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Abstract: Pomegranate juice (PJ) is a rich source of ellagitannins (ETs), precursors of colonic metabo-
lite urolithin A, which are believed to contribute to pomegranate’s neuroprotective effect. While
many experimental studies involving PJ’s role in Alzheimer’s disease and hypoxic-ischemic brain
injury have been conducted, our knowledge of pomegranate’s effects against Parkinson’s disease
(PD) is very limited. Previously, we have reported that PJ treatment improved postural stability,
which correlated well with enhancement of neuronal survival, protection against oxidative damage,
and α-synuclein aggregation. Since olfactory and motor deficits are typical symptoms of PD, in
this study, we aimed to investigate the capability of PJ to protect against olfactory, motoric, and
neurochemical alterations. To evaluate its efficiency, Wistar rats were given a combined treatment
with ROT (1.3 mg/kg b.w./day, s.c.) and PJ (500 mg/kg/day, p.o.) for 35 days. After this, we
assessed the olfactory discrimination index (DI) and vertical and horizontal activities as well as levels
of dopamine and its main metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) in the dissected
midbrain of animals. Our findings provide the first evidence that PJ treatment protects against
ROT-induced DA depletion in the midbrain, which correlates well with improved olfactory function
and vertical activity as well as with the presence of urolithin A in the brain.

Keywords: pomegranate juice; urolithin; ellagitannins; dopamine; olfactory impairment; α-synuclein;
non-motor symptoms; motor symptoms; Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is the second most common human neurodegenerative
disorder after Alzheimer’s disease (AD). It is a multi-attribute, debilitating condition
that leads to significant disabilities and is related to a decreased quality of life over time.
The pathological hallmark of PD is intracellular inclusions of misfolded α-synuclein,
called Lewy bodies, in the neurons of affected brain regions. Specifically, dopaminergic
(DAergic) neurons in the substantia nigra pars compacta (SNpc) undergo degeneration
resulting in dopamine (DA) deficiency and multiple other biochemical deficits in the
nigrostriatal system [1]. As we previously reviewed, misfolded α-synuclein spreads in a
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prion-like fashion to different brain regions, giving rise to successive non-motor and motor
symptoms [2]. The presence of Lewy bodies in the olfactory bulb and olfactory tract has
also been demonstrated [3]. Clinically, PD is characterized by motor dysfunctions such as
bradykinesia, rigidity, tremor at rest, postural instability, and non-motor manifestations,
including olfactory impairment, pain, autonomic dysfunction, sleep disturbance, fatigue,
and behavioral changes [1,3]. Specifically, olfactory impairment precedes the onset of motor
symptoms by years [4] and can be used to predict the occurrence of PD in asymptomatic
individuals and to differentiate PD from other neurologic disorders [5].

Studies in both a toxin-based [6–8] and a transgenic mouse model of PD [9] have
presented data suggesting the occurrence of a correlation between the density of nigral
DAergic neurons and olfactory discrimination capacity. This association is supported by
the findings of Höglinger et al. (2015) demonstrating that there is a direct axonal DAergic
projection from the SNpc to the olfactory bulb of rats. The authors suggested that the
neurotoxin-induced retrograde degeneration of DAergic neurons in this area could promote
the observed hyposmia in rats [10].

In a large case–control study, Belvisi et al. (2020) identified factors inducing PD
development: exposure to toxic agents such as pesticides, oils, and metals as well as
dyspepsia and general anesthesia. The preventing action has been demonstrated for
cigarette smoking, coffee drinking, and physical exercise. No data about the protective
effects of medicinal plants have been found in available literature [11].

