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Abstract  

Background: Subcortical brain structures play a key role in pathological processes of age-

related neurodegenerative disorders. Mounting evidence also suggests that early-life factors 

may have an impact on the development of common late-life neurological diseases, including 

genetic factors that can influence both brain maturation and neurodegeneration.  

Methods: Using large population-based brain imaging datasets across the lifespan (N<40,628) 

we aimed to: (i) estimate the heritability of subcortical volumes in young (18-35), middle (35-

65), and older age (65+), and their genetic correlation across age groups; (ii) identify whether 

genetic loci associated with subcortical volumes in older persons also show associations in 

early adulthood, and explore underlying genes using transcriptome-wide association studies; 

(iii) explore their association with neurological phenotypes. 

Results: Heritability of subcortical volumes consistently decreased with increasing age. 

Genetic risk scores for smaller caudate nucleus, putamen and hippocampus volume in older 

adults were associated with smaller volumes in young adults. Individually, ten loci associated 

with subcortical volumes in older adults also showed associations in young adults. Within these 

loci, transcriptome-wide association studies showed that expression of several genes in brain 

tissues (especially MYLK2 and TUFM) was associated with subcortical volumes in both age-

groups. One risk variant for smaller caudate nucleus volume (TUFM locus) was associated 

with lower cognitive performance. Genetically-predicted Alzheimer’s disease was associated 

with smaller subcortical volumes in middle and older age.  

Conclusions: Our findings provide novel insights into the genetic determinants of subcortical 

volumes across the lifespan. More studies are needed to decipher the underlying biology and 

clinical impact. 
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Introduction 

Subcortical structures (hippocampus, caudate nucleus, putamen, pallidum, accumbens, 

amygdala and thalamus) are involved in many neural processes, from autonomic and 

sensorimotor functions to memory, decision making and processing of reward and threat 

signals (1–5). These structures also play a key role in pathological processes of age-related 

neurodegenerative disorders, including Parkinson disease (PD) and Alzheimer’s disease (AD). 

Volumes of subcortical structures can be measured quantitatively in large population-based 

samples using brain Magnetic Resonance Imaging (MRI) and were shown to decrease with 

ageing and neurodegenerative diseases (6–15). 

Mounting evidence suggests that factors already present at an early age may have an impact on 

the development of late-life neurological diseases, likely due to a complex combination of 

genetic and environmental factors that influence both brain maturation and neurodegeneration 

(16,17). Identifying early-life determinants of neurological diseases occurring in older age 

could therefore be crucial for developing more efficient prevention strategies. MRI-based 

measures of subcortical brain structures represent a powerful intermediate phenotype to 

decipher these early determinants, as they show alterations many years before the onset of 

clinical symptoms (18). 

Recently, genome-wide association studies (GWAS) have enable substantial progress in 

deciphering genes underlying variations in volumes of brain structures, identifying 38 

independent genetic risk loci for subcortical volumes (15,19–21). To date, most of these studies 

have focused on middle-aged and older adults. A recent study found that AD genetic risk 

variants were associated with smaller hippocampal volume in young adults, suggesting that 

genetic determinants of late-life neurodegenerative diseases may already be associated with 

subtle variations in brain structure early in life (22). However, genetic determinants of MRI-
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based measures may also change over time, either because of different underlying 

physiological or pathological processes between young and older persons or because of time-

varying exposures to environmental risk factors across the lifespan (16,23,24). 

Exploring the shared genetic variation underpinning early and late structural brain variations, 

specifically of subcortical brain volumes, could provide important novel insight into the time-

course of structural brain changes throughout the adult lifespan and into the mechanisms 

underlying brain aging and their connection with factors modulating brain maturation. This 

could contribute to exploring early biological processes driving late-onset neurodegenerative 

diseases and open new avenues for preventive approaches.  

Using large population-based brain imaging datasets across the adult lifespan we aimed to: (i) 

estimate the heritability of subcortical volumes from young adulthood to older age, and assess 

the amount of shared genetic variation across age groups; (ii) identify whether genetic loci 

associated with subcortical volumes in older age also show association with subcortical 

volumes in early adulthood, and explore underlying genes using transcriptome-wide 

association studies; (iii) explore the clinical significance of these results in relation with 

cognition, AD, and PD. 
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Methods and Materials 

Study Population 

Analyses were conducted in three age groups: young (18-35), middle-aged (35-65), and older 

adults (65+). The 35-years cut-off (also corresponding to the upper-age limit of i-Share 

participants) was based on previous neuroimaging studies indicating that some brain structures, 

including subcortical structures, reach a peak volume around this age (6,25). The 65-years cut-

off (also the lower-age limit for the 3C-Dijon participants) corresponds to an age after which 

aging features on brain imaging tend to accelerate more steeply (6,25). 

Heritability analyses 

Heritability analyses were conducted on individual level data from three cohorts: 

Population-based cohort studies of unrelated individuals 

The Internet-based Students HeAlth Research Enterprise (i-Share) study is an ongoing 

prospective population-based cohort study of French-speaking students (26). 1,777 participants 

aged 18-35 years had both brain MRI and genome-wide genotypes (Supplementary 

Methods).  

