,j)
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vanishes, i.e.

Kµ = −λkηk. (B.19)

Finally, Eq. (14) can be easily got by injecting Eq. (B.19) into Eq. (B.18). This last
passage concludes the proof. �

It is noteworthy that the assessment of the k-th buckling factor gradient requires the
resolution of three systems, i.e. Eq. (11), Eq. (17) and the adjoint system of Eq. (B.19).
Therefore, for each iteration of the optimisation process, the following algorithm is invoked
to carry out all the necessary steps for computing the gradient of λk.

Algorithm 2 Computation of the gradient of the k-th buckling factor.

1: Solve Eq. (17) and get d0, ε0e and r0e, ∀e.
2: Build Kσ according to Eq. (B.9).
3: Solve Eq. (11) and get λk, ψk, εek, ∀e and ∀k.
4: Calculate wk and w∗ek, ∀e and ∀k, according to Eqs. (B.5) and (B.17), respectively.
5: Calculate sek and ηk, ∀e and ∀k, from Eqs. (B.11) and (B.14), respectively.
6: Solve the adjoint system of Eq. (B.19); get µ.

7: Calculate
∂K

∂ζ(i,j)
from Eq. (B.15).

8: Calculate
∂λk
∂ζ(i,j)

from the first of Eq. (14).

Appendix C. Expression of the element geometric stiffness matrix

The analytical expression of matrices Ki, (i = 1, · · · , 8), appearing in Eq. (B.7), is
reported here below. In particular, the definition of the element geometric stiffness ma-
trix, given in Eq. (B.7), is not the classical one used in commercial FE software, like
ANSYS R© [49]. However, unlike the classical definition of the element geometric stiff-
ness matrix, Eq. (B.7) is really useful for determining a straightforward expression of the
buckling factor derivative.

In the following, the algorithm for retrieving the expression of each matrix Ki ∈ R24×24

for a shell element with four nodes and six DOFs per node (like the SHELL181 ANSYS R©

shell element), whose kinematics is described in the framework of the FSDT, is presented.
Of course, this algorithm must be executed off-line, i.e. before the optimisation process,
once the element type has been selected.
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Algorithm 3 Derivation of matrices Ki.

1: Build a FE model made of a single element.
2: Set arbitrary material properties for the element. The material properties should be

conveniently set in order to obtain a diagonal laminate stiffness matrix Klam (in order
to avoid coupling effect).

3: Impose an elementary strain field (ε0ei 6= 0, ε0ej = 0, j = 1, · · · , 8 and j 6= i) by using
suitable BCs at the four nodes.

4: Solve Eq. (17) and activate the pre-stress option (in this way the commercial FE code
builds Kσe according to the usual definition [49]).

5: Get r0ei and Kσe from the FE software.

6: Calculate Ki =
Kσe

r0ei
7: If i < 8 set i = i+ 1 and go to step 3, otherwise stop.

The expressions of Ki for a square SHELL181 element of side L are provided here
below. Each matrix Ki is a symmetric partitioned matrix, composed of symmetric blocks,
containing several null components. Therefore, only non-null terms are provided in the
following:

K1 =
1

8



[
Â1 B̂1

B̂T
1 Ĉ1

] [
−Â1 −B̂1

−B̂T
1 −Ĉ1

]
[
−Â1 −B̂1

−B̂T
1 −Ĉ1

] [
Â1 B̂1

B̂T
1 Ĉ1

]
 ,

with, Â1 = ÂT
1 , Ĉ1 = ĈT

1 , and

Â
(1,1)
1 = −3, Â

(1,2)
1 = −1, Â

(2,2)
1 = 1, Â

(3,3)
1 = 2,

B̂
(1,1)
1 = 1, B̂

(1,2)
1 = 1, B̂

(2,1)
1 = −1, B̂

(2,2)
1 = −1, B̂

(3,3)
1 = −2,

Ĉ
(1,1)
1 = −3, Ĉ

(1,2)
1 = 1, Ĉ

(2,2)
1 = 1, Ĉ

(3,3)
1 = 2,

(C.1)

