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Abstract: Esters constitute a broad family of volatile compounds impacting the organoleptic proper-
ties of many beverages, including wine and beer. They can be classified according to their chemical
structure. Higher alcohol acetates differ from fatty acid ethyl esters, whereas a third group, sub-
stituted ethyl esters, contributes to the fruitiness of red wines. Derived from yeast metabolism,
the biosynthesis of higher alcohol acetates and fatty acid ethyl esters has been widely investigated
at the enzymatic and genetic levels. As previously reported, two pairs of esterases, respectively
encoded by the paralogue genes ATF1 and ATF2, and EEB1 and EHT1, are mostly involved in the
biosynthesis of higher alcohol acetates and fatty acid ethyl esters. These esterases have a moderate
effect on the biosynthesis of substituted ethyl esters, which depend on mono-acyl lipases encoded by
MGL2 and YJU3. The functional characterization of such genes helps to improve our understanding
of substituted ester metabolism in the context of wine alcohol fermentation. In order to evaluate
the overall sensorial impact of esters, we attempted to produce young red wines without esters by
generating a multiple esterase-free strain (∆atf1, ∆atf2, ∆eeb1, and ∆eht1). Surprisingly, it was not
possible to obtain the deletion of MGL2 in the ∆atf1/∆atf2/∆eeb1/∆eht1 background, highlighting
unsuspected genetic incompatibilities between ATF1 and MGL2. A preliminary RNA-seq analysis
depicted the overall effect of the ∆atf1/∆atf2/∆eeb1/∆eht1 genotype that triggers the expression shift
of 1124 genes involved in nitrogen and lipid metabolism, but also chromatin organization and histone
acetylation. These findings reveal unsuspected regulatory roles of ester metabolism in genome
expression for the first time.

Keywords: substituted ester metabolism; wine fermentation; MGL2; YJU3; histone acetylation

1. Introduction

Saccharomyces cerevisiae is the main yeast species involved in the alcoholic fermentation
of many beverages and foods, including bread, beer, wine, and sake [1]. The secondary
metabolism of fermenting yeast is the source of a broad range of volatile compounds [2,3]
that contribute to the complex flavors of fermented beverages [4–7]. Volatile esters repre-
sent a noteworthy chemical family that has been widely investigated in different beverages,
since they confer a wide palette of fruity notes. Since they are connected to the carbon
and nitrogen metabolism of fermenting yeast, a large number of genetic variations mod-
ulates the biosynthesis of esters. In this context, many quantitative genetics programs
have been carried out to decipher the phenotypic variability among strains [8–10]. The key
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enzymatic activities and the surrounding biochemical pathways involved in ester syn-
thesis have been widely reviewed [11,12]. Higher alcohol acetates (HAA) result from
the enzymatic condensation of acetyl-CoA and higher alcohols, which are derived from
amino acid catabolism through the Ehrlich pathway [13–15]. This reaction is catalyzed
by alcohol acetyl transferases (AAT = EC 2.3.1.84) [16,17] encoded by the genes ATF1 and
ATF2 [18,19]. According to several authors, the protein Atf1p is the most important for
the production of acetate esters [18,20,21]. More recently, a mitochondrial ethanol acetyl-
transferase Eat1p belonging to the AAT family was characterized for its contribution to
ethyl acetate production [20]. Fatty acid ethyl esters (FAEE) result from the condensation
of an acyl-CoA component with ethanol [17,21]. This ester family is synthetized by three
enzymes showing a moderate sequence divergence (Eht1p, Eeb1p, and Mgl2p). Eht1p and
Eeb1p are acyl-CoA:ethanol-O-acyl transferase (AEATase = EC 2.3.1.75) and contribute
to FAEE synthesis in a synthetic medium. The enzymatic activity of Eht1p has been also
validated in vitro by GC-MS analyses [22]. Although sharing a high sequence homology,
the third protein (Mgl2p) has a slighter impact on ethyl ester biosynthesis [21].

