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Abstract

Background and aims: Through an exploratory proteomic approach based on typical 

hepatocellular adenomas (HCA), we previously identified a new diagnostic biomarker for a 

distinctive subtype of HCA with high risk of bleeding, already validated on a multicenter cohort. 

We hypothesized that the whole protein expression deregulation profile could deliver much more 

informative data for tumors characterization. Therefore, we pursued our analysis with the 

characterization of HCAs proteomic profiles, evaluating their correspondence with the established 

genotype/phenotype classification and assessing whether they could provide added diagnosis 

and prognosis values.

Approach & Results :  From a collection of 260 cases, we selected 52 typical cases of all 

different subgroups on which we built the first HCA proteomics database. Combining laser 

microdissection and mass spectrometry based proteomic analysis, we compared the relative 

protein abundances between tumoral (T) and non-tumoral (NT) liver tissues from each patient 

and we defined specific proteomic profile of each HCA sub-groups. Next, we built a matching 

algorithm comparing proteomic profile extracted from a patient with our reference HCA database.

Proteomic profiles allowed HCA classification and made diagnosis possible, even for complexes 

cases with immunohistological or genomic analysis that did not lead to a formal conclusion. 

Despite a well-established pathomolecular classification, clinical practices have not substantially 

changed and HCA management link to the assessment of the malignant transformation risk A
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remains delicate for many surgeons. That’s why we also identified and validated a proteomic 

profile that directly evaluate malignant transformation risk regardless of HCA subtype.

Conclusions: This pioneering work proposes a proteomic-based machine learning tool, 

operational on fixed biopsies, that can improve diagnosis and prognosis and therefore patient 

management for HCA.

Introduction
Pathology diagnosis and management, especially for a tumor, require different clinical expertise. 

Today, medical imaging has made enormous progress and provides very effective results in 

terms of diagnosis and tumor prognosis1,2. However, one of the major challenges often remains to 

determine whether a tumor is malignant or not. If it is benign, it’s important to know whether it still 

presents clinical risks, including malignant transformation into cancer. If a cancer is identified, the 

maximum of biological information must be obtained in order to propose the best possible patient 

management. Biopsy is an invasive procedure that is generally the first unavoidable step required 

to establish the diagnosis. The histological analysis of biopsies is an essential tool for diagnosis 

complementary to medical imaging. Pathologists can analyze the morphological features of 

tissues and visualize biomarker expression by immunohistochemistry (IHC) to determine the 

nature of tumor. Today, various biomarkers are currently available to support diagnosis and 

prognosis, and theranostics and pathologists use serial immunostainings to investigate and 

evaluate the abundance of an increasing number of biomarkers. Other molecular approaches, 

such as PCR (Polymerase Chain Reaction) and FISH (Fluorescence in situ hybridization), are 

routinely performed on human samples. Recent technological advances now make it possible to 

carry out very advanced genomic (next generation sequencing) and transcriptomic (RNA 

sequencing) analyses from frozen and even formalin-fixed and paraffin-embedded (FFPE) 

tissues. Nevertheless, the latter are not completely suited to such analyses given the degradation 

of genetic material. These molecular analyses can be used for mutation analysis or for detecting 

the presence of certain transcripts3 in routine care samples. However, in addition to the IHC 

analyses performed, they often exhaust the biological sample. Downstream of translation, 

proteomic analysis allows the extraction of a considerable amount of information on the functional 

status of a disease, directly identifying and quantifying potential biomarker proteins4 and 

pharmacological targets usable in clinical practice5. However, to date proteomics is not effective 

in diagnosing benign versus malignant tumors.

In-depth analysis of FFPE tissue proteomes is a technique now commonly used in translational 

research6,7. Experts in histoproteomics agree that proteomic analysis will integrate the surgical 

pathologist field in the near future6,8,9. Mass spectrometry already meets some specific A
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requirements for biomarker identification10,11. We have already combined FFPE tissue proteomics 

with laser microdissection to enable the precise selection of a tissue area of interest, and we have 

optimized this technique for compatibility with very small amounts of material, such as needle 

microbiopsies4,7. Indeed, a 1 mm2 area of a 5 µm thick FFPE section is sufficient to compare 

deregulations in protein expression of 1000 proteins in pathological versus healthy tissues. 

