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Abbreviations 

ADCC: Antibody dependent cellular cytotoxicity 

AMR: Antibody-mediated rejection 

APC: Antigen presenting cell 

CMV: Cytomegalovirus 

DC: Dendritic cell 

LTi: Lymphoid tissue inducer 
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HLA: Human leukocyte antigen 
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IRI: Ischemia reperfusion injury 
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MAIT: Mucosal associated invariant T 
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MICA: MHC-I polypeptide–related sequence A 

NK: Natural killer 

NKaR: Natural killer activating receptor 

NKiR: Natural killer inhibitory receptor 

NKT: Natural killer T 

PBMC: Peripheral blood mononuclear cell 

TCR: T cell receptor 

TEC: Tubular epithelial cell 

Tfh: T follicular helper  
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Abstract (207 words) 

Transplant immunology is currently largely focused on conventional adaptive 

immunity, particularly T and B lymphocytes, which have long been considered as the 

only cells capable of allorecognition. In this vision, except for the initial phase of 

ischemia/reperfusion, during which the role of innate immune effectors is well 

established, the latter are largely considered as “passive” players, recruited 

secondarily to amplify graft destruction processes during rejection. 

Challenging this prevalent dogma, the recent progresses in basic immunology have 

unraveled the complexity of the innate immune system and identified different subsets 

of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, 

they are over-represented among passenger leukocytes. Beyond their role in 

ischemia/reperfusion, some of these subsets have been shown to be capable of 

allorecognition and/or of regulating alloreactive adaptive responses, suggesting that 

these emerging immune players are actively involved in most of the life phases of the 

grafts and their recipients.  

Drawing upon the inventory of the literature, this review synthesizes the current state 

of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets 

during ischemia/reperfusion, allorecognition and graft rejection. How these subsets 

also contribute to graft tolerance and the protection of chronically immunosuppressed 

patients against infectious and cancerous complications is also examined.  
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Introduction 

According to World Health Organization reports, terminal failure of a vital organ is the 

first cause of death in industrialized countries, accounting for 25% of total health 

expenditures. Solid organ transplantation is the best (often the only) therapeutic option 

for these patients. 

Transplantation procedure however implies exposing the grafts to 

ischemia/reperfusion, which not only creates damage to the tissues but also represents 

an immunogenic context1,2 favorable to allorecognition: the detection by the recipient’s 

adaptive immune system of polymorphic determinants expressed by different 

individuals of the same species (such as donor-specific Major Histocompatibility 

Complex (MHC) molecules). Allorecognition in turn results in the generation of immune 

effectors responsible for graft destruction, a process known as rejection, which 

represents the first cause of late failure in transplantation3,4. To prevent rejection, 

transplanted patients are treated with immunosuppressive drugs. Because the latter 

therapies are non-specific, they reduce immunosurveillance efficiency and increase 

the risk of infections and cancers5–7.  

The prevalent dogma in transplant immunology is that only adaptive immune effectors 

(T and B lymphocytes equipped with clonal receptors) are capable of allorecognition 

(through the direct and the indirect pathways)8–10. In this vision, innate immune 

effectors are often overlooked, being only secondarily recruited by allospecific adaptive 

effectors to amplify graft destruction and accelerate rejection.  

Over the last decades considerable progress has been made in deciphering the 

complexity of the innate immune system, which consists in a myriad of molecular 

(complement system for instance) but also cellular effectors belonging to both the 

myeloid and the lymphoid lineages. 
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Recent works from the Lakkis group have challenged the previous dogma by 

demonstrating that innate effectors from the myeloid lineage were capable of 

allorecognition independently of the adaptive immune system11–13, paving the way for 

the concept of « innate rejection ». 

In the present article, we synthetize published data on the very recently discovered 

innate (and innate-like) immune effectors from the lymphoid lineage (Figure 1). These 

cells are of particular interest in the field of transplant immunology because most of 

them are tissue-resident, and therefore over-represented among passenger 

leukocytes14. Furthermore, beyond their role in ischemia/reperfusion, some of these 

subsets have been shown to be capable of allorecognition and/or of regulating 

alloreactive adaptive responses, suggesting that these emerging immune players are 

actively involved in most of the life phases of the grafts and their recipients. 

Innate lymphoid cells, what’s in a name? 

More than 40 years ago, lymphoid cells that could recognize and kill various tumor cell 

lines without prior stimulation with cytokines or antigen were identified15. These cells, 

named Natural Killer (NK) cells with respect to their innate properties, were devoid of 

antigen receptors encoded by somatically rearranged gene segments. This initial 

discovery was then followed many years later by the characterization of several other 

immune cell types capable of rapid cytokine production upon stimulation and with 

typical lymphoid morphology, despite the lack of a B or T cell antigen receptor. Due to 

their ontological relationships, these cell types were grouped under the name innate 

lymphoid cells (ILCs). ILCs are now subdivided in three groups corresponding to T cell 

helper groups in terms of cytokine secretion patterns (Figure 2). 
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Group 1 ILCs 

NK cells 

NK cells are defined by co-expression of T-bet and Eomes transcription factors in both 

mouse and human, whereas other group 1 ILCs (ie ILC1s) only express one either 

factor16. NK cell activation is controlled by a series of inhibitory (NKiR) and activating 

(NKaR) receptors. NKiR mainly engage major histocompatibility complex (MHC)-I 

molecules expressed by almost every healthy cell, ensuring tolerance. By contrast, 

NKaR interact with cellular ligands whose expression is increased upon cell 

transformation or infection. The relative engagement of NKaR vs NKiR determines NK 

cell response: activation (cytokine secretion and cytotoxicity) or tolerance17. As 

opposed to T lymphocytes, which require priming from antigen-presenting cells 

(APCs), NK cells are naturally poised to kill infected or tumor cells. Yet NK cell cytotoxic 

activity can be enhanced upon stimulation with various cytokines such as IL-2, IL-15, 

IL-12/IL-18 or IL-2118.  

