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Abstract: Lactic acid bacteria (LAB) from fermented beverages such as wine, cider and beer produce a
wide range of exopolysaccharides (EPS) through multiple biosynthetic pathways. These extracellular
polysaccharides constitute key elements for bacterial species adaptation to such anthropic processes.
In the food industry, LAB polysaccharides have been widely studied for their rheological, functional
and nutritional properties; however, these have been poorly studied in wine, beer and cider until
recently. In this review, we have gathered the information available on these specific polysaccharide
structure and, biosynthetic pathways, as well as the physiology of their production. The genes
associated with EPS synthesis are also presented and compared. Finally, the possible role of EPS for
bacterial survival and spread, as well as the risks or possible benefits for the winemaker and the wine
lover, are discussed.
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1. Introduction

Lactic acid bacteria (LAB) form a large group of bacteria, and are widely used through-
out the world for the biotransformation of animal and plant resources. From very early
on, they were valued to preserve and improve the organoleptic or nutritional properties of
many foods. This is also the case in fermented beverages, where many distinct genera and
species have been described [1]. However, not all species are found in all beverages. Species
distribution seems rather specific to a particular type of fermented drink. Furthermore,
LAB are sometimes hardly detectable in fruits and become dominant at certain steps in
the production process. In fact, in wine and cider, LAB develops after the yeasts first drive
alcoholic fermentation (AF). At the end of AF, upon lysis of the yeasts, the medium contains
high levels of ethanol and very few residual sugars; it is acidic. Only certain species have
been found to resist this process, including LAB of the genera Lactobacillus, Pediococcus,
Oenococcus and Leuconostoc [2]. These bacteria multiply by consuming the elements left
by the yeasts (sugars, acids). Depending on the metabolic pathways taken to break down
the sugars, they produce either only lactic acid (homofermentative bacteria) or a mixture
of lactic acid and acetate or ethanol (heterofermentative bacteria) [2]. However, the main
visible transformation carried out by lactic acid bacteria in wine and cider is the conversion
of the L-malic acid present into L-lactic acid and CO2. Although this is not fermentation
sensu stricto, this reaction is called malolactic fermentation (MLF). MLF is important for
three reasons [3]: (i) the transformation of malic acid (di-acid) into lactic acid (monoacid)
softens the beverage, reducing its total acidity; (ii) the growth of bacteria is accompanied
by the consumption of the residual substrates of the medium, which limits the risk of devel-
opment of the spoilage flora during storage and aging and (iii) the release of aromas (from
grapes, apples, yeasts or wood precursors) and the production of secondary metabolites by
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bacteria contribute to the final sensorial properties of the wine [4–6] In the same way, LAB
also modulate the ciders final quality [7,8].

The success of MLF relies on the ability of indigenous LAB to survive and develop
under particularly hostile physicochemical conditions. Only the most resistant LAB are
selected. Though MLF can also be carried out by genera other than Oenococcus [4,9]
most often, Oenococcus oeni becomes the dominant species and the main driver of MLF
in temperate-zone wines or ciders, although it is hardly detected on the fruits [4,8,10].
The bacterial strains found in ciders and wines are different, suggesting that a form of
domestication has occurred within the species. Other species of the genus Oenococcus are
found in fermented products made from sugar cane (O. alcolitolerans [11]) or during the
preparation of schochu (O. kitaharae [12]). O. sicerae is found specifically in ciders [13].

Certain particularly efficient LAB strains have been selected and are marketed as
malolactic starters [9]. Conversely, certain strains of LAB (including O. oeni) can cause
deterioration before, during or after MLF, depending on their genome content and the
associated metabolic abilities [14]. Furthermore, the context (type of beverage or even
type of wine considered) may also modulate the microbial metabolic activities and thus
the risk associated with the presence of a specific strain. The machinery necessary for the
biosynthesis of exopolysaccharides (EPSs) is one of the metabolic tools which differentiates
the LAB strains. EPS can (i) contribute to bacterial survival in the specific context of the
production of fermented drinks, (ii) improve the sensory properties of wines and other
fermented drinks or (iii) on the contrary, lead to beverage spoilage [4,15,16].

