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Abstract 

 

The objective of this paper is to analyze the effect of small critical flaws on the strength 

of polycrystalline ceramic materials. For this purpose, a finite fracture approach based on the 

coupled criterion (CC) is used to describe the initiation of a crack near a stress concentrator. 

The initiation criterion combines both a stress and an energy condition. The required input 

fracture-mechanics parameters are the tensile strength and the fracture toughness. Both a blunt 

and a sharp geometry are studied. The size of the starter crack developing near the stress 

concentrator can be easily estimated in each case when the CC is fulfilled. Based on the 

calculations, if the size of the defect is smaller than the characteristic material length, numerical 

predictions reveal that the defect (either sharp or blunt) has no effect on the strength, reaching 

the intrinsic tensile strength of the material. This result is in a good agreement with experimental 

results obtained from the strength measurements of ceramic materials with controlled flaws. It 

is also shown that combining two fracture tests after introducing flaws with controlled sizes 

enables to identify the fracture parameters of the ceramic material.   
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1. Introduction 

The use of ceramic materials has been usually motivated by their outstanding structural 

properties such as oxidation and corrosion resistance, high temperature stability, hardness and 

wear resistance. Some examples are high temperature resistant parts for metallurgical 

processes, wear-resistant plates for paper machines, or bio-inert implants in medicine. 

Technical ceramics are also required in advanced systems due to their unique functional 

properties, e.g. extreme non-linear dependence of electrical resistance with temperature (used 

in thermistors), electric field (used in varistors), and a high piezo-electric coefficient (used in 

sensors and actuators).  

A fundamental issue affecting the functionality, lifetime and mechanical reliability of 

such components and systems is the initiation and uncontrolled propagation of cracks in the 

brittle ceramic parts. Contrary to metals or polymers, crack propagation in ceramics is usually 

catastrophic due to the lack of plastic deformation upon tensile loading. Ceramics are said to 

have low tolerance to damage, due to their low resistance to the propagation of cracks (low 

fracture toughness). Another limitation for applications demanding high reliability is the 

inherent scatter in strength caused by the different size, type and location of critical flaws in the 

ceramic (e.g. pores, inhomogeneities, surface defects, contact cracks), introduced during 

processing, machining or in service. As a result, ceramic parts hold an inherent probability to 

failure upon loading, their strength being characterized by a distribution function described in 

most cases by the Weibull theory [1]. 

The tensile strength of ceramics is very sensitive to the presence of flaws, which usually 

act as crack initiators [2]. Common critical flaws are spherical pores generated during the 

ceramic processing [3,4] or sharp defects introduced by surface machining [5]. The relation 

between such extrinsic flaws and the ceramic strength is usually assessed by estimating an 

“equivalent crack length” at failure [6], also called Griffith crack length which is the basis of a 

linear elastic fracture mechanics analysis. For instance, in the case of a blunt defect like a 

rounded pore, the equivalent crack length is postulated to be a small radial crack in the vicinity 

around the pore [7]. In case of a sharp defect like a notch, it is assumed that an array of micro-

cracks along the notch wedge develops during loading, thus triggering the fracture of the brittle 

material [8,9]. The latter is indeed the hypothesis for measuring fracture toughness in ceramics 

using the Single Edge V-Notched Beam testing protocol [10]. 

Despite the advances in fracture mechanics, prediction of crack initiation in ceramics 

and the role of microstructural features in governing the fracture is still a matter of research. In 
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this paper, we aim to analyze the effect of small flaws on the strength of polycrystalline ceramic 

materials. For this purpose, a coupled (stress-energy) criterion (CC) within the framework of 

finite fracture mechanics is employed. It requires strength and fracture toughness values to 

describe the initiation of a crack near a stress concentrator. An advantage of this approach is 

that the critical stress can be easily determined without requiring any assumption concerning 

the crack length at initiation. The paper is organized in the following way. The section 2 

introduces the coupled stress-energy criterion to derive the material tensile strength versus the 

flaw size. We focus on flaws located at the surface, which are considered to be more critical 

than volume flaws [2]. Both a sharp and a blunt geometry are studied. Section 3 compares 

numerical predictions with various experimental results obtained from strength measurements 

of ceramic materials with controlled flaws. Further it is shown that the fracture-mechanics 

material parameters can be identified by combining two fracture tests after introducing flaws 

with a controlled size.  