In both mouse and human, immature NK cells express high levels of the CD94/NKG2A 

NKiR heterodimer while mature NK cells express a higher frequency of inhibitory KIR 

(Killer Cell Immunoglobulin-like receptor, human) or Ly49 (mouse) receptors allowing 

missing-self recognition19,20. However, maturation is not sufficient to acquire 

responsiveness and NK cells need to be educated to be able to gauge MHC-I surface 

expression21. This education process involves continuous engagement and signaling 

through SHP1 of NKiR by their MHC-I ligands. In the absence of such signals, NK cells 

are hypo-responsive, unable to reject MHC-I negative cells.  

NK cells are the only ILCs known to circulate in the blood at steady state. They are 

strategically positioned in the lymph nodes (LNs) to rapidly respond to cytokines 

produced by dendritic cells (DCs) and monocytes upon pathogen infections22,23. Many 
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studies have documented the important role of NK cells in mice infected with various 

viruses or intracellular pathogens. In humans, a functional redundancy between NK 

cells and various T cell subsets may compensate for decreased NK cell responses. 

Yet, patients with selective NK cell deficiencies suffer from recurrent infections, in 

particular from viruses of the herpes class24. Many NKaR expressed by NK cells can 

recognize some viral determinants25, which further supports this point.  

The various and sophisticated evasion processes selected by many viruses to escape 

NK cells is also an indirect indication that these cells are important for the control of 

viral infections26. NK cells also contribute to anti-tumor responses. This has been well 

demonstrated in mouse where multiple studies have documented the impact of NK cell 

depletion/deficiency on tumor growth. NK cells can directly recognize and kill tumor in 

vivo, but also provide an essential source of IFNγ to polarize and stimulate T cell 

responses27.  

ILC1s  

ILC1s are Eomes-/T-bet+ in mouse28,29, but various phenotypes have been described 

in human, with some cells being Eomes+/T-bet-16. ILC1s are tissue-resident and have 

low cytotoxic activity, but have a strong capacity to produce IFNγ and other 

inflammatory cytokines in response to cytokine stimulation28,29.  

The role of ILC1s in immunity recently came to light when it was found that mice 

deficient for the Hobit transcription factor had a relatively specific deficiency in ILC1s30. 

This new model showed that ILC1s responded very early during viral infections to IL-

12 produced by DCs, by producing large amounts of IFNγ31. ILC1s can also expand 

and produce cytokines during infections by intracellular parasites32. Moreover, recent 

analyses using Hobit-deficient mice have demonstrated that ILC1s and NK cells 

cooperate in anti-tumor responses33.  
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Group 2 ILCs 

Group 2 ILCs only comprise ILC2s that were initially discovered as an important source 

of type 2 cytokines IL-5 and IL-13 during parasitic infections34–36. ILC2s are tissue 

resident and widely distributed, but particularly abundant at mucosal sites (lung and 

gastro-intestinal tract)37. Human ILC2s have been described as well as the high 

GATA3 expression defining this cell type38. ILC2s have the capacity to expand in 

response to IL-25 and IL-33, upon local or systemic administration of these cytokines 

or during helminth infections34–36. Moreover, despite the fact that tissue residency was 

considered a hallmark of helper ILCs, ILC2s were found to recirculate in the blood in 

response to IL-25 or helminth infection39. 

ILC2s are involved in protective immune responses against parasites34,35. The 

cytokines they express activate multiple cell types, leading to parasite destruction or 

expulsion. Moreover, they can promote tissue remodeling and repair, notably through 

the production of Amphiregulin, a member of the epithelial growth factor40. Finally, they 

are also involved in pathological immune responses in cases of allergy, and other types 

of inflammation at mucosal sites such as skin and airways41. Moreover, a recent study 

reported that IL-33-induced activation of ILC2 suppressed NK cell anti-tumor functions 

through IL-5-induced lung eosinophilia42.   

Group 3 ILCs: LTi and other ILC3s 

Group 3 ILC includes three main subsets: lymphoid tissue inducers (LTi), and other 

“non-LTi” ILC3s, including natural cytotoxicity receptors (NCR)+ and NCR- ILC3. 

These three subsets depend on the transcription factor RORγt43 and have the capacity 

to secrete IL-17A and IL-2244–46. ILC3s are particularly enriched in the gastrointestinal 

tract, and LTi are additionally located in lymphoid organs such as LNs and Peyer’s 

patches. LTi colonize fetal lymphoid structures and are essential for the development 
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of secondary lymphoid organs (LNs and Peyer's patches but also lymphoid structures 

associated with the intestinal mucosa called isolated lymphoid follicles)43,47,48. LTi 

induce lymphoid organogenesis through surface expression of lymphotoxin α1 β2 and 

interactions with stromal cells43,47.  

Group 3 ILC participate in antimicrobial responses and maintenance of mucosal 

integrity. ILC3s are indeed the main source of IL-22 in the small intestine. ILC3-derived 

IL-22 acts directly on epithelial cells and induces the release of antimicrobial 

peptides49,50, stimulates antiviral responses against rotavirus by activating IFN-lambda 

pathways51 and helps repair and heal the intestinal barrier after inflammation by 

promoting stem cell proliferation52. LTi also produce IL-17A, an important pro-

inflammatory mediator for antibacterial and antifungal responses that promotes 

neutrophil infiltration. IL-17-producing ILC3s have been shown to accumulate in the 

lamina propria of the colon of mice with bacterial-induced colitis and participate in 

inflammation53. 

Beyond ILC: “innate-like” lymphoid cells  

Innate-like lymphoid cells  

Innate-like lymphoid cells bridge innate and adaptive lymphoid cells (Figure 1 & Figure 

3).  