The pomegranate (Punica granatum L.) fruit is rich in various phytochemicals, includ-
ing ellagitannins (ETs), exerting a wide range of biological activities such as antioxidative,
anti-inflammatory, and antiapoptotic activities, which are believed to exert a significant role
in its health benefits [12,13]. The neuroprotective effect of pomegranate phytochemicals
has been demonstrated against hypoxia-ischemia (H-I) [14,15] and cerebral ischemia-
reperfusion (I/R) brain injuries [16]. Regarding neurodegenerative diseases, a lot of in vivo
studies on beneficial effects of pomegranate have been devoted to AD [17–23]; however,
its neuroprotective potential against PD is based on very limited data [13,24,25]. We re-
cently suggested that pomegranate’s neuroprotective effect is mediated by urolithin A
(UA)—a colonic microbiota ETs-derived metabolite [13]. This is supported by further
studies demonstrating the alleviation of cognitive impairments upon treatment with UA in
different in vivo models of neurodegeneration [26–28].

Previously, we have reported neuroprotective effects of pomegranate juice (PJ) in a
rat model of PD based on prolonged low-dose rotenone treatment, which was manifested
by improved postural stability correlating well with enhancement of neuronal survival in
the SN, protection against oxidative damage, and α-synuclein aggregation in the midbrain.
Since olfactory and motor deficits are typical symptoms of PD associated with a decreased
DA level, in this study, we aimed to investigate the capability of PJ for counteracting these
alterations in the rotenone model of PD and examine whether it is associated with the
presence of UA in the brain.

2. Materials and Methods
2.1. Animals

The experiment was performed on six-week-old male albino Wistar rats (250–300 g)
bred at the Department of Toxicology of the Poznan University of Medical Sciences (Poznań,
Poland). The animals were held (four rats/cage) in polycarbonate cages (Techniplast,
Varese, Italy) with wood shavings in a room maintained under a 12 h light/12 h dark cycle,
22 ± 2 ◦C, 40–54% relative humidity, and controlled circulation of air. All groups were
provided with a commercial diet (ISO 20000 certified laboratory feed Labofeed H) and
drinking water ad libitum.

2.2. Experimental Design

In order to induce PD in rats, rotenone (ROT, Sigma-Aldrich, Poznań, Poland) was
injected subcutaneously once daily for 35 days in a dose of 1.3 mg/kg body weight [13].
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Thirty-eight rats were divided randomly into four groups (8 animals in each group plus
3 animals in each of the groups treated with PJ for UA determination in the brain). Group I:
rats receiving water (i.g.) and helianthi oleum raffinatum (FAGRON a.s., Olomouc, Czech
Republic) (s.c.) from the 11th day, designated as a control group (Control). Group II:
rats which were treated only with PJ at a dose of 500 mg/kg b.w./day (i.g.) and injected
with helianthi oleum raffinatum from day 11, referred to as the PJ-treated group (PJ).
We used commercial 6-fold concentrated pomegranate juice obtained from Alter Medica
(Żywiec, Poland) and characterized previously in our laboratory [13]. Group III: rats
receiving water (i.g.) and injected with ROT in helianthi oleum raffinatum (1.3 mg/kg
b.w./day, s.c.) alone from the 11th day of the experiment, designated as the rotenone
group (ROT). Group IV: rats treated with PJ 500 mg/kg b.w./day (i.g.) and injected with
ROT from the 11th day, designated as the PJ+ROT group. The experiment lasted 45 days,
including 10 days of pre-treatment with PJ and 35 days of combined treatment with PJ
and ROT. Twenty-four hours after the last treatment, the rats were anesthetized with
ketamine/xylazine (100 U/7.5 mg/kg b.w., intraperitoneally), and blood was withdrawn
from the heart (Figure 1). After intracardiac perfusion with isotonic sodium chloride
solution, the brain was quickly removed, and the midbrain was dissected on ice, and then
snap-frozen with dry ice and stored at −80 ◦C until further use. For the purpose of UA
determination in the brain, whole brains of three rats from groups II and IV were harvested
after whole-body perfusion with phosphate-buffered saline, pH 7.4, to avoid overlapping
of metabolites from the residual blood.
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2.3. Behavioural Tests

All tests were carried out between 11:00 and 15:00 and 24 h (motor activity) and 48 h
(olfactory discrimination task) before the termination of the experiment in a behavioral
testing facility (Figure 1).