Alongside these two families, substituted ethyl esters have been also identified
in fermented beverages. This third group is defined by the presence of substituted
chains that may be alkylated and/or hydroxylated. Alkylated ethyl esters (AEE) (ethyl
2-methylpropanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate) result from the
esterification of ethanol and alkyl acid derived from the Ehrlich pathway [23,24]. Hy-
droxylated ethyl esters (HEE) such as ethyl 2-hydroxy-4-methylpentanoate and ethyl
3-hydroxybutanoate have also been described [23,25]. Compared to their linear counter-
parts, substituted esters are produced in smaller quantities by Saccharomyces cerevisiae.
However, their aromatic concentration steadily increases during wine aging due to the
chemical esterification by ethanol of their corresponding acids, which are also produced
by yeast metabolism [23,25]. These molecules have an important sensorial impact on
red wines, as they enhance fruity notes thanks to perceptive interaction phenomena [25].
The biosynthesis of substituted esters has been poorly investigated. Recently, a Quan-
titative Trait Loci (QTL) mapping analysis revealed that the production level of ethyl
3-methylbutanoate and ethyl 2-methylpropanoate depends on multigenetic factors that
modulate the biosynthesis of their metabolic precursors [10]. However, enzymatic activity
controlling the esterification step has not yet been established.

This study aims to determine which S. cerevisae enzymes control substituted ester
biosynthesis by using a functional genetics approach narrowing the genes ATF1, ATF2,
EEB1, EHT1, MGL2, and YJU3. The deletion of such genes did not impact the ongoing
alcoholic fermentation but did modulate the bioproduction of the different classes of esters
investigated. The impact of several combinations of gene deletions was evaluated by
implementing analytical chemistry in different red grape juices. In the second phase,
we sought to construct an “esterase free” yeast strain in order to evaluate the sensory
consequences of ester depletion in wine. Our findings suggest that unsuspected genetic
interactions impair the construction of such a strain. In order to understand this surprising
result, a comparative transcriptomic analysis was carried out using an RNA-seq approach,
which revealed that the combined deletion of ∆atf1, ∆atf2, ∆eeb1, and ∆eht1 triggers a wide
transcriptomic repatterning.

2. Results
2.1. Validation of the Role of AATase and AEATase in a Red Wine Fermentation

All volatile compounds assayed, their chemical family, and their relative abbreviations
are listed in Table 1 and were measured according to methods previously developed in the
laboratory [25]. As described in these communications, such molecules have an effective
contribution to the sensory complexity of red wines and were quantified at the end of the
alcoholic fermentation.
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Table 1. Chemical compounds assayed by family.

Esters Metabolic Precursors

Compounds Family Abbreviation Compounds Family Abbreviation

ethyl propanoate

Fatty acid ethyl
esters

(FAEE)

C3C2 propanoic acid
Volatile acids

(VAc)

C3
ethyl butanoate C4C2 butanoid acid C4
ethyl hexanoate C6C2 hexanoic acid C6
ethyl octanoate C8C2 octanoic acid C8
ethyl decanoate C10C2

ethyl dodecanoate C12C2

propyl acetate

Higher alcohol
acetates (HAA)

C2C3 propan-1-ol
Higher alcohols

(HA)

C3OH
2-methylpropyl acetate C2iC4 2-methylpropan-1-ol iC4OH
3-methylbutyl acetate

(isoamyl acetate) C2iC5 3-methylbutanol
(isoamyl alcohol) iC5OH

hexyl acetate C2C6
octyl acetate C2C8

2-phenylethyl acetate C2PhC2

ethyl 2-methylpropanoate
Alkylated ethyl

esters (AEE)

2mC3C2 2-methylpropanoic acid
Alkylated acids

(AAc)

2mC3
ethyl 2-methylbutanoate 2mC4C2 2-methylbutanoic acid 2mC4
ethyl 3-methylbutanoate 3mC4C2 3-methylbutanoic acid 3mC4

ethyl phenylacetate PhC2C2

ethyl 2-hydroxy-4-methyl-
pentanoate

Hydroxylated
ethyl esters

(HEE)