The Three-City Dijon (3C-Dijon) Study is a population-based cohort study (27). 1,440 

participants aged 65 years and older had both brain MRI and genome-wide genotypes, 

excluding participants with dementia, stroke history, or brain tumors at baseline 

(Supplementary Methods). 

Family-based cohort studies  

The Framingham Heart Study (FHS) is a community-based cohort study comprising three 

generations of participants. 1,999 participants aged 36-64 years and 1,828 participants aged 65 

years and older had both brain MRI and genome-wide genotypes, excluding participants with 
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stroke history or other neurologic disorders confounding the assessment of brain volumes at 

time of MRI (Supplementary Methods). 

Analyses of shared genetic variation across the lifespan 

To analyze genetic associations with subcortical volumes in young adults we used the 

aforementioned 1,777 i-Share participants with high quality brain MRI and genome-wide 

genotype data. To derive genome-wide significant associations with subcortical structures in 

middle-aged to older adults we used summary statistics of the largest published meta-analyses 

of subcortical volumes GWAS (detailed in Supplementary Methods) for optimal power 

(15,20). In secondary analyses we also used smaller meta-analyses without a subset of cohorts 

comprising younger age groups leading to a sample size of 19,555 participants (detailed in 

Supplementary Methods). For hippocampal volume we used a previously published GWAS 

meta-analysis (21). Participants with prevalent dementia, stroke or other neurological 

pathologies potentially influencing brain measurements at the time of MRI were excluded in 

all but one meta-analyses (20). 

This study was approved by the ethics committees of participating studies, and written 

informed consent was obtained from all participants. 

MRI Acquisition and Phenotyping 

MRI acquisition parameters and phenotyping methods in individual cohorts are presented in 

the Supplementary Methods and have been described in detail (15,20,21,28). 

We defined subcortical volumes by the total (left+right) grey matter volumes (cm3) of the 

accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus. The 

accumbens volume was not available in the 3C-Dijon study. 
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Genotyping, quality control, and imputation 

Genome-wide genotyping platforms, quality control and imputation procedures are described 

in the Supplementary Methods.  

Statistical analyses 

Analyses performed in this study are summarized in Figure 1. 

Heritability analyses 

Heritability analyses were adjusted for age, sex, total intracranial volume, and the first four 

principal components of population stratification. 

Population-based cohort studies of unrelated individuals 

To estimate heritability for each subcortical volume in i-Share and 3C-Dijon, we used GCTA 

(v1.26.0) to estimate the proportion of phenotype variance explained by genome-wide single 

nucleotide polymorphisms (SNPs) (Figure 1, Supplementary Methods) (29). 

Family-based cohort studies  

To estimate heritability for subcortical volumes in FHS, we used the variance component 

model implemented in SOLAR accounting for familial relationships to determine the ratio of 

the genetic variance to the phenotypic variance (30). Mixed models were fit including fixed 

effects for covariates and additive effects for additive polygenetic and residual error terms. 

Genetic correlation analyses 

We used LD Score Regression (LDSR) to estimate the genetic correlation between subcortical 

volumes in young and older adults (Figure 1) (31,32). For the older population, we first used 

the latest, largest published GWAS meta-analysis of subcortical brain volumes (15,20). To 

confirm that the effects were not driven by the youngest individuals in the GWAS meta-
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analyses, we conducted secondary analyses using subcortical brain volumes GWAS meta-

analyses without cohorts or consortia comprising younger participants (as described for 

analyses of shared genetic variation across the lifespan). For young adults, we performed 

GWAS of subcortical volumes in i-Share, adjusting for age, sex, total intracranial volume, and 

the first four principal components of population stratification. We used a linear mixed model 

implemented in GCTA-MLMA-LOCO (33). We used a method implemented in R 

(matSPDlite) to correct for multiple testing (34). Among the seven subcortical volumes studied, 

the number of independent tests was estimated at 4.0 based on the correlation matrix between 

all phenotypes, leading to a Bonferroni corrected significance threshold of p<1.25×10-2. 

Single variant analyses and Genetic Risk Score approaches 

First, we selected published genome-wide significant associations in middle-aged to older 

adults (15,20) and looked up associations with the corresponding phenotype in young adults 

(i-Share), for the lead SNP and nearby variants (±250 kb) in moderate to high linkage 

disequilibrium (LD) (LD-r²>0.5). To define significance thresholds we corrected for the four 

independent phenotypes in i-Share and the number of independent loci tested for each 

subcortical volume: accumbens: p<3.13×10-3; amygdala: p<1.25×10-2; caudate: p<1.25×10-3; 

hippocampus: p<2.08×10-3; pallidum: p<2.08×10-3; putamen: p<1.39×10-3; thalamus: 

p<6.25×10-3.  

Second, we generated genetic risk scores (GRS) for lower subcortical volumes in young adults 

(i-Share) by summing the number of published genome-wide significant independent risk 

alleles identified from subcortical volume GWAS in middle-aged to older adults, weighting 

each risk allele by the regression coefficient for the corresponding SNP in the published GWAS 

(Supplementary Methods). Associations were tested using linear regression models in R 

v3.6.1 and adjusted for age, sex, total intracranial volume, and the first four principal 
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components of population stratification. To account for multiple testing, we corrected for four 

independent phenotypes (p<1.25×10-2). As a sensitivity analysis, GRS analyses were repeated 

using summary statistics of the subcortical volumes GWAS conducted after removing cohorts 

with young participants as described above (Figure 1). 