2.3.1. Motor Activity

The activity of animals was assessed using an activity cage (40 cm× 40 cm× 31 cm)
supplied with infrared beam emitters (Activity Cage 7441, Ugo Basile, Italy) combined
with a counter measuring the number of photobeam crossings separately in the horizontal
and vertical areas. After previous habituation in the experimental room, the animals were
placed in the activity cage, and the examination was performed for 5 min. Software analysis
enabled the measurement of the horizontal and vertical activity of the rats.

2.3.2. Olfactory Discrimination Task (ODT)

This test was described by Rodrigues et al. (2014). We used a rectangular box (60 cm ×
40 cm × 50 cm) with two interconnected compartments allowing animals free movement.
Before testing, the rats were free to explore the apparatus for 5 min. During the test, one
compartment was loaded with sawdust with an odor familiar to the animal as it was
exposed to the same animals during the preceding 48 h. The second one, endowed with
clean sawdust, was designated as a non-familiar odor. After placing a rat in the centrum of
the box, the exploratory behavior in the compartments was recorded for 5 min. The animal
with olfactory impairment indicating an absence of discrimination tended to explore both
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compartments equally, while where the olfactory function was intact, the animals preferred
to explore a particular compartment [7].

The discrimination index (DI) was calculated by dividing the difference in exploration
time between the two compartments (non-familiar − familiar) by the total exploration time
for both compartments (non-familiar + familiar). DI was expressed as a percentage, where
positive and negative scores correspond to a preference towards non-familiar and familiar
odors, respectively. The direction of changes was not considered in the statistical analysis.

2.4. Dopamine (DA) and 3,4-Dihydroxyphenylacetic Acid (DOPAC) Level Determination
2.4.1. Isolation

The midbrain tissue was homogenized with an extracting mixture containing
acetonitrile–0.1 M HCl–27 mM EDTA water solution (50:40:10) at a weight: volume ratio
of 1:10, using a handheld tissue homogenizer and subsequently sonicated for 20 min at 4
◦C. Then, the sample was centrifuged at 6500× g, and the supernatant was filtered on a 0.2
mm PTFE microfilter before HPLC-MS analysis [29].

2.4.2. UPLC-MS/MS Analysis

The analysis of DA and DOPAC was performed on a Shimadzu Nexera (Shimadzu
Co., Kyoto, Japan) chromatograph which contained a five-channel degasser (DGU-20A5)
and thermostatted autosampler (SIL-30AC). MS detection was performed on a triple
quadrupole mass spectrometer, the LCMS-8030 (Shimadzu Co., Kyoto, Japan). For data
processing, the Lab solutions Series Workstation system (Shimadzu, Kyoto, Japan) was
applied.

DA and DOPAC were separated in a Gemini® C18 analytical column (150 mm ×
2 mm) equipped with a security guard cartridge (Phenomenex, Torrance, CA, USA). The
column temperature of 25 ◦C was maintained by a column oven (Shimadzu® Model CTO-
2AC). The mobile phase was a mixture of an aqueous solution of acetic acid of Ph = 2
(A) and methanol (B). The following gradient elution was used: 0–3 min 5% B, 3–5 min
linear increase to 70%, 5–8 min 70% B, 8–10 min linear decrease to 5%, 10–12 min 5% B.
The mobile phase flow rate was 0.15 mL/min, and the injected sample volume was 20 µL.
The eluent from the UPLC column was introduced to the MS detector using electrospray
ionization in positive ion mode for the measurement of DA, and in negative ion mode for
the measurement of DOPAC. The electrospray needle voltage was 4.5 kV. The desolvation
line, the heat block temperature, and the interface temperature were maintained at 250 ◦C,
400 ◦C, and 350 ◦C, respectively. Nitrogen was used as the nebulizing gas and as the drying
gas with flow rates of 2 and 10 L/min, respectively. The most sensitive mass transition was
from m/z 154.1 to 136.9 for DA and from m/z 167.1 to 123 for DOPAC. Linearity of the
method was confirmed in the ranges of 0.5–10 ng/mL for DA and DOPAC. The within-run
and between-run precision, expressed as relative standard deviations, was <13.7% for
DA and <14.8% for DOPAC. The within-run and between-run accuracy of the method,
expressed as the relative error, was <14.5%.