 

2. Crack initiation in the vicinity of a surface flaw 

 

We assume that a small surface flaw (length 0a ) is located in a ceramic sample 

submitted to traction σ  (Figure 1). Bi-dimensional sharp and blunt geometries are studied 

including a V-notch (with an opening angle 2ω ) and a half-hole. The size of this defect is 

supposed to be small as compared to the specimen width. Upon the critical loading σ ∗ , it is 

admitted that a crack (length 
∗ ) initiates in the vicinity of the flaw as a consequence of the 

stress concentration.  

 

2.1 The Coupled Criterion 

 

To describe this fracture event, we apply the coupled criterion (CC) which was shown 

to describe accurately crack initiation for many loading and structural geometries [11,12] (see 

also the review papers [13,14]). Use of the CC will be illustrated in the following and we just 

recall that this criterion combines an energy and a stress conditions. 

• The energy condition necessary for crack initiation stipulates that the change in 

potential energy should be greater than the energy dissipated during the nucleation 

of a crack of length   with 
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( ) ( ) 20
0 0, , c

inc

a
G a A a G

E
σ= ≥  ,       (1) 

where E  is the Young’s  modulus, incG  is the incremental energy release rate in 

which the infinitesimal energy rates of the classical Griffith approach are replaced 

by finite energy increments and cG  is the fracture energy. Equation (1) is written in 

bi-dimensional form omitting the thickness of the specimen.  

• The second necessary condition, i.e. the stress condition for crack initiation, states 

that the opening normal stress xxσ  along the prospective crack path should be greater 

than the material’s strength cσ : 

( ) ( )0 0, ,  for c
xx xxa y k a y yσ σ σ= ≥ ≤  .     (2) 

Considering the scaling coefficients ( )0 ,A a   and  ( )0 ,xxk a y  to be respectively 

increasing and decreasing functions of   and y , Leguillon [11] demonstrated that the crack 

increment at nucleation *  is obtained by combining the equalities in (1) and (2) which leads to 

( )
( ) ( )2

*

0

*
0

2
0 0,

, 1

xx

c c

ck a

A a EG L

a aσ  

= =



.              (3) 

The length *  defines the size of the starter crack which develops near the defect. It is 

determined by solving (3) which introduces the characteristic length 

( )2

c
c

c

EG
L

σ
=  which is 

exclusively related to material properties. Inserting the fracture toughness c
IK  with 

( )
2 21c c

IG K
E

ν−=  (assuming plane strain condition) leads to ( )
2

21
c

c I
c

K
L ν

σ
 
  
 

= −  where ν  is 

Poisson’s ratio. Typical values of the fracture parameters ( ),c c

IKσ  for ceramics indicate that 

c
L  ranges between 40 and 400 microns [15]. The applied stress *σ  at initiation takes the form   

( ) ( )
*

0 *
0 ,

c

xx

a
k a

σσ =


,          (4-1) 

which can also be written as  

( ) ( )
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0 *
0 0 ,

cEG
a

a A a
σ =


.          (4-2) 
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Since it is subjected to a mode I loading, with the stress intensity factor increasing with 

the crack length, the initiated crack of length *  will then propagate unstably to induce the 

fracture of the sample. The critical stress ( )*
0aσ  is thus considered as the ceramic strength if 

the flaw of length 0a  is taken into account while cσ  is the intrinsic tensile strength which could 

be attained for a material without any extrinsic defect.   