Transcriptome-wide association study 

To explore genes underlying genetic associations with subcortical volumes across the lifespan 

we performed transcriptome-wide association studies (TWAS) using TWAS-Fusion (Figure 

1, Supplementary Methods) (35). We used summary statistics from the aforementioned 

published GWAS meta-analyses of subcortical volumes (15,20) and 17 publicly available gene 

expression quantitative trait loci (eQTL) reference panels from blood, brain and peripheral 

nerve tissues (Supplementary Methods). We used TWAS-Fusion to estimate the TWAS 

association statistics between predicted expression and each subcortical volume (35). 

Transcriptome-wide significant genes were determined in each tissue expression panel after 

correcting for the average number of features (3793.5 genes) and 4 independent phenotypes 

(p<3.30×10-6). Transcriptome-wide significant genes were then tested in conditional analysis 

(TWAS-Fusion) (35). Next, to ensure that observed associations did not reflect random 

correlation between gene expression and non-causal variants associated with subcortical 

volumes, we performed a colocalization analysis (COLOC) on the conditionally significant 

genes (p<0.05) to estimate the posterior probability of a shared causal variant between the gene 

expression and trait association (PP4) (36). Genes presenting a PP4≥0.75, for which eQTLs 

did not reach genome-wide significance in association with subcortical volumes, and were not 

in LD (r²<0.01) with a lead SNP of genome-wide significant risk loci for subcortical volumes, 

were considered as novel.  
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In order to test colocalized associations in a younger population, we used the individual-level 

prediction of the gene expression option implemented in the Fusion software to generate 

expression-weights in i-Share (Supplementary Methods). The significance threshold 

accounted for the number of genes colocalized in >1 tissue for each phenotype (accumbens: 

p<0.05; amygdala: p<0.05; caudate: p<2.17×10-3; hippocampus: p<1.67×10-2; pallidum: 

p<2.94×10-3; putamen: p<3.85×10-3; thalamus: p<0.05).  

Lifetime brain gene expression profile 

We examined the spatio-temporal expression pattern of genes in loci reaching genome-wide 

significance in the subcortical volumes GWAS, TWAS-COLOC significance and at least 

nominal significance in the i-Share TWAS. We used a public database (https://hbatlas.org/) 

comprising genome-wide exon-level transcriptome data from 1,340 tissue samples from 16 

brain regions of 57 postmortem human brains, from embryonic development to late adulthood 

(37). 

Clinical correlates 

First, we explored the relation of loci associated with subcortical volumes in young and older 

populations or at least nominally significant in TWAS in i-Share (Table 1) with AD, PD, and 

general cognitive function using summary statistics of the latest, largest published GWAS (38–

40). Accounting for 10 independent loci (r²<0.5) and three traits, the significance threshold was 

p<1.67×10-3.  

Second, we tested whether genetically predicted AD or PD have an impact on subcortical 

volumes in the general population in young, middle-aged and older adults using the generalised 

summary data-based Mendelian randomization (GSMR) tool implemented in GCTA 

(Supplementary Methods) (29,41). The significance threshold accounted for four 

independent subcortical volumes and two diseases (p<6.25×10-3).   

https://hbatlas.org/
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Data availability 

Data supporting these results can be made available upon reasonable request from the 

corresponding author. 
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Results 

Heritability and genetic correlation of subcortical volumes across 

the lifespan  

SNP-heritability estimates for all subcortical volumes in young, middle-aged, and older adults 

are presented in Figure 2 and Table S1. We observed a decreasing trend of the average SNP-

heritability estimates of subcortical volumes in cohorts of increasing age (Figure 2 – Panel A), 

and a similar decreasing trend for most individual subcortical volumes (Figure 2 – Panel B), 

both in unrelated and family-based population-based studies. 

Most subcortical volumes were genetically correlated with each other among middle-aged to 

older adults, while in young adults genetic correlations reached significance after correction 

for multiple testing between hippocampus and amygdala, pallidum and caudate nucleus, and 

putamen and pallidum. Genetic correlations between young and middle-aged to older adults 

for the same individual subcortical volumes were significant for the caudate nucleus and the 

pallidum (Figure 3). These results were similar when using the published GWAS meta-

analyses of subcortical volumes in middle-aged to older adults (Figure 3 – Panel A), and the 

secondary GWAS meta-analyses in older adults (Figure 3 – Panel B).  