Subsets of innate-like B cells have been identified (Figure 1), including B1 and 

marginal zone B cells54. They are characterized by semi-invariant (or germ-line-

encoded) BCR with limited diversity. Consequently, antibodies generated from B1 cells 

and MZ B cells are polyreactive and autoreactive, with the capacity to recognize 

conserved structures across species. Following triggering by TLR agonists or microbial 

pathogens, innate-like B cells produce a large amount of natural IgM, providing a 

critical early defense against infections, and IL-10, a key regulatory cytokine that plays 
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a crucial role in downmodulating immune responses55. As evidence of the involvement 

of innate-like B cells in transplant immunology is scarce, the present review will focus 

on innate-like T cells (ILTCs). 

ILTCs share several characteristics, including: i) expression of a functional T Cell 

Receptor (TCR) that monitors cell surfaces within tissues and acts as a rapid sensor 

of dysregulation, ii) generation during early life, iii) response that does not require prior 

clonal expansion, and iv) response that depends on the integration of TCR, cytokine-

dependent signals, costimulation and NK cell receptor signaling, allowing for a large 

panel of effector responses depending on the context. 

Based on the nature of the TCR, ILTCs can be divided in three main types i.e. Natural 

Killer T cells (NKT), Mucosal Associated Invariant T cells (MAIT) and gamma delta (γδ) 

T cells. In human, MAIT, NKT and γδ T cells represent 10%, 0.1% and 0.5-20% of 

circulating T cells, respectively. These proportions are increased among tissue 

resident T cells, especially in liver and lung for MAIT and NKT, and mucosal tissues 

for γδ T cells. 

ILTCs undergo thymic selection but are not restricted to MHC since they develop 

normally in β2microglobulin KO mice56. The TCR of NKT, MAIT and Vγ9+Vδ2+ T cells 

is semi-invariant but is highly diverse for the other γδ T cells (owing to RAG-mediated 

V(D)J recombination).  

γδ T cells  

Gamma delta T cells are the first T cells to develop in vertebrates. In humans, γδ T cell 

groups are functionally defined based on their γ and δ TCR chain expression:  

Vγ9+Vδ2+ T cells are usually opposed to Vδ2-negative γδ T cells.   

Vγ9+Vδ2+ T cells sense variations in cellular production of phosphorylated metabolites 

of the isoprenoid pathway (called phosphoantigens). The most active phosphoantigens 
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are produced by microorganisms such as Gram-positive bacteria, Mycobacterium 

tuberculosis, Plasmodium falciparum and Toxoplasma gondii. Less active endogenous 

phosphoantigens can also accumulate in host cells upon activation or transformation.  

The recognition of ubiquitous microbial or stress signals by Vγ9+Vδ2+ TCR is 

reminiscent of the pattern recognition receptors (PRRs) process and is supported by 

the semi-invariant V-usage of these γδ TCRs. Recent breakthroughs underline the 

importance of butyrophilins, which bind to phosphoantigens intracellularly57 and to 

Vγ9-chain58,59.  

All the other γδ T cells, collectively called Vδ2-negative γδ T cells (mainly expressing 

the Vδ1 and Vδ3 chains), but to which the Vγ9-Vδ2+ population was recently 

integrated60, are considered to recognize a large panel of stress-induced antigens in 

the context of transformed or infected cells (especially by cytomegalovirus, CMV). Yet, 

most Vδ2-negative γδ T cell antigens remain to be identified. With a shorter CDR3g 

and a longer CDR3d carrying diversity the TCR of Vδ2-negative γδ T cells resembles 

that of immunoglobulins and can therefore recognize conformational and sequential 

epitopes. Their ability to differentiate health and stress conditions relies on different 

mechanisms: differential expression of the TCR ligand upon stress, requirement of 

costimulatory molecules for full activation, conformational changes of the ligand (multi 

or monomerization), and differential glycosylation. Although the affinity of their TCR is 

low, Vδ2-negative γδ T cells interact with their cellular targets with high avidity due to 

the high density of TCR and ligand molecules on cell surfaces. Over the last decades, 

a plethora of structurally highly diverse TCR ligands have been identified, often 

restricted to one clone of Vδ2-negative γδ T cell, with no systematic generalization and 

uncertain physiological relevance61. The multiplicity of presumed ligands for Vδ2-
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negative γδ T cell cells however illustrate the potentiality of what has been described 

as "beneficial self-immunogenicity"62.  

MAIT cells 

In contrast with mice, MAIT cells are the largest subset of unconventional T cells in 

human blood and tissue (up to 100 times more than NKTs). 

The TCR of MAIT is composed of invariant TCR α chains (Vα7.2Jα33/12/20) paired 

with a biased repertoire of Vβ chains (Vβ2 or Vβ13) that recognize a limited range of 

non-peptide ligands (riboflavin) presented by monomorphic MHC-like molecules 

(MR1)63,64.  

MAIT are CCR7-CD161highCD26high and CD8αα (80%) and constitute a homogeneous 

population with mixed Th1/Th17 functions and cytotoxic properties 

(perforin/granzyme), the development of which depends on a microbiota-derived 

metabolite65. 

NKT cells 

In contrast with MAIT, the development of NKT cells is conserved in germ-free mice. 

However, the transcription factor PLZF (promyelocytic leukemia zinc finger) is 

important for both MAIT and NKT and governs the acquisition of innate-like 

characteristics with effector function and memory phenotype in both subsets66–69. 

Although their TCR is specific for glycolipid/phosphoslipid antigens bound to the 

monomorphic MHC-like molecules CD170, NKT cells are highly diverse and distributed 

into two subgroups:  

o Type I NKT or invariant (iNKT), the TCR of which, made of Vα24-Jα18 TCRα 

chain paired exclusively with Vβ11, is specific for CD1d-restricted α-

galactosylceramide glycopeptide (αGalCer);  
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o Type II NKT cells which are non-invariant and their TCR recognizes CD1-

restricted diverse sulfatide and lysophophatidylcholine antigens.  