Comparing ( )*
0aσ  and cσ  with the help of (4-2) provides  

( )
( )

*
0

*
0 0

1

,

c

c

a L

a A a

σ
σ

=


.             (5) 

For a given geometry of the flaw (including shape and initial length 0a ), equations (3) and (5) 

show that ( )*
0a  and the strength ratio ( )*

0
caσ σ  only depend on the characteristic length 

cL . It is to be noted that the value
0

cL

a
is a brittleness number already introduced in the 

formulation of the coupled criterion by Mantic [16]. This brittleness number governs the 

transition from brittle to tough configurations as small brittleness numbers correspond to brittle 

and large  to tough configurations. 

 

2.2 Numerical predictions 

 

Numerical predictions are based on a full field analysis performed using the finite 

element method. It is to be noted that a matched asymptotic approach could also be employed 

[17]. Standard finite element tools are used to estimate the scaling coefficients ( )0 ,A a   and 

( )0 ,xxk a y . One has to only consider a sufficiently refined mesh in the vicinity of the defect. 

The analysis is bi-dimensional under plane strain condition assumption. The specimen width h  

is taken to be larger than the defect length with 010h a> . A first elastic calculation provides 

( )0 ,xxk a y  and the potential energy ( )0W  prior to fracture. Additional elastic solutions with a 

progressive release of nodes along the pre-supposed crack path give the potential energy ( )W   

of the cracked structure. Based upon these values an incremental energy release rate, as a 

function of the crack length, can be calculated with ( ) ( ) ( )0
inc

W W
G

−
=





. Additional details 

can be found in [18]. 
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 Figure 2 plots ( )0 ,xxk a y  versus 0y a . It clearly illustrates the higher value of the stress 

concentration in the vicinity of the V-notch as compared with the blunt geometry. This stress 

concentration disappears as soon as 03y a>  with ( )0 , 1xxk a y = . Figure 2 also reveals that the 

incremental energy release rate ( )0 ,A a   for a sharp or a blunt geometry reaches similar values 

for 03a> . Solving (3) allows determining 
*

0a  as a function of 0
cL a  as plotted by Figure 

3a. This graph indicates that *  is proportional to cL . Figure 3b which plots 
* cL  versus 0

ca L

reveals that for large values of 
cL  such that 010c

aL > , similar values of the crack length at 

initiation are obtained for a sharp and a blunt defect with the limit *

2

cL→ . 

 Figure 4 represents the strength ratio ( )*
0

caσ σ  versus the relative defect size 0
ca L

according to (5). As expected, the curve indicates a size effect whereby the strength decreases 

with increasing defect size. A plateau is observed with ( )*
0

caσ σ≈  for 0 0.1 c
a L< . As 

previously pointed out, large values of 
c

L  (and thus small values of 0

c
a L ) induce large values 

of the initiated crack length *  which results in ( )*
0 , 1xxk a =  and explains the presence of the 

plateau from (4-1). The strength value can thus reach the intrinsic strength if the flaw size is 

smaller than 10cL .    

Conversely, for small values of cL  (and thus large values of 0

c
a L ) the initiation crack 

length *  is small. Applying an asymptotic analysis for a V-notch [19] reveals that 

( )
2 1

*
*

0

0

,A a k
a

λ−
 
  
 

=  , where k is a geometric parameter and λ  ( 0.5 1λ≤ < ) is the singularity 

exponent which depends on the opening angle ω   [20]. Using (5) and reminding that *  is 

proportional to cL  leads to 
( ) 1*

0 0
c c

a a

L

λσ
σ

−
 
 
 

≈  which corresponds to the straight curves observed 

in the Log-Log plot  of  Figure 4 for a V-notch with 0 1
c

a

L
> . A small value of the opening angle 

45ω < °  leads to 0.5λ ≈  with   
( ) 1 2*

0 0
c c

a a

L

σ
σ

−
 
 
 

≈ . In the limiting case 0ω = , the surface flaw 

reduces to an edge crack with 0.5λ =  and the CC turns to the classical Griffith criterion with  
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c c

a a

L

σ
σ π ν

−
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−

         (6) 

as also plotted (black dotted line) in Figure 4. A different behavior is obtained for the blunt 

defect. For a large defect ( 0
ca L>> ), the limit is *

3

cσσ →  as already mentioned in a previous 

work [18]. Figure 4 also reveals that sharp and blunt geometries cannot be distinguished for a 

small defect size such that   0
2

cL
a ≤ .  