Genetic associations with subcortical volumes across the lifespan 

Out of the 38 genome-wide significant loci for subcortical volumes in middle-aged to older 

adults, 10 were significantly associated with the same volume, in the same direction, in young 

adults (Table 1, Table S2): four in the caudate nucleus, two in the hippocampus and the 

putamen respectively, and one in the amygdala and the pallidum. The most significant 

association in young adults was for rs8017172 (p=1.43×10-7), near KTN1, with putamen 

volume.  
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GRSs for smaller subcortical volumes derived from GWAS in middle-aged to older adults were 

significantly associated with smaller volumes of the same structure in young adults for 

putamen, caudate nucleus, hippocampus, amygdala, and pallidum (Table 2). The most 

significant association was observed for the putamen (p=5.04×10-11). When deriving the GRS 

from the secondary meta-analyses of GWAS in older adults exclusively, associations remained 

significant for the putamen, caudate nucleus, and hippocampus. 

We then sought to explore putative causal genes underlying genome-wide significant 

associations with subcortical volumes using TWAS, initially based on published GWAS meta-

analyses in middle-aged and older adults (Figure 1). Among all genes showing transcriptome-

wide significant associations, 54 presented a high colocalization posterior probability of 

sharing a causal variant between the gene expression and trait association (COLOC PP4≥0.75) 

with at least one subcortical volume, mostly in brain tissues (Figure S1, Table S3): 23 with 

caudate nucleus, 17 with pallidum, 13 with putamen, three with hippocampus, and one 

respectively with nucleus accumbens, amygdala, and thalamus. Among these 54 genes, 30 were 

in loci that did not reach genome-wide significance in the subcortical volumes GWAS  and can 

be considered as novel (Table S3). Although we lacked power to detect transcriptome-wide 

associations in i-Share, we detected significant signals after multiple testing correction for 4 of 

the 54 colocalized genes described above, all at the genome-wide significant subcortical 

volume GWAS locus chr20q11.21 (Figure 4, Figure S1, Table S3): lower expression of 

MYLK2 in putamen was associated with smaller caudate nucleus and putamen volume, higher 

expression of FRG1B, MLLT10P1 and RP4-610C12.4 in basal ganglia and cerebellum with 

smaller pallidum volume. With an exploratory purpose, we also considered 13 additional genes 

showing nominally significant associations in the young adult TWAS (Figure 4), including: 7 

genes/transcripts for caudate nucleus (at chr16p11.2-12.1: CCDC101, NPIPB7, NPIPB9, 

TUFM, EIF3C, RP11−1348G14.4, RP11−22P6.2), 2 for pallidum (at chr20p11.21: ENTPD6, 
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PYGB), and 4 for putamen (at chr5q14.3: CTC−498M16.4, TMEM161B, TMEM161B−AS1; 

and chr20q11.21: MLLT10P1). Of note, the chr16p11.2-12.1 locus also showed significant 

association with the caudate nucleus in young adults (Table 1 and Table S2). Most TWAS-

COLOC genes from genome-wide significant risk loci for subcortical volumes that also 

showed nominally significant TWAS association in young adults were described to have 

constant expression levels in subcortical regions throughout the life course, including in the 

prenatal period (Figure S2). 

Clinical correlates  

When exploring the association of the 14 genetic variants (in 10 independent loci) associated 

with subcortical volumes in both young and older adults (Table 1) with AD, PD, and general 

cognitive function we observed a genome-wide significant association of the lead SNP for 

smaller caudate nucleus volume at chr16p11.2-12.1 with lower general cognitive function 

(Table 3). No association reached significance with AD and PD after multiple testing 

correction. 

Using GSMR, genetically predicted AD was significantly associated with smaller volumes of 

most subcortical structures except pallidum in dementia-free middle-aged and older adults from 

the general population, and with larger putamen volume in young adults (Figure 5, Table S4). 

Genetically predicted PD was significantly associated with larger thalamus volume in young 

adults (Figure 5, Table S4).  
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Discussion 

In large population-based cohort studies across the adult lifespan, we identified a consistent 

trend towards decreasing heritability of subcortical volumes with increasing age. We observed 

significant genetic correlation of caudate nucleus and pallidum volumes between young and 

older adults. GRSs for smaller caudate nucleus, putamen or hippocampus volumes in older 

adults were significantly associated with smaller volumes of the same structures in young 

adults. Individually, ten of 38 independent loci associated with subcortical volumes in older 

adults also showed significant associations with the corresponding volumes in young adults. 

Using TWAS with colocalization analyses, we found evidence for expression levels of 16 

genes to be significantly associated with caudate nucleus, putamen, or pallidum volume both 

in older and young adults, pointing to biological pathways underlying structural brain changes 

across the adult lifespan. One genome-wide significant caudate nucleus locus in older and 

young adults (at TUFM) was associated with lower general cognitive function at genome-wide 

significance. We also observed an association of genetically determined AD with smaller 

volumes of most subcortical structures in middle-aged and older dementia-free adults. 