The aim of this review is to synopsize the current knowledge on the EPSs produced
by the LAB of fermented drinks, namely, the nature and location of the EPSs, the genes
involved and the active biosynthetic pathways, as well as the consequences of EPS produc-
tion on the survival of the bacteria and on the quality of the beverages produced. Finally,
research perspectives will be examined.

2. EPSs Produced and Biosynthetic Pathways

EPSs are extracellular glucidic polymers of variable size (a few tens of monosac-
charides to several tens of thousands). They may consist of a single type of monomer
(homopolysaccharides) or of several different monomers (heteropolysaccharides), they
may be neutral or charged and may or may not contain non-carbohydrate substituents.
Finally, they can be linear or branched. Among fermented drinks, the LAB EPSs O. oeni
EPSs are the ones that have been the most studied—data on this species will therefore be
presented first, and where possible, knowledge will be extended to other species (Table 1).

Table 1. LAB EPSs isolated from fermented beverages.

EPS Type EPS Structure Species Niche Implicated
Genes

Consequences/Role
of EPS Reference

homopolysaccharides

β-glucan Oenococcus oeni wine, cider gtf ropy character,
stress resistance [17–19]

β-glucan Pediococcus
damnosus cider gtf ropy character [17,20–23]

β-glucan Pediococcus
parvulus cider, wine gtf ropy character,

stress resistance [18,23]

β-glucan Pediococcus
ethanolidurans cider - ropy character [24]

β-glucan Pediococcus
claussenii beer gtf ropy character [25,26]

β-glucan Lactobacillus
brevis beer gtf2

ropy character,
ethanol tolerance,
biofilm formation

[26,27]

β-glucan Lactobacillus
diolivorans cider gtf - [17]

β-glucan Lactobacillus
suebicus cider gtf ropy character [28,29]
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Table 1. Cont.

EPS Type EPS Structure Species Niche Implicated
Genes

Consequences/Role
of EPS Reference

β-glucan Lactobacillus
spp. cider - ropy character [30]

a-glucan

Leuconostoc
pseudomesen-

teroides,
Weissella confusa

beer dsr increased viscosity [31]

dextran
Leuconostoc

pseudomesen-
teroides

homemade
wine - - [32]

glucan and
fructan

Leuconostoc
mesenteroides

grape must and
wine

Glucosyltransferase
gene

more or less mucoid
strains [33]

dextran and levan Oenococcus oeni wine dsrO and levO
lyoprotective ability

to freeze-drying
process

[15,34,35]

heteropolysaccharides

glucose, galactose,
rhamnose Oenococcus oeni wine eps cluster

aromatic
complexity, biofilm
formation, capsule,
lyoprotective ability

to freeze-drying

[15,34–36]

glucose, galactose,
galactofuranose

Lactobacillus
suebicus cider gtf ropy character [28,29]

glucose, galactose,
N-acetyl-

glucosamine,
phosphate

Lactobacillus
suebicus cider eps cluster ropy character [37]

glucose, galactose,
glucosamine

Pediococcus
ethanolidurans cider - ropy character [24]

2.1. EPSs Produced by Wine and Cider LAB in Brief

The β-1,3 β-1,2 glucan was the first EPS produced by wine or cider LAB to be identi-
fied [21]. It comprises a backbone made of β-1,3 linked glucoses and branches made of a
single β-1,2 linked glucose attached to each of the two or three residues of the main chain.
This polymer will be referred to as “β-glucan” throughout this review. Its accumulation
in beverages induces an increase in viscosity and even a ropy character: the wine, beer
or cider can harbor an oily texture, even when β-glucan concentrations are as low as
12 mg/L [38]. Many bacterial species are able to produce this specific glucan: O. oeni,
Lactobacillus suebicus, Lactobacillus diolivorans, Pediococcus parvulus, Pediococcus damnosus,
Lactobacillus collinoides, Lactobacillus brevis, Lactobacillus rossiae, Lactobacillus parabuchneri and
Levilactobacillus brevis [17,18,20,23,26–28,30,37,39,40]. Additionally, heteropolysaccharides,
dextrans and fructans are also produced by O. oeni and some other species [38].