Figure 5 refrains from the normalized values to plot the strength *σ  versus the flaw size 

0a . To illustrate the influence of the characteristic length, the values 1 100 MPacσ =  and 

2 200 MPacσ =  were selected with  100 GPaE = and -230 JmcG =  leading to 1 300μmcL =  and 

2 75μmcL = , respectively. This plot makes clear that the strength reaches the intrinsic strength 

provided that the defect size is small enough with 1
0 30μma <  and 2

0 7.5μma < .  

A different representation is given in Figure 6a which plots strength isovalues in the 

toughness-strength plane for a fixed length of the defect: each curve indicates all the couples 

( ),c cG σ  that correspond to the same strength *σ . It is observed that an isovalue combines i) 

an horizontal part for larger values of cG  as the strength *σ  mainly depends on cσ , ii) a 

vertical part for smaller values of cG  as the strength *σ  mainly depends on cG . As already 

mentioned, the shape of the defect does not bring any difference for larger values of cG  and 

thus higher values of cL  compared to 0a .  This representation suggests that by performing 

fracture tests on two ceramic samples with introduced controlled flaws, the fracture parameters 

( ),c cG σ of the material may be identified. Figure 6b represents two curves in the toughness-

strength plane corresponding to a blunt and a sharp flaw of identical length 0 300 a mµ= . 

Considering -2100 GPa,  30 Jm  and 100 MPac cE G σ= = = , the strength values ( *
BLUNTσ ,  *

SHARPσ

) were determined for each geometry with the help of the CC and used to plot two isovalues in 

the toughness-strength plane. As expected, those isovalues intersect for the chosen fracture 

parameters (see Fig. 6b). Experimental uncertainties ( )2.5%± are also plotted (dotted lines) and 

reveal in this case a strong influence ( )10%±  on the estimation of the fracture parameters. One 

can recommend to perform one of the strength test with a reduced initial length (smaller than 



8 

 

0 300 a mµ= ). This will move the corresponding isovalue towards the horizontal branch and will 

thus reduce the influence of uncertainties.  

 

 

3. Comparison with experimental results 

 

Experimental results obtained from strength testing with controlled flaws are now 

compared with numerical predictions. We first refer to the study of Cook et al. which introduces 

indentation flaws in ceramic specimens before performing 4-point bending test [21]. Fracture 

data as indicated by the authors for alumina and barium titanate materials are reported in Table 

1. As mentioned by the authors, special care was taken to examine the tested specimens in order 

to verify the site as origin of fracture. Additional micrographic observations were also 

performed to confirm that the size of the initial flaw which ranges from 10 to 200 microns is 

twice the indentation dimension. Plotting the strength ratio ( )*
0

caσ σ  versus the relative 

defect size 0
ca L  allows to represent the experimental data obtained from several materials on 

one plot (Figure 7). A good agreement is observed with the CC prediction using a sharp V-

notch (ω  = 10°).    

Then the experimental data obtained on samples whose fracture originated from pores 

are considered. Material data from Zimmermann et al. [22] which introduces spherical pores 

(of diameter 85 mm) in alumina samples and from Usami et al. [6]  who reported tensile strength 

of alumina samples with semi-circular surface defects are indicated in Table 1. A good 

agreement between these data and predictions of these parameters using the CC prediction is 

still observed - see (Figure 8). Nevertheless, it is not possible to clearly distinguish the 

difference between the blunt geometry and a sharp V-notch.  