Ischemia reperfusion injuries 

The sequence of ischemia/reperfusion which strikes the transplanted organ is a model 

of violent sterile inflammation. Peri-surgical procedure and each additional hour of 

ischemia increases the risk of graft failure and mortality71.  

Ischemia/reperfusion injuries (IRI) cause mitochondrial damages due to variation of 

oxygen access with ATP depletion followed by the release of reactive oxygen species 

(ROS). The subsequent development of an inflammatory response leads to tissue 

damage and eventual cell death. Tissue resident ILCs/ILTCs are pre-armed effectors, 

prone to sense the danger signals and mount a rapid response to preserve tissue 

integrity. However, this response may also exacerbate necroinflammation and thereby 

promote allorecognition2. 

Danger-associated molecular patterns (DAMPs) and ILCs/ILTCs 

IRI promotes the release of alarmins (in particular IL-33). IL-33 is a chromatin-

associated nuclear cytokine from the IL-1 family which is generated in an inflammatory 

environment72. In a mouse model of kidney transplantation, microvascular endothelial 

cells produce IL-33 which in turn signals on its receptor ST2 expressed on iNKT cells. 

This contributes to their recruitment and cytokine production (IFN-γ and IL17), resulting 

in neutrophil infiltration and activation at the injury site73,74. Contrary to their invariant 

counterparts, NKT may abrogate IRI through the secretion of IL-1075.  

IL-33 may also activate ILC2s. The expansion of ILC2s has a protective effect in mouse 

glomerulonephritis76 and promotes tissue repair and metabolic homeostasis in adipose 

tissue77. Protection of IRI by ILC2s is also suggested in kidney and may be mediated 

by IL-2578.  
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Other ILCs were reported to protect tissue from acute injury with mechanisms which 

could also intervene in IRI: ILC1s protect mice from acute liver injury after carbon 

tetrachloride injection via IFNγ secretion and upregulation of Bcl-xl expression in 

hepatocytes79. ILC3s are potent producers of IL-22 after intestinal injury and target 

intestinal stem cell expansion and then intestinal regeneration through STAT3 

phosphorylation80. 

In general, inflammation seems to induce dynamic changes in the balance of ILCs and 

ILTCs in tissue and in peripheral blood. Recently, ILC1s were reported to be 

significantly increased in the peripheral blood of patients with acute ST-segment 

elevation myocardial infarction and associated with poor outcome81. If ILCs/ILTCs are 

sometimes associated with protection, they can also take part in an amplification loop 

of cell death and inflammation. In this regard, high-mobility group box-1 (HMGB1), 

which is involved in IRI in liver82 and in kidney83 has been shown to exacerbate 

experimental mouse colitis through ILC3s84.  

NK cells, ILC1s and IRI  

NK cells promote apoptosis of stressed tubular epithelial cells (TEC)85.  

IRI promote NK cell recruitment by TLR2 engagement86,87 or by reverse signaling of 

CD137L (also known as 4-1BBL and TNFSF9)88 with the subsequent production of 

chemokines and maybe a special role for osteopontin89. However peripheral NK cells 

might not be the most important in ischemic kidney injury. In mouse, ILC1s display a 

distinct phenotype. Compared with circulating NK cells, ILC1s have reduced 

expression of asialo-GM1 (AsGM1) and anti AsGM1 antibody treatment therefore does 

not affect ILC1s. Because anti-AsGM1 antibody fails to protect against IRI, while anti-

NK1.1 antibody does, Victorino et al90 concluded that ILC1s rather than NK cells might 

have the prominent role in kidney IRI. Of note, kidney MAIT cells, which get activated 
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in the presence of TECs cultured under hypoxic conditions and display upregulated 

expression of CD69 and cytotoxic molecules91, might also be involved in IRI-induced 

kidney injury. This data suggests a potential role for passenger leukocytes (i.e. 

originating from the donor, ILC1s and MAIT) in IRI. However, circulating recipient NK 

cells could also take part in this phenomenon. 

The reason why NK cells get activated by ischemia/reperfusion could rely on their 

ability to sense the discontinuity of self-antigens92. Human leukocyte antigen (HLA)-E 

is a non-classical MHC-I molecule with a limited polymorphism which presents a 

restricted set of nonameric peptides, mainly derived from the leader sequences of 

classical HLA-I proteins93. HLA-E is a major ligand for the NKiR CD94/NKG2A94. 

During cellular stress, an increased proportion of HLA-E molecules may bind the heat 

shock protein 60 signal peptide, leading to peptide interference that would gradually 

uncouple CD94/NKG2A inhibitory recognition and provide a mechanism for NK cells 

to detect stressed cells95. IRI also promote MHC-I polypeptide–related sequence A 

(MICA) expression during acute myocardial infarction96 or in TEC through HIF as a 

response to hypoxia/reoxygenation97. NKG2D is the receptor for the stress-inducible 

MICA and its engagement activates a cytolytic response in NK cells98. Cytotoxicity 

resulting from NK cell activation through NKG2D may lead to allograft damage as 

already reported in the development of murine bronchiolitis obliterans99. Interestingly, 

MAIT100, iNKT101, and γδ T cells98 also express NKG2D and could take part in this 

pathological process. 

γδ T cells and IRI 

Annexin A2 is unique among annexins in that it possesses redox sensitive 

cysteine(s)102. Cells exposed to ROS upregulate the expression of surface Annexin 

A2, which is a ligand for a Vγ8Vδ3 TCR103. Annexin A2 can stimulate the proliferation 



 18 

of a fraction of (Vδ2-) T cells within peripheral blood mononuclear cells (PBMCs), and 

other annexin A2-specific γδ T-cell clones could be derived from PBMCs103. The 

Vγ4Vδ5 TCR mediates recognition of broadly stressed human cells by engaging a 

stress-regulated self-antigen (Endothelial protein C receptor) co-expressed with 

stress-induced costimulatory ligands104. β2-microglobulin-free HLA-I heavy chain 

(FHC) or open conformer can be recognized as a stress antigen by Vγ9Vδ3 T cells105. 