Previously, using this method in an exploratory approach based on typical cases of HCA, we 

identified Argininosuccinate Synthase (ASS1) as diagnostic biomarker for a distinctive subtype of 

hepatocellular adenomas with high bleeding risk7, which we then validated on an enlarged 

multicenter cohort4. We also showed that when in doubt of IHC staining interpretation, especially 

on small liver biopsies, HCA biomarker quantification by mass spectrometry could in fact be a 

valuable complement of information in diagnosis support4. Beyond a single biomarker, we 

hypothesized that the whole profile of protein expression deregulation could be diagnostic in a 

much more complete way. In this study, our goal was to develop proteomic profiling to improve 

diagnosis and therefore patient management. We pursued our analysis of HCA in order to 

characterize their overall proteomic profiles, evaluate their correspondence with the established 

molecular classification and assess whether they could provide added diagnostic value. HCA 

mainly affects women in their middle ages and men to a smaller extent. The main risk factor for 

HCA is hormonal exposure to estrogens or androgens, but metabolic, vascular, glycogen storage 

diseases, and some other rare genetic diseases have also been associated with the development 

of HCA12,13. Bleeding14 and malignant transformation into hepatocellular carcinoma (HCC)15 are 

the two major complications, both strongly related to the size of the adenoma and its 

pathomolecular subtype. A resection is usually recommended when the HCA reaches 5 cm16 and 

when the β-Catenin pathway is activated. In order to specify the cases with significant clinical risk, 

HCA have been classified into four groups based on the identification of mutations and on 

corresponding clinical, histological, and immunohistological characteristics17,18,15,19,20: (1) H-HCA 

with inactivating mutations of HNF1A. L-FABP, whose expression is controlled by HNF1A, is not 

immunodetected in H-HCA tumor cells19; (2) Inflammatory HCAs (IHCA) exhibit various mutations 

(IL6ST, FRK, STAT3, JAK1, GNAS) or chromosome alterations that activate the JAK/STAT 

signaling pathway18,21. Neoplastic hepatocytes show strong and diffuse immunoreactivity for the 

acute phase inflammatory proteins SAA and C-reactive protein (CRP)22,23; (3) b-HCA with 

activating mutations of the CTNNB1 gene encoding β-catenin (exon 3 at various hot spots, 

including S45 or exon 7/8)24,25. The GLUL gene, a β-catenin target, encoding Glutamine 

Synthetase (GS) is strongly detected in non-S45 exon 3 b-HCA tumors15,24. B-HCA exon 3 non-

S45 tumors are at high risk of malignant transformation into HCC, particularly if they are 

associated with mutations in the Telomerase Reverse Transcriptase (TERT) promoter26. In A
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addition, half of β-catenin-mutated HCAs also exhibit inflammatory features (b-IHCA)18,25; (4) The 

last group corresponds to sh-HCA, defined by microdeletions fusing the INHBE promotor with the 

GLI gene. Sh-HCA is identified by the overexpression of ASS1, and has a high hemorrhage risk 

which is a major clinical issue4,7,18.

The genotype/phenotype classification of HCA is currently considered as almost complete from a 

scientific point of view. However, the mechanisms underlying malignant transformation and 

bleeding remain unknown. In addition, the daily management of patients with HCA remains a 

challenge for many surgeons and hepatologists. The first challenge is the differentiation of HCA 

from other benign liver “tumors”. These other tumors are characterized as hyperplastic in nature: 

Focal Nodular Hyperplasia (FNH). For some cases, differential diagnosis between HCA and FNH 

remains challenging by imaging and biopsy analysis, even for liver pathologist experts27. This is 

notably because GS is also upregulated in FNH. As FNH does not hemorrhage or undergo 

malignant transformation, resection is not indicated and monitoring is not mandatory. After HCA 

diagnosis, the second challenge lies with the determination of the risk of transformation into HCC 

and hemorrhage in order to propose resection when appropriate (transplantation in rare cases), 

taking into account the risk-benefit ratio associated with surgery.

With this study we prove that proteomic-based machine learning analysis is operational in routine 

clinical practice and can improve diagnosis and therefore patient management for HCA. This type 

of approach could be a breakthrough that is transposable to other pathologies.

Material and Methods

Patients

All patients gave informed consent and this study was approved by our local committee “Direction 

de la Recherche Clinique et de l’Innovation” of Bordeaux University Hospital, Bordeaux Liver 

Biobank BB-0033-00036. 

HCA database construction
The 260 resected HCA of our cohort (227 female/33 males), included for study between 1984 and 

May 2020, were routinely classified by histopathological analysis and IHC. Seventy one percent 

(185/260 cases) of cases were also analyzed by molecular biology primarily on resected 

specimen to identify genetic mutations. Clinical data and patient management history were 

collected for all cases.