2h4mC5C2
ethyl 2-hydroxy-4-
methyl-pentanoic

acid
Hydroxylated

acids (HAc)
2h4mC5

ethyl 3-hydroxy-butanoate 3hC4C2 ethyl
3-hydroxy-butanoic acid 3hC4

The impact of acyl-CoA:ethanol-O-acyl transferase (Ehb1p, Eeb1p) and alcohol acetyl
transferases (Atf1p, Atf2p) in an enological context was reassessed by testing the effect of
the deletion of EEB1, EHT1, ATF1, and ATF2 in a Cabernet Sauvignon grape must. The role
of the gene EAT1, which controls the production of ethyl acetate in beer fermentation [20],
was not assayed, since this compound was not detected in the wines analyzed. The effect
of double deletions was also estimated by obtaining the strains Fx10-∆A12 (∆atf1, ∆atf2)
and Fx10-∆E12 (∆eeb1, ∆eht1) (Table 2). At the end of the alcoholic fermentation, 18 volatile
compounds were quantified by GC-MC and the results are detailed in Table S1. This set of
volatile compounds encompassed four higher alcohol acetates (HAA), six fatty acid ethyl
esters (FAEE), four alkylated ethyl esters (AEE), and four higher alcohols (HA). Gene dele-
tion did not impact the fermentation kinetics of the strain Fx10 and all the resulting wines
reached similar values of residual sugar and acetic acid production (Table S1). In order to
allow an easier comparison of gene deletions, the data were normalized by the average
value of the control strain (Fx10). Each ester family showed a similar variation pattern
according to the gene deleted (Figure 1a). The relative production levels of representative
compounds are given in Figure 1b,e. HAA synthesis was strongly reduced (80 to 95%) in
the Fx10-∆A12 strain. As previously reported [20], the most impactful enzyme was Atf1p,
since the inactivation of Atf2p did not significantly impact HAA production, such as that
of isoamyl acetate (C2iC5) (Figure 1b). Similarly, the esterification of C6-C12 fatty acids
in FAEE was strongly reduced in the strain Fx10-∆E12 which is deleted for the EEB1 and
EHT1 genes. The main contributing enzyme was Eeb1p, which accounted for the majority
of FAEE biosynthesis, as illustrated for C6C2 (Figure 1c). In contrast, AEATase activity
made a minor contribution in the esterification of short fatty acid (C3 and C4), since the
C3C2 concentration was not affected and the C4C2 production was only 35% reduced in
the Fx10-∆E12 strain.
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Table 2. Yeast strains used.

Strain Background Genotype Description Origin

Y31674 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YOR377::kanMx4/YOR377::kanMx4

ATF1 deletion Euroscarf

Y34807 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YGR177::kanMx4/YGR177::kanMx4

ATF2 deletion Euroscarf

Y33317 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YRR177::kanMx4/YRR177::kanMx4

EEB1 deletion Euroscarf

Y32157 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YPL095::kanMx4/YPL095::kanMx4

EHT1 deletion Euroscarf

Y30796 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YMR210w::kanMx4/YMR210w::kanMx4

MGL2 deletion Euroscarf

Y34943 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YKL094w::kanMx4/YKL094w::kanMx4

YJU3 deletion Euroscarf

Fx10
HO/ho::HYG Fx10 Fx10; Mata/α, HO/ho::HYG Diploid

homozygous ISVV collection

Fx10-∆A1 Fx10 Fx10; Mata/α; HO/ho::HYG;
YOR377::kanMx4/YOR377::kanMx4 ATF1 deletion this study

Fx10-∆A2 Fx10 Fx10; Mata/α, HO/ho::HYG;
YGR177::kanMx4/YGR177::kanMx4 ATF2 deletion this study

Fx10-∆E1 Fx10 Fx10; Mata/α, HO/ho::HYG;
YRR177::kanMx4/YRR177::kanMx4 EEB1 deletion this study

Fx10-∆E2 Fx10 Fx10; Mata/α, HO/ho::HYG;
YPL095::kanMx4/YPL095::kanMx4 EHT1 deletion this study

Fx10-∆A12 Fx10
Fx10; Mata/α, HO/ho::HYG;

YOR377::kanMx4/YOR377::kanMx4;
YGR177::kanMx4/YGR177::kanMx4

ATF1, ATF2
deletion this study

Fx10-∆E12 Fx10
Fx10; Mata/α, HO/ho::HYG;

YRR177::kanMx4/YRR177::kanMx4;
YPL095::kanMx4/YPL095::kanMx4

EEB1, EHT1
deletion this study

Fx10-∆AE Fx10

Fx10; Mata/α, HO/ho::HYG;
YOR377::kanMx4/YOR377::kanMx4;
YGR177::kanMx4/YGR177::kanMx4;
YRR177::kanMx4/YRR177::kanMx4;
YPL095::kanMx4/YPL095::kanMx4

ATF1, ATF2,
EEB1, EHT1

deletion
this study

Fx10-∆M Fx10 Fx10; Mata/α, HO/ho::HYG,
YMR210w::kanMx4/YMR210w::kanMx4 MGL2 deletion this study