Many wine or cider bacteria have been shown to produce several types of polymers
simultaneously. For example, certain strains of O. oeni isolated from wine or cider produce
both dextran (α-1,6-α-1,3 glucan), levan (β-2,6 fructan), β-glucan and heteropolysaccha-
rides composed of galactose, glucose and rhamnose [35]. Pediococcus ethanolidurans isolated
from Basque cider also produces both ropy β-glucan and a heteropolysaccharide composed
of glucose, galactose, glucosamine and glycerol-3-phosphate [24].

However, depending on the conditions, one of the polymers formed is much more
abundant than the others and explains the dominant phenotype of the strain: capsulated,
mucous, ropy or sticky [35,41]. The production could be modulated by the presence of
numerous phenolic compounds in these beverages [42]. Furthermore, in wine or grape
juice, the concentrations of the EPS produced are often hardly noticeable due to the presence
of numerous other polysaccharides liberated from the grapes and yeasts [43,44].

2.2. EPS Localization

EPS can be classified into three major groups, according to their exact external loca-
tion [45]:
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• WPS or wall polysaccharides, attached to the cell, covalently or not, but without
forming a capsule.

• CPS (or capsular polysaccharides), most of the time linked to peptidoglycan, forming
either a thick and cohesive (capsule) or a thin and cohesive (film) outer layer.

• Exocellular polysaccharides (or true EPSs), released into the environment surrounding
the cell during planktonic growth. This kind of true EPS can also form a slime or a
polymeric matrix during growth on solid media or biofilm formation.

The distinction between these polysaccharides is sometimes controversial. The cap-
sules are observable in negative staining in classical microscopy, but some polymers can
form a dense layer that is visible in electron microscopy but not thick enough to be visible
in negative staining [46,47]. In addition, CPS can be released depending on the growing
conditions or due to unstable cell binding and can be mistaken for EPSs. Conversely, certain
EPSs can be found linked to the cell and to the peptidoglycan, even non-covalently [46].

For instance, most O. oeni strains studied are encapsulated by a heteropolysaccharidic
layer and this kind of “capsule” seems to be present regardless of the culture conditions.
However, some of these CPSs are released into the surrounding medium at the end of
the stationary phase [35] or during growth on solid media [27]. On the other hand, the
capsular β-glucan of P. parvulus 2.6, a ropy strain isolated from cider, can be released from
the cell “capsule” into the medium by means of simple cell washes [48].

2.3. Biosynthetic Pathways

The EPS biosynthetic pathways involving sugar nucleotides have been extensively
studied in milk LAB (Streptococcus thermophilus, Lactobacillus rhamnosus and Lactococcus lactis)
and in pathogenic streptococci (Streptococcus pneumonia and Streptococcus agalactiae) [49–54].
Dextran and levan synthesis have been mainly studied in Lc. mesenteroides [55].

Similar pathways were found to be active in LAB of wine and fermented bever-
ages. Actually, in these specific bacteria, three types of cellular machinery dedicated to
the biosynthesis of EPSs have been described to date (Figure 1): (i) extracellular trans-
glycosidases called glycansucrases, which use sucrose as a substrate and catalyze the
synthesis of homopolysaccharides (α-glucans, β-fructans); (ii) isolated synthases that use
nucleotide sugars as substrates and which alone catalyze the polymerization and export of
homopolysaccharides; and (iii) complex systems involving nucleotide sugars as substrates
and many enzymes that achieve the synthesis and export of complex heteropolysaccharides
together [38].