We selected 52 samples that were surgical resections of HCA and representative of all the 

different subtypes as defined by the 2019 WHO classification20 (6 H-HCA, 5 IHCA, 16 b-HCA (4 A
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b-HCA exon 3 non S45, 5 b-HCA exon 3 S45, 5 b-HCA exon 7/8 plus two cases of b-HCA (1 

exon 3 S45 and 1 exon 7/8), sent for second opinion, were added in this collection), 16 b-IHCA (6 

b-IHCA exon 3 non S45, 4 b-IHCA exon 3 S45, 6 b-IHCA exon 7/8), 9 sh-HCA). The diagnosis of 

HCA and HCA subtype was considered as characteristic by the pathologist according to 

morphology and immunostainings, and results were always confirmed by genotyping. Main 

clinical data (age, sex, BMI, mode of discovery) were summarized in Supplemental Table 1. Five 

resected cases of FNH were also included as controls (Supplemental Table 1). 

Selection of cases for validation of proteomic profiles
To validate the diagnostic applicability of the proteomic profiles we identified, we selected a panel 

of 11 cases of biopsies and 1 resection for sample classification (Supplemental Table 2) and 4 

resections for malignancy status (Supplemental Table 3).

Distance calculations and profile matching
Analyzes were performed using the free R software. Hierarchical clusterings were represented 

via the R package and its "hclust" function. The "ward.D" method was used as the agglomeration 

method and the Euclidean distance was used for the distance calculation. For Principal 

Component Analysis (PCA), missing values were imputed using the k-Nearest Neighbor (KNN) 

imputation method from the VIM package. PCA data was calculated and formatted by the PCA 

and fviz_pca_ind functions in the factoextra and FactoMineR packages.

Machine Learning is a method of automatic learning by the computer through training with sets of 

data, in order to identify patterns, i.e. recurring patterns, in the data set. In our case, the training 

data sets correspond to the proteomic profiles for each of the HCA groups (Supplemental Figure 
1a). The lists of proteins constituting the reference proteomic profiles of FNH and of each HCA 

subtype has been detailed in the Supplemental Table 4.

The second step of the process is to test our training algorithm with several methods to calculate 

the similarities between the profile of a biopsy and the profiles of each HCA group: (1) a Chi-

square test to compare upregulated proteins (T/NT ratio≥1.5), down-regulated proteins (T/NT 

ratio≤0.67), and non-regulated proteins (T/NT ratio≥0.67 and ≤1.5) between the different 

reference proteomic profiles; (2) a calculation of Euclidean distance between each group from the 

PCA; (3) a Random Forest analysis on PCA-reduced datasets (Supplemental Figure 1b). The 

diagnostic tool learns and refines the reference proteomic profiles as the database is 

incremented.

Euclidean distances were calculated using the dist function and Chi-square test of independence 

using the chisq.test function (both within the R package). The Random Forests were generated A
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using the randomForest function in the randomForest package. The optimal parameters were 

calculated by the train function in the caret package. The Chi-square scoring method was not 

applicable for the malignant profile consisting of ten proteins.

Proteomics analysis mass spectrometry data processing, integrative biological analyses, and 

graphical representations were performed as described in Supplemental Materials and 
Methods.
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Results

Creation of a reference HCA proteomic database 
In order to construct a robust database from our collection of 260 cases, we selected 52 HCA 

surgical resection cases that were representative of all HCA subtypes and FNH. The diagnosis of 

these resections was considered typical by the pathologist and confirmed by genetic analysis 

(Supplemental Table 1).

We compared the relative protein abundances between tumoral (T) and non-tumoral (NT) liver 

tissues from each patient. To begin, we confirmed the specific and expected deregulation of GS, 

CRP/SAA, ASS1, and LFABP markers in the corresponding neoplasms: b-HCA/b-IHCA exon 3 

non S45, IHCA/b-IHCA, sh-HCA and H-HCA respectively (Figure 1a), validating the robustness 

of our database.

We assumed that the protein signature for each HCA subtype would reflect the underlying 

mutation(s) that defined them. Therefore, we examined the proteins functionally associated to the 

underlying mutated genes defining each HCA subtype (HNF1A, CTNNB1, JAK/STAT signaling 

pathway). Surprisingly, with exception of the validated target proteins currently used as 

immunomarkers (L-FABP, GS, CRP/SAA), we did not observe major deregulation of the other 

proteins frequently found associated with each mutation, as illustrated with ALB28, OAT29, and 

MIF30 (Figure 1b, c and d). In the same way, the proteins functionally associated with the GLI1 

gene were no more modified in sh-HCA than in other subtypes as illustrated with MMP931 

(Supplemental Figure 2). In addition, we explored the previously described typical/specific 

pathways for each HCA group from a transcriptomic approach18. We found all these pathways 

significantly deregulated in all HCA subtypes by means of unsupervised analysis (Figure 1e). We 

noted within these results that proteins associated with HCC development were significantly 

deregulated in all HCA subtypes, suggesting thus that all subtypes can potentially be 

transformed. 