The observed heritability trends of subcortical volumes across the adult lifespan, both in an 

unrelated and family-based population-based setting, support and expand on a previous meta-

analysis of brain volume heritability estimates in twin and family studies. The latter showed 

increasing heritability from childhood to early adulthood and decreasing heritability from 

young adulthood to old age (42). Potential explanations include an increase of the 

environmental contribution to variation in subcortical volumes with increasing age, thus 

leading to a relative decrease of the genetic contribution, differential timing of gene expression 

during life, or age of onset of some disorders (43). 
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Genetic variants associated with smaller subcortical volumes in older persons were associated 

with smaller volumes of the same structure already in early adulthood, both individually and 

aggregated in a GRS. These results suggest that biological pathways influencing subcortical 

volumes in older age already have an impact on the latter in young adulthood. Although our 

analyses only focused on adult age, one could speculate that at least some of the susceptibility 

variants for smaller subcortical structures already showing significant associations at age 20 

may be involved in developmental processes. This is supported by a recent study showing that 

polygenic risk scores for subcortical volumes in middle-aged to older adults were already 

associated with these volumes during infancy and early childhood (44). Several genes in loci 

associated with subcortical volumes in older persons were reported to be involved in 

neurodevelopmental processes in experimental work and are implicated in Mendelian disorders 

(15). FAT3 at the chr11q14.3 locus that also showed association with caudate nucleus volume 

in i-Share, was for instance shown to be involved in neuronal morphogenesis and cell migration 

(15). 

Ten individual loci associated with smaller subcortical volumes in older adults were already 

associated with smaller volumes of the same structures in young adults. We also showed 

association of subcortical volumes with up- or down-regulation of three genes in loci associated 

with caudate nucleus, putamen and pallidum volumes both in older and young adults: MYLK2, 

FRG1B and MLLT10P1. Among these, upregulation of MYLK2 expression in brain tissues was 

significantly associated with larger caudate nucleus and putamen volume, in both older and 

young adults (Figure 4, Figure S3). In brain single-cell RNA sequencing analyses in mice, 

mylk2 appears to be expressed in arterial and arteriolar smooth muscle cells and in pericytes 

(45,46). MYLK2 encodes a myosin light chain kinase, a calcium/calmodulin dependent 

enzyme, harboring rare mutations causing hypertrophic cardiomyopathy (47). 
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Expression levels of four genes (CCDC101, NPIPB7, NPIPB9 and TUFM) in a caudate nucleus 

GWAS locus that also shows significant association in young adults (chr16p11.2-12.1, Table 

1) were associated with caudate nucleus volume at transcriptome-wide significance in older 

adults and nominal significance in young adults. Among these, increased TUFM expression 

was associated with smaller caudate nucleus volume, with evidence for colocalization in 

several tissues (Figure 4, Figure S3). TUFM is involved in combined oxidative 

phosphorylation deficiency 4 (COXPD4), a disease causing developmental regression, 

microcephaly and basal ganglia atrophy (48,49). Interestingly, the lead variant associated with 

smaller caudate nucleus at chr16p11.2-12.1 was associated with lower general cognitive 

function at genome-wide significance. Additional studies are required to confirm these findings 

and explore the role of TUFM. 

The most significant association with subcortical volumes in young adults was observed for an 

intergenic variant at chr14q22.3, with KTN1 as the closest gene, reaching near to genome-wide 

significance in association with putamen volume despite a limited sample size. Genetic variants 

in this region had previously been shown to be associated with putamen shape in healthy 

adolescents (19), our results thus strengthen the evidence for an important role of this locus in 

modulating putamen structure across the lifespan.  

Noteworthy, genetic correlations between young and older adults were significant for striatal 

and pallidal volumes only and most significant associations of genetic risk scores and 

individual variants across age-groups, as well as transcriptome-wide associations were 

observed for these structures, and to a lesser extent the hippocampus. This could be at least 

partly explained by the recent observation that striatal and pallidal volumes peak in childhood 

and decline steadily thereafter, while volumes of the thalamus, amygdala, and hippocampus 

peak later and start declining from the sixth decade onwards (6). Moreover, interindividual 

variability of thalamus, amygdala, and hippocampus were found to increase with age, 
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suggesting that these structures may be more susceptible to environmental factors or late-acting 

genes (6). 

Using Mendelian randomization (GSMR), we identified significant associations of genetically 

determined AD, but not PD, with all subcortical volumes except pallidum in older dementia-

free adults, consistent with prior observations from studies using polygenic risk scores of AD 

on hippocampus and amygdala (50–54). These associations were not observed in young adults, 

in contrast with other studies, which identified an association between polygenic risk scores of 

AD and hippocampal volume in adolescent and young adults (22,55). These had used polygenic 

risk scores composed of SNPs selected at less stringent p-value thresholds (22,55). In young 

adults we found that genetically determined AD was associated with larger putamen volume 

and genetically determined PD with larger thalamus volume. If confirmed these results could 

reflect complex mechanisms whereby biological pathways contributing to larger maximal 

volumes in certain brain regions early in life could also enhance late-life neurodegenerative 

processes, akin to the observation that rates of age-related maturation are significantly 

correlated with rates of decline of white matter tracts (56). 