Figure 7 and 8 confirm that the CC estimates correctly the effect of defect size on 

strength. The strength plateau which is observed upon the testing of ceramics with controlled 

flaws is well captured. It is worth pointing out that no microstructural argument is invoked to 

explain the presence of this plateau which simply derives from the finite fracture mechanics 

approach as explained in the previous section. Similar results for brittle fracture were also 

obtained by another approaches like the theory of critical distance [23] or the phase field method 

[24] thanks to the introduction of a characteristic length. The advantage of the CC is that the 

characteristic length 
c

L  is not imposed but simply derived from the physically based stress and 

energy conditions.  
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Figure 9 confirms the possibility to identify the fracture parameters with the help of two 

strength tests as already reported in the previous section. Using the results of  Cook et al. [21]  

on alumina (VI1), this figure shows the strength isovalue in the ( ),c cG σ  plane for two different 

values of the sharp defect length. As recommended in section 2.2, a short length 0( 32 μm)a =  

and a larger one 0( 176 μm)a =  were selected. Taking into account the experimental 

uncertainties, the intersection points of the strength isovalues in Figure 9 provides a valuable 

estimation of the fracture parameters with 320 26 MPacσ = ±  and -253.5 5 JmcG = ±

(corresponding to 4.6 0.2 MPa mc
IK = ±  with 395 GPaE = ).  

It is well established that the strength of polycrystalline ceramics increases with 

decreasing size of the microstructure [25]. We can thus suppose that 
cσ  depends on the size d

of some intrinsic defects on the microstructural level, which is proportional to the average grain 

size g  with d gα=  (where α  is a scale factor to be estimated). For a given microstructure (i.e 

a fixed average grain size), results in section 2.2 have demonstrated that extrinsic flaws with a 

length smaller than 10cL  does not reduce the strength. Assuming that 10cL  can be considered 

as the smallest extrinsic flaw size but also as the largest intrinsic flaw size leads to 
10

cL
d gα= =

.   Reminding that 

( )2

c
c

c

EG
L

σ
=  provides  

1

10

c
c EG

g
σ

α
=            (7) 

which defines the variation of the intrinsic tensile strength versus the inverse square root of the 

average grain size. It is supposed here that the fracture toughness does not depend on g  which 

is a reasonable assumption [25]. Figure 10 compares the tensile strength calculated using (7) 

with the experimental data of Chantikul et al. [26] reporting the influence of grain size on the 

strength of alumina. A good agreement is obtained with 1 2α = . Relation (7) corresponds to 

the Orowan-like regime which shows a strong increase in strength with decreasing grain size.  

The last experimental point in Fig. 8 belongs to the Petch-like branch for fine-grained material. 

Using the CC, it is also possible to describe this regime taking into account the influence of 

residual stresses [27]. As the grain size decreases, this recent work demonstrates that an 

increasing numbers of grains will simultaneously be broken at the stage of crack initiation. 

Consequently, the anisotropic distribution of internal stresses at the grain scale influences the 

intrinsic strength and explains a behavior similar to that described by Petch in metals.   
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4. Conclusion 

 

The influence of a small flaw on the strength of ceramic (polycrystalline) materials is 

evaluated using the criterion predicting crack initiation by coupling stress and energy 

conditions. The required fracture data are the tensile strength and the fracture toughness. The 

coupled criterion naturally introduces the characteristic length cL . The main advantages of this 

approach are the following: i) the size and the shape of the defect are accounted for, ii) the size 

of the starter crack developing near the defect is estimated (it is proportional to cL ) without 

assessing any fixed crack increment. Numerical predictions reveal the expected strength 

decrease with the increasing defect size. It is not possible to distinguish a tensile strength 

predicted with the sharp geometry and with the blunt one for a defect size smaller than 2cL  . 