We then investigated significant differences between HCA and FNH (Figure 2a). The proteomic 

profiles of HCA and FNH were quite distinct (Figure 2a). Then, we tested whether it was possible 

to differentiate the different HCA subtype proteomic profiles. We first separated the most 

dissimilar profiles: H-HCA and sh-HCA (Figure 2b). Interestingly, the inflammatory protein 

expression profile was a strong signature shared by inflammatory HCA (IHCA and b-IHCA) which 

were distinct from the other HCA (Figure 2c). The proteomic profile of b-HCA was not well 

distinguished from the other HCA by Principal Component Analysis (PCA) (Figure 2d), even 

following hierarchical clustering of b-HCA (Supplemental Figure 3). Yet, when IHCA and b-IHCA 

were specifically compared, their proteomic profiles were markedly different (Figure 2e). A
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Moreover, their protein expression profiles were clearly grouped according to the type of CTNNB1 

mutation (exon 3 non S45, exon 3 S45, or exon 7/8) for both b-HCA and b-IHCA (Figure 2f). 
These results demonstrated the excellent correlation between the proteomic profiles and the 

genotype/phenotype classification and revealed the existence of both dominant (sh-HCA, 

inflammatory H-HCA) and less obvious profiles (CTNNB1 mutations). 

We then examined the biological functions that were associated with each specific profile. Gene 

Set Enrichment Analysis (GSEA) revealed a major difference between FNH and HCA. This was 

the presence of mitochondrial disorders in HCA, including disruptions in amino acid metabolism 

that were not significant in FNH (Figure 2g). We found that most of the functional deregulations 

were shared by the different HCA subtypes (Figure 2g). As expected, the most significantly 

deregulated pathway for H-HCA was the fatty acid beta-oxidation pathway related to steatosis, 

which is characteristically observed in these tumors but was also found in inflammatory HCA. 

These data may be consistent with the fact that 23/80 cases of IHCA were steatotic in our 

collection. H-HCAs also showed strong deregulations in amino acid metabolism and xenobiotic 

metabolism, a significant deregulation shared with sh-HCA, for which we also found the 

previously described urea cycle deregulation7.

The most significantly enriched pathways for inflammatory HCA (IHCA and b-IHCA) were, as 

anticipated, related to activation of the inflammatory response (FXR/RXR activation, acute-phase 

response signaling). Stress-related signals regulating mRNA translation associated with Eif2 

signaling pathways were also significantly enriched in inflammatory HCA, similarly to the sh-HCA-

specific proteomic profile (Figure 2g). The b-HCA subtype could not be distinguished by the 

enrichment of a specific pathway, including even the β-catenin pathway (Figure 2g).

This integrative analysis revealed that genetic mutations did not translate into a strictly clear 

functional classification at the protein level.

A machine learning tool for HCA and FNH diagnosis
Given our proteomic data enabled us to distinguish each different HCA subtype, we decided to 

set up a diagnostic tool. The first important step was to define whether the sample corresponded 

to a HCA or an FNH, and not another type of well-differentiated liver tumor. To examine this, we 

analyzed a low-grade dysplastic nodule in a cirrhotic liver and a well-differentiated HCC. For both 

cases, the similarity scores with HCA or FNH were very low, ruling out the possibility of erroneous 

attribution and indicating that tumors were neither HCA nor FNH (Supplemental Table 2). 

Next, we built an algorithm that integrated first the main HCA groups identified (sh-HCA, H-HCA, 

Inflammatory (IHCA and b-IHCA) and then the secondary proteomic profiles (b-HCA according to 

the different CTNNB1 mutations) (Figure 3a). The principle being thus to sequentially compare A
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the HCA subtype reference proteomic profiles with new cases in order to diagnose their HCA 

subtype (Figure 3b, c, and d). We used three approaches to calculate the similarities: (1) a Chi-

square test to compare T/NT deregulations with the different reference proteomic profiles; (2) a 

calculation of Euclidean distance between each group; (3) a Random Forest analysis on PCA-

reduced datasets. We applied them to a panel of 11 biopsies and 1 resection of FNH and HCA 

(any subtype) to test the advantages and limitations of each analysis (Supplemental Table 2). 