To our knowledge, this is one of the first studies exploring associations of genetic variants with 

subcortical volumes across the adult lifespan. Our analyses were based on high quality MRI 

measurements and genome-wide genotype data in several cohorts, including a unique cohort 

of young students and leverage large scale meta-analyses conducted within the CHARGE 

consortium. We acknowledge limitations. While we describe trends in heritability estimates, 

we could not formally compare whether these differed significantly between age groups, 

therefore decreasing heritability estimates with increasing age need to be interpreted with 

caution. The sample size of our young adult cohort was limited, particularly compared with the 

large-scale meta-analysis of GWAS in older adults, and included a majority of women. Our 

study was restricted to the adult lifespan and should be complemented by cohorts of children 
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and adolescents to capture the full spectrum of genetic determinants across the entire life 

course. Whereas a longitudinal design would be most appropriate to explore changes in 

heritability estimates and genetic determinants across the lifespan in the same individuals, 

repeated MRIs and genetic analyses in large population-based samples are limited and have 

been available for the past twenty years only. While we show compelling association of genetic 

risk variants for AD with smaller subcortical volumes in middle and older dementia-free 

community persons, we did not observe such an association in young adults. Moreover, while 

one of the loci associated with lower caudate nucleus volume showed genome-wide significant 

association with lower general cognitive function, most of the loci associated with subcortical 

volumes across the adult lifespan were not associated with neurodegenerative diseases after 

multiple testing correction. This may suggest that these loci are not necessarily reflecting early 

neurodegenerative processes, but may point to developmental or non-pathological processes 

related to healthy aging. The fact that genetic loci associated with subcortical volumes in 

middle-aged to older adults (aggregated in polygenic risk scores) were recently found to be 

associated with these volumes already during infancy and early childhood could be a potential 

argument for a stronger role of developmental processes (44). We may have been 

underpowered to measure the modifying effects (deleterious or protective) of loci modulating 

subcortical volumes on the occurrence of neurodegenerative diseases. Finally, we cannot 

exclude selective survival bias for some variants when exploring their relation with late-life 

neurodegenerative diseases (if variants associated with subcortical volumes also influence 

survival). 

In conclusion, our findings provide novel insight into the genetic determinants of subcortical 

volumes across the adult lifespan, with some evidence suggesting that specific genes such as 

MYLK2 and TUFM may have a causal role in determining subcortical volumes already in 

young adulthood. Further research is warranted to decipher the underlying biological 
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mechanisms and inform prevention strategies for common late-life neurodegenerative diseases, 

for which pathological processes are known to start long before their clinical diagnosis.  
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Figure legends 

Figure 1: Study workflow and samples summary. Samples of young adults (18-35) are 

presented in blue, middle-aged (35-65) to older adults (65+) in green, older adults in red and 

in purple for disease traits. FHS: Framingham Heart Study. GRM: Genetic relationship matrix. 

GRS: Genetic risk score. TWAS: Transcriptome-wide association study. 15: Satizabal et al, Nat 

Genet 2019. 20: Hibar et al, Nat Commun 2017. 21: Bis et al, Nat Genet 2012. 38: 

Schwartzentruber et al, Nat Genet 2021. 39: Nalls et al, Lancet Neurol 2019. 40: Davies et al, 

Nat Commun 2018. *: GWAS of subcortical volumes except hippocampal volume after 

removing ENIGMA and CHARGE cohorts with some young participants (unpublished data). 

Figure 2: Heritability of subcortical volumes in young adults, middle-aged adults and in 

older adults. Panel A: the box plots represent the distribution of the heritability of subcortical 

volumes. The main rectangle represents the interquartile range and the horizontal line is the 

median. Panel B: plot of the estimated SNP heritability for each subcortical volumes, in each 

age group. For unrelated population, “Young adults” stands for the i-Share cohort (18-35y, 

N=1,528); “Older adults” stands for the 3C-Dijon cohort (65+, N=1,396). For family-based 

population, all the groups came from the Framingham Heart Study (three generations). 

“Middle” or “Middle-aged adults” stands for 36-64y (N=1,999) and “Old” or “Older adults” 

for 65+ (N=1,828) 

Figure 3: Heatmap of the genetic correlation between subcortical volumes in young adults 

(“Young”), in older population (Panel A: “Old” and Panel B: “old only”) and between 

the two populations for equivalent structures. *: nominally significant; **: significant after 

multiple-testing correction (p<1.25×10-2); Larger colored squares correspond to more 

significant p-values. In each square, the numbers correspond to the coefficient of the genetic 

correction (rg). “Young” stands for the i-Share cohort; “Middle to old” for subcortical volumes 
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from the latest largest GWAS (Satizabal et al, Nat Genet 2019 and Hibar et al, Nat Commun 

2017); “Old” for the GWAS of subcortical volumes except hippocampal volume after 

removing ENIGMA and CHARGE cohorts with some young participants and for the CHARGE 

GWAS of hippocampal volume (Bis et al, Nat Genet 2012) 

Figure 4: Heatmaps of the transcriptome-wide association studies of the caudate nucleus, 

putamen and pallidum reaching transcriptome wide significance and colocalized in older 

persons(15,20) and at least nominal significance in young adults (i-Share cohort). *: 

TWAS Significant (p<3.30×10-6); **: Conditionally significant (p<0.05); ***: COLOC PP4 > 

0.75; +: Nominally significant in i-Share; ++: Significant in i-Share (after multiple-testing 

correction: accumbens: p<0.05; amygdala: p<0.05; caudate: p<2.17×10-3; hippocampus: 

p<1.67×10-2; pallidum: p<2.94×10-3; putamen: p<3.85×10-3; thalamus: p<0.05) 