Further, if the defect size is less than 10cL , the defect can be ignored and the strength reaches 

a plateau corresponding to the intrinsic tensile strength.  

It is to be noted that no microstructural argument is required to rationalize the presence 

of the strength plateau which directly comes out from the stress-energy coupling of the 

nucleation criterion. The approach suggests that the largest size of the intrinsic defects, which 

may reduce the strength, is 10cL . Comparing this largest size with the average grain size shows 

that the intrinsic tensile strength is proportional to the inverse square root of the grain size and 

allows to recover the Orowan-like regime of the Orowan-Petch plot. Finally, it is shown that 

the fracture-mechanics parameters can be identified by combining two fracture tests after 

introducing flaws with a controlled size.   

 

 

  



11 

 

REFERENCES 

 

[1] Danzer R. A general strength distribution function for brittle materials. Journal of the 

European Ceramic Society 1992;10:461–472. 

[2] Danzer R. On the relationship between ceramic strength and the requirements for 

mechanical design. Journal of the European Ceramic Society 2014;34:3435–60. 

doi:10.1016/j.jeurceramsoc.2014.04.026. 

[3] Kirchner HP, Gruver RM, Sotter WA. Characteristics of flaws at fracture origins and 

fracture stress-flaw size relations in various ceramics. Materials Science and Engineering 

1976;22:147–156. 

[4] Rice RW. Pores as fracture origins in ceramics. Journal of Materials Science 1984;19:895–

914. 

[5] Watchman JB, Cannon WR, Matthewson ML. Mechanical properties of ceramics. John 

Wiley & Sons; 2009.  

[6] Usami S, Kimoto H, Takahashi I and Shida S. Strength of ceramic materials containing 

small flaws. Engineering Fracture Mechanics 1986;23:745-761. 

[7] Seidel J, Claussen N, Rödel J. Reliability of alumina ceramics: effect of grain size. Journal 

of the European Ceramic Society 1995;15:395–404. 

[8] Fett T. Influence of a finite notch root radius on fracture toughness. Journal of the European 

Ceramic Society 2005;25:543–7. doi:10.1016/j.jeurceramsoc.2004.01.010. 

[9] Torres Y, Bermejo R, Llanes L, Anglada M. Influence of notch radius and R-curve 

behaviour on the fracture toughness evaluation of WC–Co cemented carbides. Engineering 

Fracture Mechanics 2008;75:4422–30. doi:10.1016/j.engfracmech.2008.04.017. 

[10] ISO 23146. Fine ceramics (advanced ceramics, advanced technical ceramics)- Test 

methods for fracture toughness of monolithic ceramics – Single-edge V-notch beam (SEVNB) 

method; 2008. 

[11] Leguillon D. Strength or toughness? A criterion for crack onset at a notch, European 

Journal of  Mechanics-A/Solids 2002;21:61-72. 

[12] Cornetti P, Pugno N, Carpinteri A, Taylor D. Finite fracture mechanics: A coupled stress 

and energy failure criterion. Engineering Fracture Mechanics 2006;73:2021–33. 

doi:10.1016/j.engfracmech.2006.03.010. 

[13] Weißgraeber P, Leguillon D, Becker W. A review of Finite Fracture Mechanics: crack 

initiation at singular and non-singular stress raisers. Archive of Applied Mechanics 2015. 

doi:10.1007/s00419-015-1091-7. 



12 

 

[14] Martin E, Leguillon D, Carrère N. Finite fracture mechanics: a useful tool to analyze 

cracking mechanisms in composite materials. in: P.W.R Beaumont & C. Soutis, editors. Fifty 

Years of Progress in Carbon Fiber Research, Springer; 2016, p. 529-548. 

[15] Bermejo R, Danzer R. Mechanical characterization of ceramics: designing with brittle 

materials. in: V.K. Sarin, editor. Comprehensive Hard Materials, Oxford: Elsevier; 2014, 

p.285–298. 