Three out of the 12 cases were typical b-HCA exon 3 non S45, sh-HCA and H-HCA (R_01, 

BP_01, and BP_02, respectively) and did not present any difficulty in classification 

(Supplemental Table 2, Figure 3b, c, d and e). The other nine cases consisted of a 

representative panel of biopsies diagnosed in our tertiary center (Figure 3e, Supplemental 
Table 2). HCA biomarkers were noncontributory to the subtyping of any of these cases 

(Supplemental Table 2). However, the proteomic profiles were consistent with the 

clinicopathological interpretation for three cases (BP_03, _04 and, _05). For two other cases 

(BP_06 and _07), Random Forest gave the correct diagnosis, one another test matched with the 

pathological diagnosis and the last one test gave a different result. These cases were less typical 

and did not perfectly match with the HCA in the database. Case BP_08 was a b-HCA exon 7/8 

subtype subsequently identified by genetic analysis on resection. Random Forest and Euclidean 

distance firmly recognized it as a b-HCA exon 7/8 subtype, but Chi-square testing grouped it with 

the very similar b-HCA exon 3 S45 group. Finally, we analysed three biopsies without subsequent 

resection (BP_09, _10, and _11), subtyped as an IHCA or for which the pathologist could not 

conclude between a IHCA and a b-IHCA (exon 7/8 or exon 3 S45). These cases were found to 

group with b-IHCA exon 7/8 or exon 3 S45 profiles (Figure 3e, Supplemental Table 2).

In conclusion, these results demonstrate that proteomic profile matching can differentiate HCA 

from FNH and assign the molecular HCA subtype. In case of difficulties, in particular with non-

contributory HCA biomarkers (Supplemental Figure 4), proteomic profiling can bring additional 

clues that support diagnosis.

Identification of the proteomic profile of malignancy for transformed HCA
Despite a well-established pathomolecular classification20, clinical practices have not substantially 

changed and HCA management remains delicate for many surgeons. To illustrate it in our center, 

the molecular classification has not modified HCA management according to subgroup type. This 

is despite a slight tendency to perform more preoperative biopsies (Supplemental Figure 5). 

As an indication, we reviewed HCA management in our center (Bordeaux, France) from the initial 

reports. Twenty-seven percent (70/260 cases) of cases had been biopsied prior to surgery 

(Supplemental Figure 6a). Among these 70 biopsies, 43 (61.4%) were contributory to the A
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diagnosis of HCA (Supplemental Figure 6b). When biopsy interpretation was not formal, it was 

either due to technical noncontributory factors, such as lack of interpretable material (9 cases), or 

to the impossibility of making a standard differential diagnosis with well-differentiated HCC (15 

cases) or FNH (3 cases) using standard pathological tools (Supplemental Figure 6b). 

These data, based on our experience, revealed that even for a well-characterized tumor such as 

HCA and expert pathologists in the field, an additional diagnostic support tool could have been 

useful, in particular to provide additional information on benign/malignant status.

Moreover, malignant transformation is a major complication of HCA modifying surgical 

management and we wanted to determine if our proteomic profile-based tool could help to 

address this issue.

The HCA cases in our collection can transformed into HCC regardless of the HCA subtype. 

(Figure 4a). Even if b-HCA exon 3 non S45 subtype showed the highest risk of malignant 

transformation, a non-negligible proportion of cases from other subgroups could be concerned 

(up to 13.6% for sh-HCA) (Figure 4a). It is noteworthy that the interpretation of histological 

features of malignancy can be challenging, depends on the expertise of the pathologist, and can 

be observer-dependent.

In half of these cases we noticed a reservation on the pathologist’s behalf. This was described by 

the term "borderline" and defined as a neoplasm that was no longer characteristic of HCA, while 

at the same time presenting atypical foci lacking some characteristics of definite HCC (Figure 4a 
and b). In addition to the clinical and imaging context, the assertion of HCC diagnosis in histology 

is based on a set of features that include morphological criteria, such as cytonuclear atypia 

(Figure 4c and d), but also immunohistochemical positivity (for example Glypican 3 (GPC3) and 

Heat Shock Protein 70 (HSP70))32, and TERT promotor mutation33. These criteria are not 

completely specific and sensitive. Therefore, it appeared pragmatic to identify a proteomic 

signature of malignancy in order to improve patient management.

Identification of the HCC developed on HCA malignancy profile
To identify proteins related to malignancy in HCA, we selected six cases of surgical resection that 

presented definite HCC developed on HCA (we refer to this as “HCC/HCA”) from the different 

HCA subtypes (2 b-HCA exon 3 non S45, 1 b-IHCA exon 3 S45, 1 UHCA, 2 sh-HCA) 

(Supplemental Table 3). As previously, we compared the T/NT ratios of six HCA and  their 

corresponding HCC/HCA and isolated a significant proteomic profile consisting of ten proteins. 