2.5. Urolithin A Determination

The brains of three rats harvested from each group treated with PJ (group II and
IV) were extracted with methanol: HCl (99.9:0.1 v/v) following enzymatic hydrolysis
of conjugated UA metabolites according to Núñez-Sánchez et al. (2014) and Seeram
et al. (2006) with some modifications as we described previously [13,30,31]. To assess the
concentration of UA in brain homogenates, UPLC-ESI-QTOF-MS analysis was performed,
and a calibration curve was established using commercially available UA in the range of
1 ng/mL to 100 ng/mL according to the procedure described previously [13].

2.6. Statistical Analyses

The results are presented as mean values ± SEM. Duplicate measurements were
carried out, and 8 animals per experimental group were used. For the analysis of UA
distribution, 3 animals were used. The control and ROT groups were compared by one-
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way analysis of variance (ANOVA) followed by Fisher’s LSD test. The threshold for
statistical significance was at p < 0.05. All statistical analyses and charts were performed
using PRISM 8.0 software (GraphPad Software Inc., La Jolla, CA, USA).

3. Results
3.1. Behavioural Tests
3.1.1. Motor Activity

Animals injected with rotenone exhibited statistically significant (77% and 89%) lower
horizontal and vertical activities, respectively, compared with the Control (Figure 2).
Pomegranate juice administration to the ROT-challenged animals attenuated the motor
deficit by increasing vertical activity by 160%. A non-significant trend towards increased
horizontal activity by 57% was also observed in these animals compared to the ROT group.
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3.1.2. Olfactory Discrimination Task (ODT)

As depicted in Figure 3, rats injected with ROT exhibited impairment of olfactory
function attributed to the significantly decreased DI compared to control animals. Treat-
ment with PJ mitigated this ROT-induced effect seen as an increase in DI compared to the
ROT group, to the level observed in control animals. Interestingly, the rats receiving PJ and
ROT, like the control rats, also showed a preference for the non-familiar odor, inferred from
the positive DI scores.
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Figure 3. Effect of pomegranate juice treatment (PJ) on olfactory discrimination task (ODT) expressed
as olfactory discrimination index (DI) in rotenone (ROT)-injected rats. Data are presented as mean
values ± SEM of eight rats per group and analyzed using one-way analysis of variance (ANOVA)
followed by Fisher’s LSD test. ** p < 0.01 vs. Control. # p < 0.05 vs. ROT.

3.2. Dopamine (DA) and 3,4-Dihydroxyphenylacetic Acid (DOPAC) Level

Chronic exposure to ROT reduced dopamine (DA) and its metabolite DOPAC levels
by 44% and 43%, respectively, in the midbrain (Figure 4). However, the midbrain DA and
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DOPAC depletion was significantly attenuated by combined treatment with PJ and ROT,
by 73% and 134%, respectively (Figure 4).

Brain Sci. 2021, 11, x FOR PEER REVIEW 6 of 10 
 

as mean values ± SEM of eight rats per group and analyzed using one-way analysis of variance 
(ANOVA) followed by Fisher’s LSD test. ** p < 0.01 vs. Control. # p < 0.05 vs. ROT. 

3.2. Dopamine (DA) and 3,4-Dihydroxyphenylacetic Acid (DOPAC) Level 
Chronic exposure to ROT reduced dopamine (DA) and its metabolite DOPAC levels 

by 44% and 43%, respectively, in the midbrain (Figure 4). However, the midbrain DA and 
DOPAC depletion was significantly attenuated by combined treatment with PJ and ROT, 
by 73% and 134%, respectively (Figure 4). 