(i) Transglycosidases, which specifically use sucrose as a substrate (or glycansucrases),
are classified into the CAZy GH-13, 68 and 70 families (www.cazy.org (accessed on 14
September 2021)) [56]. They catalyze the synthesis of homopolysaccharides made up
of glucose or fructose, according to the following simplified reactions:

n sucrose→ (fructose)n + n glucose (fructansucrase)

n sucrose→ (glucose)n + n fructose (glucansucrase)

These enzymes are exocellular (Figure 1). They catalyze the synthesis of polysaccha-
rides via a succession of donor-acceptor type reactions (a processive mechanism [57]). They
are produced by certain strains of different species found in fermented beverages (O. oeni,
O. kitaharae, Lc. mesenteroides, Lc. pseudomesenteroides) [32,33,35,41,58]. The structure of the
polymer produced varies depending on the producing enzyme, both in terms of the type of
osidic bonds formed (α-1,6 and α-1,3 in varying proportions for glucans and mainly β-2,6
for fructans), and in terms of degree of polymerization. Interestingly, the dextran produced
by the enzyme DsrOK from O. kitaharae is one of the largest ever studied [58]. The enzyme
also displays a very high catalytic efficacy, whereas the enzyme DsrO of O. oeni is poorly
efficient and quite unstable [34,58].

www.cazy.org
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such as dextransucrase or levansucrase. (B) β-glucan synthesis involving UDP-glucose and the membrane spanning
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glycosyltransferase and several other glycosyltransferases, a lipid carrier and activated substrates (UDP-oses). Then, the
complete repeating unit is externalized by a flippase and is polymerized outside the cell before the release of the polymer.
Gtase, glycosyltransferase.

(ii) The synthase pathway involves a single membrane-spanning enzyme, which alone
carries out the initiation of synthesis, the elongation of the polymer (processive
enzyme) and its export through the membrane (Figure 1). The β-glucan causing wine
or cider ropiness is produced by an enzyme of this type, called Gtf. The role of Gtf
in the synthesis of P. parvulus and O. oeni β-glucan was demonstrated in 2006 and
2008 [17,18]. Gtf is 32% identical to Tts, a synthase found in S. pneumoniae type 37,
which produces a β-glucan with structure close to that produced by wine, beer and
cider strains. This pneumococcal glucan is immunogenic in humans, as in mice, and
was shown to be responsible for pneumococcal strain virulence [59].

(iii) The third pathway is the most complex (Figure 1). This pathway is sometimes called
the Wzy-dependent pathway, based on the name given to the polymerase in E. coli [60].
This pathway has been perfectly characterized in Gram-negative bacteria and partially
in Gram-positive bacteria [49–52,60]. The first step is the synthesis of a repeating
oligosaccharidic unit through the transfer of monomers to a lipid transporter on the
inner face of the cell membrane (Figure 1). This synthesis, carried out by a series of
non-processive glycosyltransferases, is followed by the export of the repeating unit by
a flippase (Wzx) and by the assembly of the exported repeating units by a polymerase



Foods 2021, 10, 2204 6 of 16

attached to the external face of the cell membrane (Wzy). Regulating enzymes and
factors modulate the chain length and the polymer release. The glycosyltransferase
which initiates the synthesis of the repeat unit by transferring the first monomer to
the lipid transporter is called the “priming glycosyltransferase”. Several priming
glycosyltransferases are found in O. oeni and complement each other [61], ensuring
EPS formation even in cases in which mutations inactivate one of the enzymes.

The distinction between biosynthetic pathways using a transglycosidase and sucrose
as a precursor or glycosyltransferase(s) and sugar nucleotides is very important from
a physiological point of view—the biosynthetic pathways involving sugar nucleotides
are very “expensive” for the bacteria from an energetic point of view. They compete for
nucleotide sugars with the cell-wall synthetic pathways, which limits the production levels
of liberated polymers to a few hundred mg/L, whereas the production levels can rise to a
few tens of grams per liter, in the case of glucansucrase using sucrose [35,41,44,62]. The
O. oeni strains equipped with active glucansucrase or fructansucrases release from 0.2 to
8 g/L of polymers depending on the strains and growing conditions. Sucrose has to be
added to the growth media [34,35]. In the presence of high sucrose concentrations, Lc.
mesenteroides isolated from Spanish wines can produce 500 mg/L of dextran [33].