These proteins allowed the perfect separation of malignant and benign tissues, both by 

hierarchical clustering (Figure 5a) and PCA (Figure 5b). Moreover, the protein expression 

deregulations within each group were homogeneous (Figure 5c). A
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In this malignant proteomic profile, half of the extracted functional annotations of the malignancy 

protein profiles were associated with immune response and immune-related cell activation (MPO, 

PRDX2, LCP1, PPIA, SERPINA1, PLD3), Interleukin-12 signaling (PPIA, LCP1), and neutrophil 

degranulation (PPIA, SERPINA1, MPO) (Figure 5d). Among these ten proteins, none were part 

of the known β-catenin functional environment. 

We then wanted to validate this proteomic profile of HCA transformation with a set of new cases. 

The Chi-square scoring method was not applicable for a profile consisting of ten proteins. With 

Euclidean distance and Random Forest, we first tested our ten-protein proteomic profile of 

transformation on one positive control of HCC developed on HCA and 7 cases of benign HCA 

from our database.

Validation with a control HCC developed on HCA 
Case 167 (Supplemental Table 3) was a HCC developed on HCA without any histological 

ambiguity and confirmed by molecular analysis. The proteomic profile was closer to the 

transformed cases, confirmed by the Random Forest test and the smaller Euclidean distance for 

the HCC group (5.18 for HCA vs 5.43 for HCC) (Supplemental Table 3, Figure 6b and c). Our 

proteomic malignant profile allowed confirmation of the HCC diagnosis.

Validation with benign controls
Next, we selected seven cases of HCA (cases 105, 116, 121, 135, 119, 83, 218) that were not 

questionable regarding their diagnosis of benign tumors by histology (Figure 6b and c and 
Supplemental Table 1). The proteomic profiles of all these tumors confirmed the benign nature 

of all of these cases (Figure 6b and c).

Cases with doubt on the diagnosis of malignancy
We then selected cases with a management history raising doubts concerning the diagnosis of 

malignancy. The first case (178) was suspected to be malignant at the time of biopsy analysis. 

The conclusive histological analysis of the surgical resection was clear on the benign nature of 

this HCA, which was later identified as a sh-HCA. In order to reproduce a clinical context, we 

analyzed the proteome of the preoperative biopsy that had initially raised the doubt. 

Unambiguously, the proteomic profile was closer benign HCA, confirmed by Random Forest 

testing and the smallest Euclidean distance for HCA (2.99 for HCA vs 5.01 for HCC) 

(Supplemental Table 3, Figure 6b and c).A
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Next, we selected a “borderline” case. Case 217 manifested intratumoral bleeding by imaging in a 

growing and unclassified HCA. The presence of an intratumoral hematoma made interpretation 

difficult and it was challenging to distinguish between HCA and HCC due to the presence of 

cytological atypias and abnormal sinusoids (CD34-positive and reduced reticulin staining). 

Molecular biology analysis found a posteriori diagnosis was a sh-HCA. The proteomic profile was 

very clearly associated with the HCC group, as confirmed by the Random Forest test. However, 

the Euclidean distance calculation did not allow a decision between the two groups (4.55 for HCA 

vs 4.65 for HCC). For this specific case, proteomics provided additional quantitative features that 

allowed the positioning of this neoplasm on a progressive scale between HCA and HCC 

(Supplemental Table 3, Figure 6a, b and c). 

The last case (case 280, Supplemental Table 3, Figure 6a, b and c) was a female initially 

managed remotely for a benign 10 cm liver tumor. Histological analysis of the resection specimen 

was a challenge for the pathologists: unclassifiable HCA combined with diffuse cytological atypia 

and an abnormal reticulin network. This thus raised the diagnosis of probable HCC, but without 

HCC-favoring IHC markers (GPC3- and MIB1-negative) and a negative molecular analysis 

(TERT-negative). The proteomic profile clearly allowed the classification of this case with the 

HCC developed on HCA group (4.27 for HCA vs 4.99 for HCC).

In view of these results on this validation patient set, the proteomic malignant profile was effective 

for the determination of HCA engaged in a process of transformation. 

Within this study we offer a complete tool for HCA diagnosis that can determine HCA subtype and 

a score reflecting its level of malignant transformation (Supplemental Figure 7).

Discussion
Proteomic analysis is the next omic step following on from genomics and transcriptomics to 

improve patient management. Until now, proteomic profiling of FFPE tissue had never been used 

in clinical practice, especially in the tumor pathology field. 