MIC-A/B are also directly recognized by the TCR of tumor-infiltrating γδ T cells106.  

Finally, Guerville et al have demonstrated that TCR signaling sensitizes γδ T cells to 

inflammatory mediators, and in particular IL-18, the receptor of which is upregulated at 

the cell surface after TCR engagement. Moreover, IL-18 secretion, which follows the 

caspase-1 inflammasome activation in stressed cells, could be a unified signal to alert 

γδ T cells107.  

A mouse model of ischemic brain injury confirms the implication of IL-17 production by 

γδ T cells in the delayed phase of ischemia-reperfusion108, with the implication of 

peroxiredoxin family proteins as key initiators109. Commensal microbiota affects 

ischemic stroke by regulating intestinal γδ T cells110. This implication of γδ was found 

in other models of renal IRI111. 

At present, there is no data that would allow the responsibility of passenger γδ versus 

recipient’s γδ T cells to be apportioned in the IRI mechanisms. It is conceivable that 

both populations are involved, the first one inside the graft, the second one at the 

blood/graft endothelium interface. 

 

Allorecognition  

Allorecognition designates the recognition by the recipient’s adaptive immune system 

of donor-specific alloantigens. Several pathways of allorecognition have been 
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evidenced8–10. The direct pathway involves the recognition of intact allogeneic HLA 

molecules on the surface of donor passenger APCs. The semi-direct pathway 

resembles the direct pathway, but this time the intact allogeneic HLA molecules are on 

the surface of the recipient APCs after transfer via exosomes or extracellular 

vesicles112,113. In contrast, the indirect pathway involves recognition by the recipient’s 

T cells of peptides derived from allogeneic HLA molecules and presented within self-

HLA molecules114,115. 

Because the TCRs of ILTCs (MAIT, γδ T cells, and NKT) do not bind to MHC 

molecules, there is no evidence in the literature that these cell subsets can participate 

in allorecognition through any of the 3 pathways described above. However, there are 

other (TCR-independent) mechanisms by which ILCs/ILTCs may participate in 

allorecognition.  

ILC3s support primary and memory adaptive immune responses 

LTi are crucial for the development of secondary lymhoid organs, which are essential 

for building up an alloimmune response. Splenectomized, aly-/- mice, which lack all 

secondary lymphoid organs, are unable to mount an adaptive response after 

allogeneic heart transplantation, and "ignore" the graft that is therefore not rejected116. 

It remains unclear if LTi also participate in chronic rejection-associated lymphoid 

neogenesis and the formation of intragraft tertiary lymphoid structures117–119.  

A study has reported that following stimulation with IL-1β, ILC3s upregulate MHC-II 

and costimulation molecules (CD40, CD80, CD86) and that they are capable of 

processing protein antigens and eliciting a CD4 T response in vitro. In vivo, the cognate 

interaction between ILC3s and CD4 T leads to proliferation of the latter while its 

blockade inhibits thymo-dependent B responses120. However, the fact that ILCs may 

present antigens is not universally accepted and needs to be confirmed. 
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Finally, LTi that express high levels of TNF ligands (OX40L and CD30L), are important 

for the survival of CD4+ memory T lymphocytes in the secondary lymphoid organs121 

and for secondary antibody responses122. 

The elusive role of γδ T cells in alloimmune responses 

Studies published over a decade ago have reported that γδ T cells can interact with B 

cells, promote the formation of germinal centers, and induce the production of switched 

antibodies of IgE and IgG1 isotypes in mouse models123–125. The Vγ9+Vδ2+ cells 

express CXCR5, which allows their positioning in the B cell areas of the secondary 

lymphoid organs. Vγ9+Vδ2+ cells have been shown to support the production of 

switched antibodies, in a way that is dependent on CD40L, ICOS, and interleukins 4 

and 10126. Beyond their "T follicular help (Tfh)-like" function, γδ T cells could also act 

indirectly by inducing Tfh differentiation through: i) the secretion of Wnt agonists, which 

allow the Tfh program to be initiated under the control of Ascl2127, and ii) the 

presentation of antigenic peptides within MHC-II128. Collectively, this literature supports 

the idea that recipient γδ T cells could participate in humoral alloimmune response. 

However, in a recent set of experiments conducted in a murine model of heart 

transplantation, our group failed to show any defects in donor specific antibody (DSA) 

generation in recipient mice devoid of γδ T cells or any generation of DSA in recipient 

mice with only γδ T cells. Other evidence that γδ T cells are incapable of allorecognition 

comes from the observation that they cannot induce graft versus host disease (GVHD) 

in mice129.  

Role of ILC and ILTCs in tolerance to allogeneic transplants 

NK cells control the direct allorecognition pathway 

Beilke et al. have reported that tolerance to allogeneic pancreatic islets in mice is 

dependent on the recipient's NK cells130. Other studies using a skin graft model have 
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proven that NK-cell-dependent tolerance results from the destruction of the donor's 

passenger APCs contained in the graft131, which in turn prevents the priming of the 

recipient’s T lymphocytes through the direct pathway132,133. The same mechanism 

allows the recipient’s NK cells to destroy donor's passenger  CD4+ T cells, and thereby 

block the activation of the recipient's B cells and the magnitude of the humoral 

response134. In all these studies, donor mice were of H-2d genetic background while 

recipient mice were H-2b and it was discovered that the H-2Dd molecules expressed 

on the surface of the graft cells constituted a ligand for the NKaR Ly49D133,135. Of note, 

the recipient’s NK cells could use the same mechanism to also destroy the syngeneic 

APCs involved in the semi-direct pathway (after capture of the donor's intact MHC-I). 