The Wzy-dependent pathway leads to the release of at most 250 mg/L of heteropolysac-
charide in O. oeni and about 50 mg/L in P. ethanolidurans [24,35,44]. Furthermore, depend-
ing on the bacterial strain and the growth conditions, the concentration of β-glucan can
vary between 10 and 250 mg/L [18,19,44].

2.4. Genes Associated with EPS Synthesis

Glycansucrases and autonomous synthase, which are enzymes capable of catalyzing
the synthesis of polymers on their own, are generally encoded by isolated genes, whereas
Wzy-dependant pathways are generally encoded by genes in large clusters or operons.
The eps genes can be chromosomal or plasmidic. In wine and cider LAB, some of these
genes seem extremely mobile, in particular the gtf gene, associated with the synthesis of
the β-glucan causing wine or cider ropiness. In fact, it is carried by at least four different
plasmids within the genus Pediococcus [17,23,24,63], and it is chromosomic (but inserted
in a phage remnant or even in a prophage) in O. oeni [18,35]. Despite the high number
of genetic locations, the gene is more than 95% conserved between the bacterial species
capable of producing the ropy β-glucan: Lb. suebicus, Lb. diolivorans, P. parvulus, P. damnosus,
Lb. collinoides and O. oeni [17,18,23,28,30,37,39,40]. This suggests either a recent transfer
between the bacteria or a high-level conserved amino acid sequence requirement for
maintaining the activity.

Dextransucrase genes are generally chromosomic and highly conserved in O. oeni,
even though the main habitat of the species, wine, does not contain any sucrose. Truncated
forms are sometimes found but most of the time the dsrO gene is not truncated [35]. This
nearly ubiquitous presence of a very large dextransucrase gene (>3000 bp) suggests that
dextransucrase activity is important for the survival of the species, but this may be in
a context other than wine. Other Oenococcus species also display dextransucrase genes,
except in O. kitaharae these have not yet been characterized [58].

In LAB, the genes encoding the enzymes involved in the Wzy-dependent pathway
are organized in clusters or operons, in which regulatory genes or genes for the synthesis
of precursors are often found [35,64,65]. These clusters still exhibit a high density of coding
zones and are chromosomic in the fermented-drink LAB strains studied to date. In O. oeni
the eps gene cluster organization is often unidirectional (Figure 2). The 5′ region is the
most conserved one and it displays regulatory genes, the priming glycosyltransferase gene,
then the genes encoding the other glycosyltransferases, together with genes involved in
precursor biosynthesis, followed by wzy and wzx. Dimopoulou et al. found 14 distinct
complete eps clusters out of 50 O. oeni genomes studied [35]. Recombination events are
certainly at the origin of the final diversity observed. These recombination events may
lean on the conserved 5′ region of the eps gene cluster and on the 3′ end, on the gene recP
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(Figure 2). The size of the chromosome region concerned in the recombination process can
be as high as 50 kb. Such a diversity of eps gene clusters is often described as a component
of adaptation to host defense mechanisms in pathogenic bacteria [66–68]. Actually, more
than 88 wzy-dependent gene clusters, causing as many serotypes, have been described in
S. pneumoniae [65].
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To sum up, in the O. oeni chromosome, regardless of the strain considered, there is at
least one gene dedicated to EPS synthesis which encodes a functional pathway, and very
often several genes encode several active pathways [35]. However, the selective advantage
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of such a high diversity of eps genes and clusters for O. oeni, a non-pathogenic bacterial
species, remains unclear. This point will be further discussed in the following paragraphs.

This eps gene cluster is present in more than 85% of the O. oeni strains studied and it
is associated with capsular polysaccharide synthesis. Only the last one presented in the
bottom of this figure encodes an inactive pathway (no CPS produced; the gene transcription
was not examined). The cluster is highly variable, especially in its 3′ end, whereas the 5′

end sequence is more conserved. The genes wzx and wzy are the most divergent ones and
appear to be specific to each complete cluster. Several recombination events upstream and
downstream of the eps locus may have led to the diversity observed. These events may
lean on recP or the cluster of genes inserted between recP and the 3′ end of the eps gene
cluster, or even on the eps gene cluster itself. In parallel, recombination events may have
occurred upstream of eps gene cluster 2, between the genes of amiO and wze or wzd.