  

(a) (b) 

Figure 4. Effect of pomegranate juice treatment (PJ) on: (a) dopamine (DA); (b) DOPAC levels in the midbrains of rotenone 
(ROT)-injected rats. Data are presented as mean values ± SEM of eight rats per group and analyzed using one-way analysis 
of variance (ANOVA) followed by Fisher’s LSD test. **** p < 0.0001 vs. Control; * p < 0.05 vs. Control, ### p < 0.001 vs. ROT; 
# p < 0.05 vs. ROT. 

3.3. Urolithin A Level 
The concentrations of UA in the brains of rats treated with PJ alone and in combina-

tion with ROT were 2068 ± 0.274 ng/g wet tissue and 0.635 ± 0.174 ng/g wet tissue, respec-
tively, calculated as a mean value ± SD of three rats from the relevant groups. 

4. Discussion 
Although the incidence and prevalence of PD have increased rapidly throughout the 

world, therapeutic options are still very disappointing, and available therapies treat only 
the symptoms of the disease. Thus, the optimal management of the neurodegenerative 
condition is postulated as requiring a multidisciplinary team approach, also encompass-
ing an increasing number of non-pharmacological interventions [32]. 

The study presented herein is a continuation of the research tackling the question of 
whether PJ treatment can provide neuroprotection against PD. In rats, long-term exposure 
to low doses of rotenone, due to sustained inhibition of complex I, related oxidative injury, 
and α-synuclein aggregation, induced developing degeneration of nigral DAergic neu-
rons with histopathological hallmarks and PD-like symptoms [13,33,34]. DA depletion re-
sulting from a loss of DAergic neurons in the SNpc is considered an important factor un-
derlying the development of motor dysfunction in PD patients [1], which is reproducible 
in a rotenone PD model [33]. Nigrostriatal denervation is also manifested by a declined 
level of DOPAC, the main intra-neuronal metabolite of DA [35]. Since we previously ob-
served that PJ offered protection against ROT-induced DAergic neurodegeneration, we 
therefore anticipated that administration of PJ might thereby mitigate DA depletion and 
related motor and non-motor deficits. In accordance with previous findings [36–39], low-
dose treatment with ROT induced motor abnormalities manifested in our study, such as 
decreased horizontal and vertical activities, which were associated with a reduction in DA 
and DOPAC levels in the midbrain of rats. PJ administration restored the loss of DA level 
and its metabolite DOPAC, and slightly improved vertical activity. These findings corrob-
orate previous results from Wei et al. (2020), who showed that treatment with ellagic acid 
(EA) resulted in improvements in the motor performance of rotenone-treated rats [40]. EA 

Figure 4. Effect of pomegranate juice treatment (PJ) on: (a) dopamine (DA); (b) DOPAC levels in the
midbrains of rotenone (ROT)-injected rats. Data are presented as mean values ± SEM of eight rats
per group and analyzed using one-way analysis of variance (ANOVA) followed by Fisher’s LSD test.
**** p < 0.0001 vs. Control; * p < 0.05 vs. Control, ### p < 0.001 vs. ROT; # p < 0.05 vs. ROT.

3.3. Urolithin A Level

The concentrations of UA in the brains of rats treated with PJ alone and in combination
with ROT were 2068 ± 0.274 ng/g wet tissue and 0.635 ± 0.174 ng/g wet tissue, respectively,
calculated as a mean value ± SD of three rats from the relevant groups.

4. Discussion

Although the incidence and prevalence of PD have increased rapidly throughout the
world, therapeutic options are still very disappointing, and available therapies treat only
the symptoms of the disease. Thus, the optimal management of the neurodegenerative
condition is postulated as requiring a multidisciplinary team approach, also encompassing
an increasing number of non-pharmacological interventions [32].