Figure 5: Association between genetically predicted Alzheimer’s and Parkinson’s 

diseases and subcortical volumes in young, middle-aged to older and older adults using 

Mendelian randomization. “Young adults” stands for the i-Share cohort; “Middle-aged to 

older adults” for subcortical volumes from the latest largest GWAS (Satizabal et al, Nat Genet 

2019 and Hibar et al, Nat Commun 2017); “Older adults” for the GWAS of subcortical volumes 

except hippocampal volume after removing ENIGMA and CHARGE cohorts with some young 

participants and for the CHARGE GWAS of hippocampal volume (Bis et al, Nat Genet 2012) 



35 

 

Table 1: Association of genome-wide significant variants for subcortical volumes in older adults with the same volumes in young adults. 

SNP* Chr Position A1 Freq Nearest genes 
Lead SNP 

from GWAS 

Single variant analysis  TWAS analyses† 

i-Share Cohort (n=1,777)  

Gene colocalized in the locus‡ 
Beta SE p   

Amygdala            

   rs11111293 12q23.2 102,921,296 C 0.18 IGF1,LINC00485 rs11111293 -0.04 0.01 4.50E-03   

Caudate nucleus            

   rs10909901 1p36.32 3,131,235 T 0.28 PRDM16 rs2817145 0.13 0.03 8.03E-06   

   rs10830894 11q14.3 92,018,778 T 0.41 MIR4490,FAT3 rs3133370 -0.08 0.02 5.98E-04   

   rs1953353 14q22.3 56,189,751 A 0.32 KTN1,RPL13AP3 rs148470213 -0.10 0.03 1.92E-04   

   rs4115668 16p11.2 28,607,532 A 0.27 SULT1A2 rs1987471 -0.10 0.03 1.45E-04  CCDC101, NPIPB7, NPIPB9, SULT1A1, TUFM, 

RP11-1348G14.4, RP11-22P6.2 

   rs1062794 20q11.21 30,381,758 C 0.34 TPX2 rs6060983 -0.08 0.02 1.59E-03  MYLK2 (++) 

Hippocampus            

   rs17178006 12q14.3 65,718,299 G 0.09 MSRB3 rs61921502 -0.15 0.03 1.72E-06   

   rs113205216 12q24.22 117,326,943 A 0.09 HRK,FBXW8 rs77956314 0.12 0.03 1.41E-04   

Pallidum            

   rs945270 14q22.3 56,200,473 G 0.44 KTN1,RPL13AP3 rs10129414 -0.04 0.01 2.29E-04   

   rs113818546 20q11.21 30,369,090 T 0.24 TPX2 rs10439607 -0.03 0.01 8.46E-03  ENTPD6, FRG1B (++), MLLT10P1 (++), PYGB 

Putamen            

   rs7445169 5q14.3 87,703,099 G 0.25 TMEM161B-AS1 rs2410767 -0.08 0.03 1.25E-02  CTC-498M16.4, TMEM161B, TMEM161B-AS1 

   rs12800264 11q23.3 117,396,269 A 0.18 DSCAML1 rs35200015 -0.16 0.04 1.30E-05   

   rs8017172 14q22.3 56,199,048 A 0.44 KTN1,RPL13AP3 rs945270 -0.15 0.03 1.43E-07   

   rs6060954 20q11.21 30,383,187 T 0.34 TPX2 rs6087771 -0.08 0.03 5.05E-03   FRG1B, MLLT10P1, MYLK2 (++) 

 
Only loci significant in this analysis or in Transcriptome-Wide Association Study in i-Share are presented here.  

P-values in bold are significant after multiple testing correction (accumbens: p<3.13×10-3; amygdala: p<1.25×10-2; caudate: p<1.25×10-3; hippocampus: p<2.08×10-3; pallidum: p<2.08×10-3; putamen: 

p<1.39×10-3; thalamus: p<6.25×10-3). 

Genes in bold are significant in i-Share TWAS and (++) after multiple testing correction (accumbens: p<0.05; amygdala: p<0.05; caudate: p<2.17×10-3; hippocampus: p<1.67×10-2; pallidum: p<2.94×10-

3; putamen: p<3.85×10-3; thalamus: p<0.05).  

*For each locus associated at genome-wide significant level with at least one subcortical structure in Satizabal et al and Hibar et al, associations of the lead SNP and nearby variants (±250 kb) in 

moderate to high LD (LD-r²>0.5) with the corresponding phenotype were tested in young adults. Only the top SNP of each locus is presented in this table.  

†TWAS analyses based on the summary statistics from Satizabal et al, Nat Genet 2019 for subcortical volumes (except hippocampal volume) and from Hibar et al, Nat Commun 2017 for hippocampal 

volume and results from the i-Share TWAS (n=1,586). 

‡ A gene was considered as in the same locus than the top SNP from the GWAS if at least one of its eQTLs was in LD (r² > 0.01) with the top SNP  
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Table 2: Association of genetic risk score (from genome-wide significant variants) of subcortical volumes in older adults with the same 

volumes in young adults. 