3. What Could Be the Consequences for the Winemaker or the Wine Lover?

The exact role of polysaccharides in bacterial physiology is not perfectly understood.
Nevertheless, the fact that the majority of the wine microorganisms have the ability to
produce several EPS structures independently of the genus, species or strain could indicate
the importance of these polymers for the survival of the individuals or for maintaining the
species. The production of fermented beverages from fruits is a seasonal activity. Microor-
ganisms must therefore survive not only during the beverage production process but also,
once the beverages are produced, in cellars or factories and/or in orchards and vineyards
for almost a year. LAB may therefore be able to survive in the gastrointestinal tract of
insects and birds that gravitate to production areas and/or on production equipment or on
trees, plants and soils, which would promote (1) their survival between seasons and (2)
their natural spread or their human-driven spread (wine trade, exchange of winemaking
materials, Figure 3).
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3.1. EPSs for Bacteria Survival in Harsh Winemaking Conditions

The presence of an extracellular polymeric matrix could be implicated in the protection
of the cell in various situations including wine or cider elaboration [69,70]. Indeed, many
bacteria enhance EPS synthesis as a response to carbon dioxide release by yeasts during
AF [71,72] or in the case of various stresses such as low pH or high ethanol or phenolic
compound concentrations [23,34]. For example, β-glucan seems to increase the resistance
of the producing bacteria to acidic pH [18,27,48]. In France, the prevalence of ropy O. oeni
strains is particularly high in regions producing naturally more acidic wines (Bourgogne
or Champagne) [18,73,74]. The increase in viscosity induced by β-glucan may slow down
the diffusion of abiotic compounds, such as phenolic compounds, sulfites, and ethanol,
and protect the bacteria. By constituting a protective layer, β-glucan is also involved in
the resistance of LAB to lysozyme treatment [75]. LAB CPSs and dextrans can also offer
protection during the freeze-drying step in malolactic starter production [34,76]. On the
other hand, the phage resistance associated with EPSs is controversial and EPSs could,
depending on the case, serve as a target for attachment and recognition or, on the contrary,
as a masking element for these targets [77,78].

3.2. EPSs, Biotic Interactions and Species Survival

Beta-glucan was shown to promote the adhesion of bacteria to intestinal cells and
to play a role in cross feeding in the intestinal tract, and this may promote microbial
survival in the intestinal tracts of various animal and insects, and hence in bacterial
dissemination and the colonization of new ecological niches [48,79–81]. In the same way,
the high diversity of capsular heteropolysaccharides produced by O. oeni may be involved
in bacterial survival in a biotic context, through interactions or adhesion to epithelial
receptors in the gastrointestinal tracts of insects or animals. The capsule may also constitute
a protection against host defense mechanisms and promote host colonization, as shown
for many pathogenic Gram-positive and Gram-negative bacteria [66,82,83]. Nevertheless,
further work will be necessary to identify the hosts in which wine LAB are accommodated
between two vintages, if any.

O. oeni glucansucrase genes are highly conserved, despite the fact that the encoded
enzymes use a substrate, sucrose, that is rarely found in wine but is present in grapes. The
production of dextran on grapes may assist the attachment of the bacteria to fruits or to
vine woods. It may also promote their survival in the soil, as suggested a long time ago for
Lc. mesenteroides [84]. Furthermore, EPS-producing LAB adheres better to S. cerevisiae cells,
which efficiently consume lactic acid and consequently decrease the acidity of the medium,
subsequently promoting bacterial growth [85,86].

3.3. EPSs and Bacterial Colonization of the Production Cellar

EPSs may help the wine microorganism to invade during all the winemaking steps
through promoting adhesion onto abiotic surfaces, i.e., stainless steel, plastic and glass
surfaces, as well as the wood of oak barrels. Undoubtedly, the presence of EPSs modulates
the physicochemical characteristics of the LAB cell surface [87]. In some cases, EPSs
were shown to be implicated in the adhesion process [88,89]. Adhered cells can, in the
second phase, evolve into biofilms. Biofilms are complex structures composed mainly
of an extracellular matrix, genetic material and microorganisms. Depending on the case,
abundant EPSs can increase or decrease the adhesion capacity and biofilm formation [90].