We have carried out pioneering work using proteomic profile matching for diagnosis from FFPE 

tissues. The main principle of our tool is based on the comparison of a proteomic profile extracted 

from a biopsy or surgical specimen with a reference database composed of proteomic profiles 

from completely characterized patients. We have developed and adapted the analytical process 

for operational routine analysis. We use a small amount of tissue corresponding to 1 mm² on 3x5 

µm section cuts, thus not depleting the sample and it can be reused. A complete analysis can be 

achieved within a week and so it remains compatible with the deadlines imposed by clinical 

practice. Moreover, the proteomic data generated remains a resource that can be re-exploited for 

further applications (prognosis, theranostics).A
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The main advantage of working on a profile of protein deregulation (tumoral vs non-tumoral) is 

the ability to directly access the tumor identity by reducing inter-individual variation, making the 

analysis efficient despite small patient collections. This also allows the association of profiles with 

functional biological pathways, the control of biological relevance, and identification of new 

targets. The additional advantage of working on a profile of protein expression deregulation 

versus spectral intensity profiles is that the construction of the reference database is not 

dependent on mass spectrometer type. Indeed, our method can be implemented on sites with 

different equipment, contrary to radiomics that encounter major obstacles concerning the 

heterogeneity between devices used for image acquisition34.

In this study, we established our proof of concept on HCA. The molecular classification of HCA 

has been subject to many updates over the last ten years and is now considered almost 

established18,35. It must be noticed that while the enrichment of the molecular classification has 

led to a better understanding of HCA physiopathology, it has not modified the management of 

patients. We identified two main issues: (1) classification based on biopsies and (2) identification 

of the malignancy status. Indeed, for several reasons the diagnosis on biopsies using classical 

approaches is not always evident. Moreover, the fact that potentially all HCA can transform36 can 

induce doubt at the time of diagnosis, especially for a pathologist who is not specialized in benign 

liver tumors. A suspicion of HCC significantly modifies the medical and surgical treatment and 

follow-up. Indeed, the surgical strategy is not thought-out in the same way; a simple enucleation 

of the tumor is sufficient when dealing with HCA. On the contrary, the surgical management of 

HCC consists, at best, in an anatomical resection (removing the corresponding portal branch), 

and when this it is not possible, the surgeon must strive to have an optimal margin of 2 cm. 

For all these reasons, we first generated an HCA database for HCA subtype proteomic 

classification. Our study revealed such a significant disparity between genomic/transcriptomic 

data and protein expression profiles of HCAs, especially for the functional environment of β-

catenin which is not particularly activated in b-HCA exon3 nonS45. Proteins constitute the 

functional elements whose expression depends not only on the mutation status of a tumor but 

also by many epigenetic parameters. This disparity can also be explained by the post-

transcriptional regulations that classically lead to observe an overlap of barely half between 

transcriptome and proteome37. As an illustration, a positive glutamine synthetase rim has been 

reported with less or no expression in the tumor center  in b-HCA S45 and exon7/838. Secondly, 

we identified a protein profile that directly diagnoses malignant transformation regardless of HCA 

subtype. This profile was correlated with immune activation in response to cell degeneration, 

making sense for tumors transforming or differentiated tumors with active anti-tumor 

immunity39,40. It is likely that the β-catenin pathway did not emerge in our malignancy signature A
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given it was identified across all HCA subtypes. This validated signature allows us to define the 

HCA transformation status. 

Machine learning is an emerging and promising disciplinary field for clinical data interpretation41. 

In our study, we tested different statistical analyses for calculations of similarity (difference score 

calculation: Chi-square test on simplified data, Euclidean distance calculation after PCA, Random 

Forest on data reduced by PCA). Without preconceived ideas, we wanted to use some of the 

analyses to provide evidence on the similarities of the proteomic profiles we were testing with 

respect to the reference groups. Although Random Forest was proven the most reliable, these 

methods were all successful. To interpret this, if the three mathematical approaches lead to the 

same conclusion, it is evidence of robustness. On the other hand, if they conflict with respect to 

atypical cases, it is necessary to be more cautious and consider the analyzes as additional 

features in diagnosis. Ongoing case addition to our HCA database will make the diagnosis more 

and more precise.

Thereafter, our methodology could be implemented to answer other critical clinical questions in 

the liver field, such as well-differentiated HCC for which differential diagnosis can be confusing in 

a common clinical context42. This could define whether the malignancy signature we identified is 

strictly related to HCA or is common to other more frequent etiologies and backgrounds.