Genetic Risk Scores (GRS) 
i-Share Cohort (n=1,586) 

Beta SE p 

Accumbens    

   GRS from full GWAS* -0.04 0.04 3.56E-01 

   GRS from GWAS old only† -0.05 0.08 4.69E-01 

Amygdala    

   GRS from full GWAS* -0.61 0.14 9.47E-06 

   GRS from GWAS old only† -0.23 0.15 1.29E-01 

Caudate nucleus    

   GRS from full GWAS* -0.73 0.14 9.76E-08 

   GRS from GWAS old only† -0.99 0.21 2.31E-06 

Hippocampus    

   GRS from full GWAS* -0.46 0.09 2.08E-07 

   GRS from GWAS old only† -1.12 0.21 7.74E-08 

Pallidum    

   GRS from full GWAS* -0.28 0.07 6.15E-05 

   GRS from GWAS old only† -0.16 0.10 1.20E-01 

Putamen    

   GRS from full GWAS* -0.67 0.10 5.04E-11 

   GRS from GWAS old only† -1.05 0.21 5.92E-07 

Thalamus    

   GRS from full GWAS* -0.21 0.31 5.01E-01 

   GRS from GWAS old only† 0.07 0.54 8.98E-01 

 

P-values in bold significant results after multiple testing correction (p<1.25×10-2).  

* GRS generated using the SNPs with p<5E-08 from the summary statistics of the GWAS of subcortical volumes from Satizabal et al. Nat Genet 2019 and from Hibar et al, Nat Commun 2017 for 

hippocampal volume 

† GRS generated using the SNPs with p<5E-08 from the summary statistics of the GWAS of subcortical volumes from Satizabal et al. Nat Genet 2019 after excluding cohorts containing young participants 

and from Bis et al, Nat Genet 2012 for hippocampal volume 
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Table 3: Association of genetic variants associated with subcortical volumes in older and young adults with Alzheimer’s and Parkinson’s 

diseases and general cognitive function 

 
      Subcortical volumes 

Young adults 

(n=1,777) 

  Alzheimer Disease 

(n=75,397 / 

844,024) 

  Parkinson Disease 

(n=33,674 / 

449,056) 

  General cognitive 

function 

(n=282,014)    

  
  

SNP Locus A1 Z p   Z p   Z p   Z p 

Amygdala              
   rs11111293 12q23.2 C -2.84 4.50E-03  -0.79 4.28E-01  0.22 8.22E-01  -2.67 7.63E-03 

Caudate nucleus             
   rs10909901 1p36.32 C -4.46 8.03E-06  -0.07 9.43E-01  -0.64 5.20E-01  -1.49 1.38E-01 

   rs10830894 11q14.3 T -3.43 5.98E-04  0.20 8.43E-01  -2.12 3.40E-02  -0.37 7.10E-01 

   rs1953353 14q22.3 A -3.73 1.92E-04  1.46 1.44E-01  -2.60 9.23E-03  -1.60 1.10E-01 

   rs4115668 16p11.2 A -3.80 1.45E-04  -1.84 6.64E-02  -2.01 4.52E-02  -7.30 2.88E-13 

   rs1062794 20q11.21 C -3.16 1.59E-03  -1.55 1.22E-01  -1.86 6.19E-02  -0.07 9.48E-01 

Hippocampus              
   rs17178006 12q14.3 G -4.78 1.72E-06  -2.92 3.49E-03  -1.84 6.53E-02  -0.72 4.75E-01 

   rs113205216 12q24.22 C -3.81 1.41E-04  -2.10 3.59E-02  -0.31 7.60E-01  0.73 4.68E-01 

Pallidum              
   rs945270 14q22.3 G -3.68 2.29E-04  1.57 1.17E-01  -2.45 1.47E-02  -2.04 4.16E-02 

   rs113818546 20q11.21 T -2.63 8.46E-03  -1.02 3.09E-01  -1.60 1.09E-01  0.10 9.18E-01 

Putamen              
   rs7445169 5q14.3 G -2.50 1.25E-02  0.81 4.19E-01  -0.12 9.08E-01  3.63 2.88E-04 

   rs12800264 11q23.3 A -4.36 1.30E-05  -0.75 4.54E-01  -0.20 8.39E-01  0.95 3.44E-01 

   rs8017172 14q22.3 A -5.26 1.43E-07  1.44 1.49E-01  -2.54 1.10E-02  -1.98 4.77E-02 

   rs6060954 20q11.21 T -2.80 5.05E-03   -1.53 1.26E-01   -1.84 6.53E-02   0.00 9.98E-01 

 

Only loci significant in single-variant analysis or in Transcriptome-Wide Association Study in i-Share are presented here. 

For subcortical volumes, P-values in bold are significant after multiple testing correction (accumbens: p<3.13×10-3; amygdala: p<1.25×10-2; caudate: p<1.25×10-3; hippocampus: p<2.08×10-3; pallidum: 

p<2.08×10-3; putamen: p<1.39×10-3; thalamus: p<6.25×10-3). 

For Alzheimer’s and Parkinson’s diseases and general cognitive function, p-values in bold are significant after correction for multiple-testing (p<1.67×10-3). 
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