The same could be assumed for the EPSs produced by wine LAB, i.e., dextran, β-
glucan and heteropolysaccharides. EPSs may be important for O. oeni biofilm settlement
as the genes implicated in heteropolysaccharide and homopolysaccharide production
are overexpressed under stressed biofilm conditions [36]. More recently, it has been
demonstrated through FT-IR spectra analysis that the metabolic fingerprint of the attached
cells was significantly different from that of the planktonic ones, and the spectral zone
associated with polysaccharides was discriminative. This suggests the importance of EPSs
in biofilm formation on stainless steel surfaces [91]. The β-glucan produced by O. oeni
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or recombinant L. lactis expressing gtf may be involved in the last steps of adhesion and
biofilm consolidation, rather than primary adhesion [18]. Regarding O. oeni dextran, the
research carried out so far has not made it possible to determine whether it promotes or
whether it prevents attachment to abiotic surfaces. This may depend on the strain and
the context in which the cells develop. Nácher-Vázquez et al. [92] compared the biofilm
formation and aggregation ability of two different bacterial species, Lc. mesenteroides and
Lb. sakei, both of which are great producers of dextrans. Interestingly, only Lb. sakei
formed a biofilm on the tested abiotic surfaces, whereas dextran exerted an antiadhesive
effect in the case of the strain of Lc. mesenteroides. Thus, the authors proposed that the
role of dextran was involved in the aggregation process and biofilm consolidation, rather
than in the primary adhesion process, which is rather linked to the surface proteins of
the bacteria. Dextran, which is a neutral and weakly adhesive polymer, may aid in the
attachment process by masking repulsion molecules. By contrast, it could prevent adhesion
by masking motifs essential for primary adhesion [93,94].

The most important point is that biofilms are a strategy used to overcome stressful
conditions [95]. O. oeni cells attached to stainless steel and oak wood surfaces can per-
form malolactic fermentation and display higher tolerance to wine stress than planktonic
ones [36]. In the same way, the biofilm cells of Lb. plantarum expressed higher resistance to
acetic acid and low pH values than the planktonic cells [69].

3.4. Beverage Spoilage and Possible Treatments

Some of the EPSs from wine bacteria are implicated in a specific form of wine spoilage,
the disease known as “ropiness”. The polymer produced increases the wine’s viscosity and
sometimes induces an oily sensation [96]. This ropy character may be perceived with the
naked eye and can occur in stainless-steel tanks, in barrels and even in the bottle. If the
alteration remains at bottle opening, the consumer who discovers the defect sometimes
definitively turns away from the wine from the area concerned and this may provoke great
losses for the wine industry (Figure 3).

For the moment, the only molecule clearly implicated in ropiness is the β-glucan
described in the previous paragraph, but other molecules could be implicated in other
bacteria [23]. Interestingly, wine LAB displaying the ropy phenotype in laboratory media
may be isolated from non-ropy wines [44]. This observation indicates that the effect of
EPSs on wine depends on many factors and the presence of a “ropy” strain is not sufficient
to provoke wine spoilage. In the first place, spoilage is not correlated with EPS quantity
but mainly with EPS structure, as just 12 mg/L of β-glucan may provoke ropiness, whereas
some g/L of dextran do not induce such a viscosity change. In addition, the role of
the wine or cider matrix is essential as interactions of the polymer with the matrix may
enhance the viscosity. Interestingly the Lactobacillus and Pediococcus strains producing
β-glucan are also implicated in beer and cider spoilage [20,26,39,97]. P. parvulus is the
species that is most often involved in the ropiness of wine and ciders, as it develops after
fermentation processes in the late stages of winemaking, even after bottling. O. oeni ropy
strains are quite frequent but, as they develop in the early stages of winemaking, when
wine supervision is easier, they are less dangerous for the final quality of the wine (Table 1).
Indeed, the vigorous stirring of the wine is enough to make the ropy character disappear
and a close supervision of the microbial flora during the following stages of winemaking
may guarantee that the viscosity remains low. The well-developed qPCR protocols for the
detection of ropy strains, through the detection of gtf genes, constitute an interesting tool for
wine supervision, early reaction and curative or preventive treatments [17,19,98]. However,
LAB spoilage species could be resistant to SO2 treatment, as well as to lysozyme [18,75].
Nevertheless, the ropy strains could be remedied via the simultaneous enzymatic action of
β-glucanase and lysozyme, as recommended by Coulon et al. [75]. A combined treatment
of low concentrations of enterocin AS-48, along with high-intensity pulsed-electric field
(HIPEF) treatment, was also shown to inactivate exopolysaccharide-producing LAB strains
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in apple juice, but these methods need to be investigated more and are not currently
allowed [99–101].