K2 =
1
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[
Â2 B̂2

B̂T
2 Ĉ2

] [
−Â2 −B̂2

−B̂T
2 −Ĉ2

]
[
−Â2 −B̂2

−B̂T
2 −Ĉ2

] [
Â2 B̂2

B̂T
2 Ĉ2

]
 ,

with, Â2 = ÂT
2 , Ĉ2 = ĈT

2 , and

Â
(1,1)
2 = 1, Â

(1,2)
2 = −1, Â

(2,2)
2 = −3, Â

(3,3)
2 = 2,

B̂
(1,1)
2 = 1, B̂

(1,2)
2 = 1, B̂

(2,1)
2 = −1, B̂

(2,2)
2 = −1, B̂

(3,3)
2 = 2,

Ĉ
(1,1)
2 = 1, Ĉ

(1,2)
2 = 1, Ĉ

(2,2)
2 = −3, Ĉ

(3,3)
2 = 2,

(C.2)
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K3 =
1

2



[
Â3 O

sym Ĉ3

] [
−Â3 O

sym −Ĉ3

]
[
−Â3 O

sym −Ĉ3

] [
Â3 O

sym Ĉ3

]
 ,

with, Â3 = ÂT
3 , Ĉ3 = ĈT

3 , and

Â
(1,2)
3 = −1, Â

(3,3)
3 = 1,

Ĉ
(1,2)
3 = −1, Ĉ

(3,3)
3 = −1,

(C.3)

K4 = K5 = K6 = O, (C.4)

K7 =
1

72



 −24K̂7 − 12Â7 + 4Ĉ7 24K̂7 + 12B̂7 + 2Ĉ7

24K̂7 − 12B̂7 + 2Ĉ7 −24K̂7 + 12Â7 + 4Ĉ7

  12K̂7 + 6B̂7 + Ĉ7 −12K̂7 − 6Â7 + 2Ĉ7

−12K̂7 + 6Â7 + 2Ĉ7 12K̂7 − 6B̂7 + Ĉ7


 12K̂7 − 6B̂7 + Ĉ7 −12K̂7 + 6Â7 + 2Ĉ7

−12K̂7 − 6Â7 + 2Ĉ7 12K̂7 + 6B̂7 + Ĉ7

  −24K̂7 + 12Â7 + 4Ĉ7 24K̂7 − 12B̂7 + 2Ĉ7

24K̂7 + 12B̂7 + 2Ĉ7 −24K̂7 − 12Â7 + 4Ĉ7




,

with, K̂7 = K̂T
7 , Â7 = ÂT

7 , B̂7 = −B̂T
7 , Ĉ7 = ĈT

7 , and

K̂
(1,3)
7 = 1, Â

(1,5)
7 = L, B̂

(1,5)
7 = −B̂(5,1)

7 = −L, Ĉ
(4,6)
7 = L2,

(C.5)

K8 =
1

72


−12K̂8 + 6Â8 + 2Ĉ8

[
2I I

I 2I

]
12K̂8 + 6B̂8 + Ĉ8

[
I 2I

2I I

]

12K̂8 − 6B̂8 + Ĉ8

[
I 2I

2I I

]
−12K̂8 − 6Â8 + 2Ĉ8

[
2I I

I 2I

]
 ,

with, K̂8 = K̂T
8 , Â8 = ÂT

8 , B̂8 = −B̂T
8 , Ĉ8 = ĈT

8 , and

K̂
(2,3)
8 = 1, Â

(2,4)
8 = L, B̂

(2,4)
8 = −B̂

(4,2)
8 = L, Ĉ

(5,6)
8 = L2,

(C.6)

Of course, the analytical form of matrices Ki can be determined in the most general
case of rectangular (or pseudo-rectangular) elements. These expressions are not reported
here for the sake of brevity.
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[7] S. Setoodeh, M. M. Abdalla, Z. Gürdal, Design of variable–stiffness laminates using
lamination parameters, Composites Part B: Engineering 37 (4-5) (2006) 301–309.

[8] S. Setoodeh, M. M. Abdalla, S. T. IJsselmuiden, Z. Gürdal, Design of variable-stiffness
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• The problem of maximising the buckling factor of variable stiffness composites (VSCs) subject 

to feasibility and geometrical constraints is addressed in this work 

• The problem is formulated and solved in the framework of the multi-scale two-level 

optimisation strategy (MS2LOS) 

• The approach is based on the polar method to describe the macroscopic response of the VSC 

• The polar parameters (PPs) of the VSC are described by means of B-Spline surfaces in the 

framework of the first-order shear deformation theory 

• The analytical expression of the buckling factor gradient is derived in order to speed-up the 

optimisation process 
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