Fx10-∆Y Fx10 Fx10; Mata/α, HO/ho::HYG;
;YKL094w::kanMx4/YKL094w::kanMx4 YJU3 deletion this study

Fx10-∆ME Fx10

Fx10; Mata/α, HO/ho::HYG,
YMR210w::kanMx4/YMR210w::kanMx4,

YRR177::kanMx4/YRR177::kanMx4;
YPL095::kanMx4/YPL095::kanMx4

MGL2, EEB1,
EHT1 deletion this study

Fx10-∆MY Fx10
Fx10; Mata/α, HO/ho::HYG,

YMR210w::kanMx4/YMR210w::kanMx4,
;YKL094w::kanMx4/YKL094w::kanMx4

MGL2, YJU3
deletion this study

Fx10-∆AEM Fx10

Fx10; Mata/a, HO/ho::HYG; YOR377
/YOR377::kanMx4; YGR177 /YGR177::kanMx4;

YRR177 /YRR177::kanMx4; YPL095
/YPL095::kanMx4; YMR210w /YMR210w::kanMx4

Heterozygous
hybrid for ATF1,

ATF2, EEB1,
EHT1, MGL2

deletion

this study

H1xH5 Fx10

Fx10; Mata/a, HO/ho::HYG; YOR377
/YOR377::kanMx4; YGR177
::kanMx4/YGR177::kanMx4;

YRR177::kanMx4/YRR177::kanMx4; YPL095
/YPL095::kanMx4; YMR210w /YMR210w::kanMx4

this study
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Table 2. Cont.

Strain Background Genotype Description Origin

H1xH6 Fx10

Fx10; Mata/a, HO/ho::HYG; YOR377
/YOR377::kanMx4; YGR177/YGR177::kanMx4;

YRR177::kanMx4/YRR177::kanMx4;
YPL095::kanMx4/YPL095::kanMx4; YMR210w

/YMR210w::kanMx4

this study

Y31674 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YOR377::kanMx4/YOR377::kanMx4

ATF1 deletion Euroscarf

Y34807 BY4743
BY4743;Mata/α;his3∆1/his3∆1;leu2∆0/leu2∆0;

lys2∆0/LYS2;MET15/met15∆0,ura3∆0/ura3
∆0;YGR177::kanMx4/YGR177::kanMx4

ATF2 deletion Euroscarf
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Figure 1. Depletion effect of the activities of acetyl-transferase (Atf1p/Atf2p) and acyl-CoA:ethanol-O-acyl transferase
(Eeb1p/Eht1p) on linear esters. (a) Modalities significantly different from the wt are shown for all the volatile compounds
measured. The symbol * indicates which modality is significantly different from the wt according to a Kruskal–Wallis test
followed by a post-hoc Fisher’s LSD analysis (α = 0.01). (b–e) Gene deletion effects for representative compounds of each
ester class family, C2iC5 (isoamyl acetate), C6C2 (ethyl hexanoate), 3mC4C2 (ethyl 3methyl butanoate), and 2mC4C2 (ethyl
2methyl butanoate), respectively. The raw values of each deletion strain were normalized by the average value of the control
strain Fx10. Each point and bar represents the mean and the standard error computed from 3 to 6 independent biological
repetitions.

The production of alkylated ethyl esters (AEE) was impacted differently. Strains with
a reduced AATase activity (Atf1p, Atf2p) produced fewer AEE compounds, with a drop
of nearly 40% for 3mC4C2 and 2mC4C2 (Figure 1d,e, respectively). The contribution of
AEATase (Eeb1p, Eht1p) was more contrasted. Whereas the inactivation of Eht1p reduced
the production of 3mC4C2 (Figure 1e), the inactivation of Eeb1p enhanced the production
of 2mC4C2 and PhC2C2 (Figure 1a,d), suggesting a different contribution of this enzyme
to the esterification of alkyl substituted acids.
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2.2. Functional Characterization of a Nearly-Esterase-Free Strain