Nkp44 is another activating immunoglobulin-like receptor136 expressed by activated 

NK lymphocytes (and a small number of T lymphocytes γδ136,137. Niehrs et al. recently 

reported that Nkp44 binds to HLA-DP*0401138,139, a molecule highly expressed by 

activated APCs. While no studies have been conducted so far to validate this 

hypothesis, it is tempting to speculate that Nkp44 could suppress the direct 

allorecognition pathway in humans, as Ly49D does in mice. 

NKT and tolerance 

Although NKT deficiency does not modify the prognosis after allogeneic heart 

transplantation, this subset of ILLC seem to participate in the tolerance induced by the 

LFA-1 or CD28/B7 blockade. Indeed, tolerance to an allogeneic heart transplant 

induced by such immunosuppressive protocols is lost in the absence of NKT cells and 

restored after transfer of these cells in NKT KO mice140. Furthermore, in tolerant mice, 

NKT lymphocytes produce more IL-10, and this production is associated with the 

induction of IL-10-producing regulatory DCs and CD4+ T cells141. Other teams have 

reported the involvement of NKT cells in islet graft tolerance but suggest that their role 
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depends on TGFβ in this context142. How NKT cells are activated and acquire their 

tolerogenic functions after transplantation remains unknown. 

γδ T cells and tolerance to liver allograft 

Alterations of the γδ T lymphocyte compartment after viral (in particular CMV) 

infections have been frequently observed in liver and kidney transplant patients143,144. 

Interestingly, CMV infections have been associated with decreased reactivity of 

allospecific T-lymphocytes and a lower incidence of late cell rejection after liver 

transplantation. The virus-induced remodeling of the γδ compartment favors the Vδ1 

subset145, a population identified in the signature of tolerant liver transplant 

patients146,147, but absent in rejected organs148. Some authors have proposed using 

the Vδ1 signature as a diagnostic test of operational tolerance, a phenomenon 

commonly observed after liver transplantation147. Whether the Vδ1 T lymphocytes are 

only a marker or are also players (and through which mechanisms) of this tolerance 

remain to be clarified. 

MAIT cells prevent graft-versus-host disease of the gut 

Colonic MAIT cells locally suppress the presentation of alloantigens by a donor's DCs, 

thus limiting the expansion of effector alloreactive T and GVHD lesions in the gut149. 

This data suggests that further exploration of the role of MAIT cells in intestinal 

transplantationis needed. 

 

ILCs and ILTCs influence on the mechanisms of graft destruction  

Missing self-induced NK cell activation and chronic vascular rejection   

In contrast to the adaptive alloimmune response, in which the priming (i.e. 

allorecognition, see above) and effector phases are separated, both in time and space, 
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innate immune cells sense the allogeneic non-self and react against it in the same 

movement.  

More than a decade ago, Uehara et al demonstrated that chronic vascular rejection 

lesions develop in cardiac allografts transplanted from parental to unmanipulated F1 

hybrid mice, a transplant system that lacks specific anti-donor T cell reactivity but 

retains anti-donor NK cell responses150. Van Bergen et al reported that the existence 

of mismatches between NKiR of the recipient and MHC-I of the graft correlated with  

reduced graft survival after an HLA-A, B and DR compatible kidney transplantation151. 

A recent translational study recently shed light on the molecular mechanisms 

underlying these observations. Recipient's NK cells are equipped with surface NKiR, 

which have MHC-I molecules as ligands. Because the endothelium of a transplanted 

organ expresses the donor's MHC-I molecules, certain donor/recipient pairs create a 

"missing self” situation, in which the endothelial cells of the graft are unable to deliver 

HLA I-mediated inhibitory signals to recipient circulating NK cells. If the proportion of 

NK cells expressing the educated NKiR in the recipient is sufficient and following 

priming (by viral infection or IRI for instance), the missing-self activates NK cells, which 

in turn promote microvascular inflammation leading to reduced survival of the 

graft152,153. This new type of "innate" chronic vascular rejection could account for a 

significant (30 to 50%) fraction of patients with microvascular inflammation on graft 

biopsy but no detectable DSA in circulation152. This is of importance because, in 

contrast with chronic (i.e. complement-independent) antibody-mediated rejection 

(AMR), for which no efficient therapy is available, the mTOR inhibitor rapamycin can 

prevent the development of "innate" chronic vascular rejection in a murine model152. It 

is of note that an important proportion of γδ T cells also express NKiR154,155 and could 

thereby also participate in the response to missing-self situations. 
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If a defect in inhibitory signals is sufficient to activate the NK cells within the 

microvascularisation of the graft, it is tempting to speculate that an excess of activation 

signals could do the same. MICA is a ligand of the NKaR NKG2D. MICA molecules 

are constitutively expressed on the surface of endothelial cells156,157. This highly 

polymorphic protein158,159 can induce a humoral adaptive alloimmune response 

resulting in the production of anti-MICA DSA157,160,161. Interestingly, MICA 

polymorphisms also affect its binding to NKG2D. In particular, the MICA-129/Met 

polymorphism induces stronger NKG2D signaling162. It is therefore plausible that when 

the NK cells of a MICA-129/Met-negative recipient encounter MICA molecules on the 

surface of graft from a MICA-129/Met-positive donor, recipient's NK cells get activated, 

leading to "innate" chronic vascular rejection without "missing self". Along the same 

line, Nkp44 is another NKaR that binds to HLA-DP*0401. Endothelial cells of the grafts 

express MHC-II molecules upon exposure to inflammatory cytokines163. It is therefore 

conceivable that the endothelium of the grafts from an HLA-DP*0401-positive donor 

could trigger activation of the recipient’s NK cells. 