[16] Mantič V. Interface crack onset at a circular cylindrical inclusion under a remote transverse 

tension. Application of a coupled stress and energy criterion. International Journal of Solids 

and Structures 2009;46:1287–304. doi:10.1016/j.ijsolstr.2008.10.036. 

[17] Leguillon D, Quesada D, Putot C, Martin E. Prediction of crack initiation at blunt notches 

and cavities – size effects. Engineering Fracture Mechanics 2007;74:2420–36. 

doi:10.1016/j.engfracmech.2006.11.008. 

[18] Martin E, Leguillon D, Carrère N. A coupled strength and toughness criterion for the 

prediction of the open hole tensile strength of a composite plate. International Journal of Solids 

and Structures 2012;49:3915–22. doi:10.1016/j.ijsolstr.2012.08.020. 

[19] Leguillon D, Sanchez-Palencia E. Fracture in heterogeneous materials: weak and strong 

singularities. in: P. Ladeveze, O.C. Zienkiewicz, editors. New advances in computational 

structural mechanics, Studies in applied mathematics, Vol 32, Amsterdam: Elsevier; 1992, p. 

423–434. 

[20] Leguillon D, Yosibash Z. Crack onset at a v-notch. Influence of the notch tip radius. 

International Journal of Fracture 2003;122:1–21. 

[21] Cook RF, Lawn BR, Fairbanks CJ. Microstructure-Strength Properties in Ceramics: I, 

Effect of Crack Size on Toughness. Journal of the American Ceramic Society 1985;68:604–

615. 

[22] Zimmermann A, Hoffman M, Flinn BD, Bordia RK, Chuang T-J, Fuller ER, et al. Fracture 

of alumina with controlled pores. Journal of the American Ceramic Society 1998;81:2449–

2457. 

[23] Taylor D. Predicting the fracture strength of ceramic materials using the theory of critical 

distances. Engineering Fracture Mechanics 2004;71:2407–16.   

doi:10.1016/j.engfracmech.2004.01.002. 

[24] Tanné E, Li T, Bourdin B, Marigo J-J, Maurini C. Crack nucleation in variational phase-

field models of brittle fracture. Journal of the Mechanics and Physics of Solids 2017. 

doi:10.1016/j.jmps.2017.09.006. 

[25] Zimmermann A, Rödel J. Generalized Orowan-Petch Plot for Brittle Fracture. Journal of 



13 

 

the American Ceramic Society 1998;81:2527–2532. 

[26] Chantikul P, Bennison SJ, Lawn BR. Role of grain size in the strength and R-curve 

properties of alumina. Journal of the American Ceramic Society 1990;73:2419–2427. 

[27] Leguillon D, Martin E, Sevecek O, Bermejo R. What is the tensile strength of a ceramic to 

be used in numerical models? Accepted for publication in International Journal of Fracture 2018 

  



14 

 

 

 

   

 

 

 

 

a) Sharp flaw b) Blunt flaw 

 

    

  

 

Figure 1: Crack initiation under tensile loading in the vicinity of a surface flaw  
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Figure 2: The scaling coefficients ( )0 ,xxk a y  (solid lines) and ( )0 ,A a   (dotted lines) versus 

0y a and 0a  for a sharp and a blunt defect.  
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Figure 3a: The crack length at initiation 
*

0a  versus 0

c
L a  for a sharp and a blunt defect. 
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Figure 3b: The crack length at initiation 
* c

L  versus 0

c
a L  for a sharp and a blunt defect. 
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Figure 4: The strength ratio ( )*

0

c
aσ σ  versus the relative defect size 0

c
a L  for a sharp and 

a blunt defect. The black dotted line corresponds to relation (6) with 0.2ν = . 
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Figure 5: The strength *σ  versus the flaw size 0a  assuming two different sets of properties (