From a broader point of view, the clinical recommendations for performing liver biopsies on liver 

tumors and peritumoral tissues are not systematic and must follow a logical benefit over risk 

assessment43. Indeed, this invasive procedure is not insignificant and can lead to complications, 

sometimes serious, such as hemorrhage and tumor cell spread. The value of biopsy performance 

is also under debate given advances in imaging. Indeed, radiologists are able to make 

increasingly accurate diagnoses, even by elimination. This already aids in management and 

especially in the decision for resection. For these reasons, the role of biopsy for patients with liver 

disease is one of the most important considerations among hepatologists. Nonetheless, 

information provided by the proteomic profile could reverse the benefit-risk ratio of performing 

liver biopsy, making a real difference in clinical practice and pave a way for personalized 

medicine. For example, malignancy diagnosis could indeed be very useful for dysplastic liver 

nodules found in cirrhotic livers because the malignancy conditions patient eligibility for 

transplantation44. In the future, proteomic patterns could also be used to identify elements of 

response or non-response to anti-cancer treatments, for example in patients with advanced HCC 

for which the therapeutic arsenal has recently been expanded45.

In conclusion, we show that proteomic profiling could give biopsy a more important status in the 

patient management process. The diagnosis and subtyping of HCA and the evaluation of its 

malignant transformation is available for a transfer to routine clinical care in our center A
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(Supplemental Figure 7). This implies the integration of proteomic analysis into the clinics and 

the addition of proteomic results into patient pathology reports as part of the evidence-based care 

bundle. Proteomic analysis will bring pathology services into a new analytical era.
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Legends of figures and tables

Figure 1: HCA database validation and linking of proteomic profiles with mutations 
defining HCA subtypes. a Deregulation of HCA biomarkers (GS, CRP/SAA, ASS1 and L-FABP) 

for each subtype in the 57 cases constituting the proteomic database. Each point represents the 

Tumoral vs Non-Tumoral (T/NT) ratio of a case. The median of T/NT ratios is indicated for each 

subtype. The red line indicates identical expression level between the T and NT liver (T/NT=1). b 
to d Deregulation of the proteins frequently functionally associated with the mutated gene in each 

HCA subtype (HNF1A, CTNNB1, and genes of the JAK/STAT signaling pathway). 

Immunomarkers of each subtype are highlighted in red and orange. Examples of proteins with 

expression linked to mutations in HNF1A or CTNNB1 (ALB and OAT respectively) or 

proinflammatory cytokines linked to the JAK/STAT signaling pathway (MIF) are highlighted in 

blue. e Gene set enrichment analysis (GSEA) performed from protein expression data identified 

by proteomics for the pathways and dysfunctions listed by Nault et al 18 used to characterize each 

HCA molecular subtype.

Figure 2: a to f Principal Component Analysis (PCA) comparing the profiles of protein expression 

deregulation in HCA versus FNH and between the different HCA subtypes. g Biological pathways 

associated with HCA subtype-specific profiles. Gene Set Enrichment analyses (GSEA) was 

carried out on the Ingenuity Pathway Analysis (IPA) database (Canonical Pathways). The most 

significantly enriched pathways are represented for HCA subtypes and compared to each other. 

Colors and circle size correspond to the level of significance.

Figure 3: a Diagnostic algorithm based on sequential proteomic profile matching. b to d Example 

of results that can be obtained using proteomic profile matching (b (R_01) corresponds to b-IHCA A
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exon 3 non S45, c (BP_01) to sh-HCA, d (BP_02) to H-HCA). The location of each case on the 

PCA from the reference database is indicated by a red arrow. e Validation results on a panel of 

biopsies and resections representative of cases analyzed by our expert center. Results that are 

inconsistent with the histopathological analysis are in italics.

Figure 4: a Identification of transformed HCA cases classified by molecular subtype. b 

Percentage of HCC/HCA or "borderline" developed on HCA diagnosed in men versus women in 

our collection of 260 cases at Bordeaux. c and d Percentage of HCA cases in our Bordeaux 

collection with cytological atypia and/or architectural anomalies extracted from pathological 

reports (d) according to molecular subtype (c).

Figure 5: Hierarchical clustering (a) and Principal Component Analysis (PCA) comparing the 

profiles of protein expression deregulation for HCC developed on HCA (HCC/HCA) and the 

corresponding HCA. Ten proteins were identified and constitute a signature for HCA malignancy. 

Their levels of deregulation (T/NT ratios) are represented in the form of a heatmap (c). The 

functional annotations extracted from the Reactome database are listed in table d.

Figure 6: Malignancy signature validation on 12 cases. a Histological hematoxylin eosin (H&E) 

staining of 2 cases presenting suspected malignancy : case 217 mild cytological atypia 

associated with foci of decreased reticulin network (not shown here) leading to the diagnosis of 

"borderline HCA" and case 280 suspected to be a well differentiated HCC with obvious 

cytological and architectural atypia; these 2 cases are located on principal component analysis 

(PCA) in g and h respectively. b Example locations on PCA for validation cases. The location of 

the tested cases on the PCA is indicated by a green arrow. Table (c) summarized the results of 

Random Forest testing and calculation of the Euclidian distance. 
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