FcR-expressing ILCs and ILTCs contribute to chronic AMR pathophysiology 

Antibody-mediated rejection associated with acute dysfunction of the graft is due to 

activation of the classical complement pathway164. Lower titers of DSA fail to activate 

the complement but are still associated with reduced graft survival due to 

(complement-independent) chronic AMR165.  

Colvin’s group was the first to demonstrate the crucial role of NK cells in the 

pathophysiology of chronic AMR. Using a murine model in which an allogeneic heart 

was transplanted to RAG-KO recipients (devoid of T and B cells) that were passively 

transfused with DSA, they showed that the recipient's NK cells infiltrate the intima of 

the arteries of chronically rejected grafts166 and that NK cell depletion abrogated the 
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development of vascular lesions166–168. DSA bound to the surface of graft endothelium, 

indeed recruit NK cells through their crystallizable fragment, which binds to the CD16 

(FcγRIII) receptor 169,170 and triggers ADCC (Antibody-dependent cellular cytotoxicity) 

and microvascular inflammation lesions167,171,172. 

This experimental data was then confirmed in clinical studies. The humoral rejection 

biopsies of kidney grafts were enriched with specific transcripts of NK 

lymphocytes173,174 as a result of CD16-dependent signals175. 

Finally, our group recently demonstrated that the two mechanisms by which NK cells 

can get activated by an allogeneic transplant (i.e. missing self and ADCC) can 

synergize to accelerate kidney graft loss in patients with low DSA titers176. 

It has been shown that CMV infection in renal transplant recipients induces the 

expansion of a subpopulation of Vδ2-negativeT cells, which represents a population 

as large as NK cells among CD16-expressing PBMCs177 and maintain over time144. 

Interestingly, CD16-expressing Vδ2-negativeT cells can perform ADCC in vitro against 

allogeneic target cells coated with DSA. The involvement of Vδ2-negativeT cells in 

AMR pathophysiology is further suggested in vivo by: i) the observation of Vδ2-

negativeT cells in contact with microvascular cells in AMR biopsies of kidney grafts, 

and ii) the fact that their frequency in circulation is inversely correlated with graft 

function in patients with DSA178. 

Some authors have proposed that γδ T cells could also promote graft destruction by 

providing IL-17, which accelerates allograft rejection by locally increasing inflammation 

and preventing the expansion of regulatory T cells179,180. This hypothesis is supported 

by data from murine heart transplantation models but remains to be confirmed in 

humans.  
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I(L)LCs-mediated graft protection 

As suggested above, ILCs play a crucial role in the homeostasis of mucosal organs, 

particularly the lung and intestine, and participate in the repair of damaged epithelia. 

For instance, influenza virus triggers an IL-33-dependent response in the lungs leading 

in ILCs to the upregulation of genes involved in tissue repair, including amphiregulin, 

an essential mediator of functional recovery of the lungs after infection40. If  intestine 

damage is present, ILC3 synthesize IL-22 to promote regeneration of the epithelium 

by intestinal stem cells80. They also contribute to the maintenance of intestinal 

homeostasis via the secretion of IL-22, IL-17 and GM-CSF, which participate in the 

maintenance of the equilibrium between anti-microbial defense and tolerance of 

commensal bacteria181–184. 

In the field of transplantation, emerging data seems to confirm the protective role of 

ILCs. In a murine model of lung transplantation, it has been reported that the production 

of IL-22 by intragraft ILC3 (and γδ T cells) allows for recruiting the recipient’s B 

lymphocytes within the BALT and thereby promotes long-term lung graft 

tolerance185,186. In accordance with this concept, a recent clinical study has established 

a correlation between lung graft dysfunction and a decrease in ILC2 in lung tissue187. 

In addition, NK and NKT cells could also protect allografts. Chronic lung rejection is 

associated with a decrease in the expression, by NK and NKT cells, of anti-

inflammatory molecules, which (if increased by drug treatments) could potentially 

improve graft survival 188,189. 

Donor chimerism is long lasting in the ILC compartment of intestinal transplant190,191 

and whether they originate from the recipient or the donor, ILC3 seem to be associated 

with the clinical outcome. A first study has indeed reported that early repopulation of 

intestinal grafts by IL-22- synthesizing ILC3 is associated with a better outcome192, 
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while a second work has shown that intestinal rejection is associated with a local 

decrease in ILC3 and IL-22 secretion193. 

 

ILCs and ILTCs protect transplant recipients of the side effects of 

therapeutic immunosuppression  

Prevention of rejection in transplant recipients relies on non-specific life-long 

immunosuppression, which increases the risk for infection and neoplasia.   

Most immunosuppressive regimens include an induction followed by maintenance with 

a combination of drugs. Depleting agents used for induction (thymoglobulin, 

alemtuzumab…etc) are antibodies; they have limited ability to diffuse outside the 

circulation194, which suggests that tissue-resident cell subsets are relatively preserved. 

Maintenance immunosuppression principally relies on calcineurin-inhibitors that target 

the signal 1 of activation, downstream from the T- or B-CR of lymphocytes. Classical 

immunosuppressive strategies could thus spare ILCs (and to a certain extend ILTCs, 

which can be activated through TCR-independent pathways)195,196. This specificity, 

together with the fact that ILCs or ILTCs have important roles in first line defense 

against infections and tumors, suggests that these cells could play an important 

protective role in transplant recipients. 

Roles of ILCs in infections and cancers 

Gut ILCs have critical roles in cytokine-mediated regulation of intestinal epithelial cell 

barrier integrity. ILCs that express major histocompatibility complex class II, and can 

process and present antigen, also regulate CD4+ T-cell and limit pathological adaptive 

immune cell responses to commensal bacteria182.  