The study presented herein is a continuation of the research tackling the question of
whether PJ treatment can provide neuroprotection against PD. In rats, long-term exposure
to low doses of rotenone, due to sustained inhibition of complex I, related oxidative
injury, and α-synuclein aggregation, induced developing degeneration of nigral DAergic
neurons with histopathological hallmarks and PD-like symptoms [13,33,34]. DA depletion
resulting from a loss of DAergic neurons in the SNpc is considered an important factor
underlying the development of motor dysfunction in PD patients [1], which is reproducible
in a rotenone PD model [33]. Nigrostriatal denervation is also manifested by a declined
level of DOPAC, the main intra-neuronal metabolite of DA [35]. Since we previously
observed that PJ offered protection against ROT-induced DAergic neurodegeneration,
we therefore anticipated that administration of PJ might thereby mitigate DA depletion
and related motor and non-motor deficits. In accordance with previous findings [36–39],
low-dose treatment with ROT induced motor abnormalities manifested in our study, such
as decreased horizontal and vertical activities, which were associated with a reduction in
DA and DOPAC levels in the midbrain of rats. PJ administration restored the loss of DA
level and its metabolite DOPAC, and slightly improved vertical activity. These findings
corroborate previous results from Wei et al. (2020), who showed that treatment with
ellagic acid (EA) resulted in improvements in the motor performance of rotenone-treated
rats [40]. EA also has been reported to protect against 6-hydroxydopamine (6-OHDA) and
lipopolysaccharide-induced DA neuronal damage and related motor impairment [41–44].

Despite the considerable number of studies devoted to the evaluation of neuropro-
tective effects by assessing motor behavior, very little research involving assessment of
olfactory deficits has been conducted in experimental models of PD. Studies from toxin-
induced DAergic neuronal loss have shown that accumulation of abnormal α-synuclein is
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not only confined to the SN but is also found in the olfactory tract [27,45]. Because PJ treat-
ment protected against α-synuclein cumulation in the brain in ROT-challenged rats [13], in
this study, we evaluated whether PJ might confer protection against the olfactory deficits. It
has been found that ROT injection caused striatal denervation and related DA and DOPAC
depletion as well as loss of DAergic neurons in the olfactory bulb that were associated
with motor and olfactory impairments [9]. In our study, long-lasting exposure to ROT
induced olfactory deficits quantitatively expressed as a decreased DI value. This is consis-
tent with previous work by Rodrigues et al. (2014), who demonstrated the occurrence of a
strong association between nigrostriatal DA level and olfactory discrimination capacity [7].
Importantly, PJ treatment prevented the development of PD-like behavioral deficits in
ROT-intoxicated rats. EA, a component of PJ, has been reported to alleviate other non-
motor symptoms, including hyperalgesia, cognitive deficiency, and memory performance
in the 6-OHDA-induced rat model of PD [46,47]. Accumulating evidence supports the
beneficial effect of treatment with EA, pomegranate’s natural precursor of UA, against
DAergic neuronal loss and related DA depletion and motor and non-motor dysfunctions
in PD models [41–44]. Recently, it has been demonstrated that treatment with extract of
Eclipta alba rich in EA significantly downregulated the overexpression of α-synuclein at
both protein and mRNA levels in the midbrain, prevented loss of DAergic neurons in SNpc,
and mitigated behavioral deficits in the MPP+-mediated PD rat model [47].

Our previous findings revealed that UA, the ellagic acid metabolite, is distributed
to the brain of PJ-treated rats [13]. In this work, we have demonstrated that PJ treatment
prevented the development of PD-like olfactory impairment, slightly mitigated a motor
deficit, and preserved DA depletion in ROT-lesioned rats that was accompanied by the
presence of UA in their brains. Our findings provide new insights into the beneficial
effects of pomegranate juice treatment against PD. Therefore, further studies on plausible
mechanisms, including the involvement of UA, that might account for the reported neuro-
protective action of pomegranate juice are needed. Since from a neuropathological point of
view, both PD and AD are proteinopathies with a long prodromal period characterized by
hyposmia [48], it could be suggested that UA may also show potential against impaired ol-
faction caused by beta-amyloid deposition and a neurofibrillary tangle of the tau formation
in the olfactory tract.

5. Conclusions

Chronic administration of pomegranate juice prevented dopamine depletion, thereby
delaying onset and reducing PD symptoms in rats. Urolithin A, a putative active metabolite
formed upon pomegranate juice administration, probably contributed to this effect.
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