1 100 MPacσ = , -230 JmcG = ) and ( 2 200 MPacσ = , -230 JmcG =  ) with 100 GPaE = . The 

solid lines correspond to a blunt defect and the dotted lines are obtained for a sharp defect.   
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a)  b)  

Figure 6: Strength isovalues in the ( ),c cG σ plane for a fixed length 0 300 μma =  of the blunt 

and sharp defects with 100 GPaE = . Each solid curve provides the couples ( ),c cG σ  

corresponding to a strength value: a) the strength value is * 137 MPaσ =  , b) the strength value 

is * 55.8 MPaBLUNTσ =  for the blunt defect and * 49.8 MPaSHARPσ =  for the sharp defect. The 

dotted line are obtained after introducing uncertainties ( )2.5%± on the strength values. 
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Figure 7: Comparison of CC predictions (dotted line) with experimental data reported in 

Table 1: the strength ratio ( )*
0

caσ σ  is plotted versus the relative defect size 0
ca L for a 

sharp defect (ω  = 10°).    
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Figure 8: Comparison of CC predictions (dotted lines) with experimental data reported in 

Table 1: the strength ratio ( )*
0

caσ σ  is plotted versus the relative defect size 0
ca L for a 

sharp (ω  = 10°) and a blunt defect.    
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Figure 9: Strength isovalues (full lines) taking into account experimental dispersion (dotted 

lines) in the ( ),c c
G σ plane for two values of the defect length 

0( 32 μm)a =  and 

0( 176 μm)a =  according to the data of alumina (VI1) reported in Table 1. The intersections 

of the dotted lines provide an estimation of the fracture parameters with 320 26 MPacσ = ±  

and -253.5 5 JmcG = ± . 
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Figure 10: Strength versus grain size: comparison of relation (7) with the experimental data 

of  Chantikul et al. [26] for alumina (E=350 GPa, Gc=35Jm-2, 1 2α = ).  
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 Material 

(Designation) 

cσ  

(MPa) 

c

IK  

(MPa.m0.5) 

2
c

c I

c

K
L

σ
 

=  
 

(µm) 

Reference 

[1] Al203 

(AD999) 

488 3.9 63.8 Cook et al. [21] 

[2] Al203 

(VI1) 

329 4.6 195.5 Cook et al. [21] 

[3] Al203 

(VI2) 

302 4.6 232 Cook et al. [21] 

[4] BaTi03 

(NRL2) 

85 1.35 252 Cook et al. [21] 

[5] Al203 

 

638 

534 

481 

379 

4.5 

4.5 

4.5 

4.5 

49.8 

71 

87.3 

140.7 

Zimmermann et 

al. [22] 

[6] Al203 364 3.5 93 Usami et al. [6] 

 

Table 1: Fracture-mechanics parameters as indicated by the authors for 

selected ceramic materials used for strength testing with controlled flaws. 
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Nomenclature 

 

Parameters 

A Adimensionned incremental energy release rate 

a0 Flaw length  

d Size of intrinsic defects controlling the strength 

E Young’s modulus 

g Average grain size 

Gc Fracture energy 

Ginc Incremental energy release rate 

h Specimen width 

K
I

c
 Fracture toughness 

kxx Adimensionned opening normal stress 

Lc Characteristic length 

W Potential energy 

α Scale factor  

 Crack length 

λ Singularity exponent at the tip of a V-notch 

* Crack length at initiation 

ν Poisson’s ratio 

σ Applied traction stress 

σxx Opening normal stress 

σ c Strength 

σ∗ Applied traction stress at initiation 

ω V-notch half opening angle 

  

Superscripts  

c Critical values 

* Values at initiation 

  

Acronyms  

CC Coupled criterion 
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Highlights 

 

The coupled criterion is used to analyze the effect of a flaw on the strength  

A defect with a size smaller than the characteristic material length has no effect 

Introducing flaws with controlled sizes enables to identify the fracture parameters  
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