ILC1 have been implicated in the response against two classical pathogens following 

transplantation: CMV31 and Toxoplasma gondii197. ILC1 also play a critical role for the 
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maintenance of lung airway epithelial integrity, especially  following infection with 

influenza virus40, a role they share with iNKT cells198.  

The role of NK cells and other ILCs in tumors has been extensively reviewed 

elsewhere199,200. We will here only underlie the important graft versus leukemia effect 

of NK cells. The donor NK cell alloreactivity is indeed effective in mismatched 

hematopoietic transplants in protecting the recipient201. Early NK cell recovery is 

associated with better cancer-free survival after autologous hematopoietic stem cell 

transplantation202. In solid organ transplants, dysfunction of NK cells (decreased 

expression of NKp46, decreased number of IFN-producing NK cells) is associated 

with post-transplant malignancy203,204.  

NK cells function also predicts severe infection in kidney transplant recipients205. 

Interestingly, a more specific role for NK cells in anti-CMV response was recently 

highlighted. NK cells exhibit adaptive immune features after CMV infection in mouse 

(proliferation capacity, memory phenotype and efficacy of adoptive transfer206). 

Cytomegalovirus reactivation after allogeneic transplantation promotes a long-lasting 

increase in adaptive NKG2C+ NK cells with more potent functions207. Human CMV 

also imprints KIR repertoire towards activating KIR with the expansion of a unique 

NKG2C+CD57+ subset of NK cells208,209. These CMV NKG2C+ NK cells were enriched 

in bronchoalveolar lavages of lung allograft and inversely correlated with CMV blood 

titers210. This subset may therefore represent a signature associated with reduced 

incidence of post-transplantation symptomatic CMV211.  

Roles of ILTCs in infections and cancers 

MAIT cells are involved in the maintenance  of gut integrity and in the response to a 

large panel of bacteria212,213, including the very common Escherichia Coli that induces 

pyelonephritis ; and viruses214,215.   
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The role of Vδ2-negative γδ T cells in CMV response was first demonstrated in 

immunocompromised solid organ transplant recipients144,216. This seminal observation 

has since been extended to other settings of αβ T cell deficiencies: immaturity217, 

congenital immunodeficiency218, bone marrow transplantation219 and finally, also 

confirmed in healthy blood donors220.  

Anti-CMV Vδ2-negative γδ T cells display a late differentiated TEMRA (CD27-CD28-

CD45RA+CCDR7-CD62L-) and activated (CD69+HLA-DR+) phenotype, cytotoxic 

ability (perforin+ granzymeB+) and expression of NKRs (CD16+, NKG2D+, 

CD94/NKG2C/A+). CMV drives a presumed antigen-driven clonal selection with a 

repertoire restriction of the γδ TCR (CDR3 restriction for the Vδ chains).  Longitudinal 

surveillance of non Vγ9+Vδ2+ γδ T cells in kidney transplant recipients may predict 

CMV infection resolution and antiviral drug resistance221. Notably, γδ T lines/clones 

from CMV-infected patients kill both CMV-infected cells and several solid tumor cell 

lines in a TCR-dependent fashion222. In agreement with this TCR-dependent cross-

reactivity, an association between a high percentage of CMV-responsive γδ T 

lymphocytes in blood and a reduced cancer risk was observed in kidney recipients223.  
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Conclusion 

Innate immune effectors are finally getting attention from transplant immunologists and 

their many roles are starting to be recognized beyond the initial ischemia/reperfusion 

phase. Like their myeloid counterparts, which have been shown to be capable of 

allorecognition, innate lymphoid cells (in particular NK cells through missing-self) can 

detect allogeneic non-self. Furthermore, convincing (direct or indirect) evidence 

suggests that almost all known ILC and ILLC subsets can participate in rejection by 

accelerating or dampening graft destruction depending on the organ and the context. 

Finally, it should not be forgotten that ILCs and ILTCs contribute to the first line of 

defense against pathogens and cancers. Because these subsets might be less 

affected by immunosuppressive drugs, ILCs and ILTCs could play crucial roles in the 

protection of transplant recipients against these life-threatening complications (Figure 

4).  

Given the complexity of this field, intense efforts are still required to elucidate the exact 

role of each of these subsets in transplant immunology. 
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Figure legends 

Figure 1. A simplified classification for lymphoid cells 

Abbreviations are: ILC, Innate lymphoid cell; NK, natural killer; LTi, lymphoid tissue 

inducer; MAIT, Mucosal associated invariant T; NKT, Natural killer T; TCR, T cell 

receptor; MZ, marginal zone. 

 

Figure 2. Characteristics and functions of innate lymphoid cells 

Abbreviations: ILC, Innate lymphoid cell; NK, natural killer; LTi, lymphoid tissue 

inducer; IFN, interferon; IL, interleukin. 

 

Figure 3. Characteristics and functions of innate-like T cells 

Abbreviations: MAIT, Mucosal associated invariant T; NKT, Natural killer T; TCR, T cell 

receptor; IFN, interferon; IL, interleukin; Ag, antigen; αGalCer, α-galactosylceramide; 

CMV, cytomegalovirus. 

 

Figure 4. Graphical summary of the possible roles of innate (and innate-like) 

lymphoid cells in transplantation 

Abbreviations are: ILC, Innate lymphoid cell; NK, natural killer; LTi, lymphoid tissue 

inducer; MAIT, Mucosal associated invariant T; NKT, Natural killer T; TCR, T cell 

receptor; IFN, interferon; IL, interleukin; MHC, major histocompatibility complex; MICA, 

MHC-I polypeptide–related sequence A; HLA, human leukocyte antigen; DSA, donor 

specific antibody; CMV, cytomegalovirus ; TGF, transforming growth factor; ADCC, 

antibody-dependent cellular cytotoxicity; Areg, Amphiregulin; BALT, bronchus-

associated lymphoid tissue. 
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