3.5. Bacterial EPSs and Wine Sensorial Properties

For years, bacterial polysaccharides were considered to have no impact on wine, ex-
cept for β-glucan accumulation and ropiness (see previous paragraph). However, bacterial
polysaccharides accumulate in wine during MLF and later even when no viscosity increase
is noticeable [35,43]. These biopolymers could directly or indirectly have an impact on
the wine’s sensory profile, as previously shown for yeast mannoproteins (MPs) [102–104].
In fact, MP enrichment of wines have been proven to modify wine astringency and su-
crosity [105,106]. MPs have also been mentioned to play an important role in tartrate salt
crystallization, although the MP concentration needs to be adjusted depending on the wine
considered [107–109]. Additionally, recent studies have shown that MPs can interact with
all anthocyanin families and modulate the bioaccessibility of polyphenolic compounds
during digestion in the gastrointestinal tract [110]. In addition, pectin, a heteropolysac-
charide mainly composed of partially methylated galacturonic acid, can inhibit proteins
and tannin precipitation [111]. These interactions also depend on the hydrophobicity and
molecular weight of the phenolic compounds [112]. In the same way, the EPSs liberated
by LAB could interfere with tannins and salivary proteins and thus reduce the sense of
astringency. This could be the case with O. oeni dextrans. Indeed, small commercial dex-
trans (>5000 da) were shown to increase the mouthfeel sensation and to decrease wine
astringency (Dimopoulou et al., unpublished).

Even if polysaccharides are not volatile molecules, they may indirectly contribute to
aroma perception. Olfactory perception is a complicated phenomenon in which molecular
interactions play a crucial role. Dimopoulou et al. [34] suggested for the first time that
the bacterial EPSs produced in wine could contribute to aromatic complexity and fruity
aromas. These may affect the release of esters and alcohols from the liquid phase, affecting
their concentration in the head space [113]. Indeed, the wine matrix plays an essential role
in the in vivo aroma release [114]. When dextrans from Lc. mesenteroides were added to
wine model medium, isoamyl acetate and ethyl hexanoate esters were salted out in the
vapor phase as the presence of polysaccharides decreased their solubility [115]. Bastard
et al. [36] also suggest an interaction between the biofilm formed on the oak surface and
wine, contributing to the expression of trans-whisky lactone complexity.

4. Conclusions

The ability of LAB to produce EPSs in wine and other fermented beverages has been
known for a long time, but mainly in the context of ropy β-glucan accumulation and wine
spoilage. Great genotypic and phenotypic diversity within LAB EPS producers, especially
O. oeni, has been more recently elucidated. The more the research advances, the more the
complexity of EPS biosynthesis in fermented beverages is unraveled, revealing the multiple
biosynthetic pathways and the associated phenotypic diversity. The effects of the EPSs
produced on bacterial survival and dissemination, as well as on wine quality, are complex
and trigger many fascinating research perspectives for the future. An important question
is whether the EPSs produced by LAB of fermented beverages ultimately have a positive
or negative effect. No one-word answer to this question yet exists, and this will certainly
require many years of work.
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