We then constructed a quadruple deleted strain (∆atf1, ∆atf2, ∆eeb1, ∆eht1) by crossing
haploid segregants of Fx10-∆E12 and Fx10-∆A12 (Table 2). The resulting strain, Fx10-
∆AE, was isogenic to Fx10 but lacked AATase and AEATase activities. Both strains were
fermented in two macerated red juices (Merlot and Tempranillo) containing an 8:2 mix
of grape juice and skins. This more complex matrix better mimicked the conditions of
winemaking. At the end of the fermentation, 31 compounds were quantified by GC-MS
and GC-FID (Table S2), including 18 esters, six HAA, six FAEE, four AEE, and two HEE
(hydroxylated ethyl esters), as well as 13 of their corresponding alcohols or acids: four
HA (higher alcohols), four VAc (volatile acids), three AAc (alkylated acids), and two HAc
(hydroxylated acids). All these molecules were produced by yeast metabolism, since they
were not detected in the grape must (data not shown). The impact of the strain and must
factors and their possible interaction was evaluated by a two-way analysis of variance
(ANOVA α = 0.001) (Table S3). Most of the phenotypic variability observed was due to
the strain effect, since the grape juice origin significantly impacted only two compounds
(C2iC5 and 2h4mC5). This analysis confirmed that linear ester biosynthesis (except that of
ethyl propanoate) is strongly reduced in the Fx10-∆AE strain (Figure 2a), in agreement with
the results presented Figure 1. Interestingly, the combined depletion of Atf1p, Atf2p, Eeb1p,
and Eht1p slightly enhanced the production of AEE (Figure 2a). In this trial, hydroxylated
ethyl esters (HEE) were also assayed using the procedure described by Lytra et al. (2017).
The strain Fx10-∆AE showed a drastic reduction (−90%) in ethyl 3-hydroxy butanoate
(3hC4C2) in both grape juices, whereas its production of ethyl-leucate (2h4mC5C2) was
not significantly impacted (Figure 2a).

The final concentrations of many ester-metabolic precursors were impacted differently
(Figure 2b). The production of higher alcohols (HA), linear (VAc), and substituted acids
(AAc and HAc) were modified moderately, suggesting that gene deletion affects the esteri-
fication level of these molecules but not their biosynthesis. This could be explained by the
fact that most volatile acids and higher alcohols are quantitatively much more abundant
that their relative esters. In addition, most of them are derived from the same alpha keto
acid and their concentrations are likely buffered by oxidoreductive reactions. In contrast,
biosynthesis of hexanoic and octanoic acids was strongly reduced (−90%), supporting the
idea that the drop in C6C2 and C8C2 observed was coupled with their precursor synthesis.
Finally, the production of hydroxylated acids was enhanced, especially for 3-hydroxy
butanoic acid, which was increased twofold in wines fermented by the Fx10-∆AE strain
(Figure 2b).

The biosynthesis pathways of hydroxylated acids and their relative esters have not
been described before. Since they play a critical role in the evolution of the fruity notes of
red wines, we sought to determine which esterase activity is involved in their variation.
According to Saerens et al. (2006), a third protein (Mgl2p) may also have acyl-CoA:ethanol-
O-acyl transferase activity in S. cerevisiae. By deleting the MGL2 gene in the Fx10 strain and
crossing it back with the Fx10-∆E12, we obtained the triple deleted strain Fx10-∆ME (∆mgl2,
∆eeb1, ∆eht1), supposed to be lacking in any AEATase activity (Table 2). The production
level of HEE was compared to the strain Fx10-∆AE and the wt strain Fx10 (Figure S1).
A drop in 3hC4C2 was observed in both mutants, demonstrating that this ester is mostly
produced by AEATase. In contrast, the production of ethyl-leucate (2h4mC5C2) was only
slightly reduced (−15%) in respect to the wild type, suggesting that other enzymatic
activities are involved in the biosynthesis of this ester, which is hydroxylated and alkylated.
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symbols * and *** indicate which compounds have a significantly different production level with respect to the wt (post
hoc HSD test based on the ANOVA, α = 0.05 and 0.001, respectively). The symbol # indicates which compounds have
a significantly different production level according to the grape must origin (post hoc HSD test based on the ANOVA
α = 0.05).

2.3. Sensory Profiling of a Wine with Reduced Ester Content

The Merlot and Tempranillo wines produced in this experiment provided the oppor-
tunity to analyze the organoleptic impact of ester depletion in controlled conditions for the
first time. Different descriptors related to red wine fruity perception were explored through
sensorial analysis (see methods). The panelist found a significant intensity variation for the
overall aroma (OA), fermentative aroma (FA), red fruits (RF), and fresh fruits (FF) descrip-
tors. In contrast, the black fruits (BF) and jammy fruits (JF) notes were not significantly
impacted (Wilcoxon test, α = 0.05) (Figure 3). This result demonstrates that the cumulative
depletion of Atf1p, Atf2p, Eeb1p, and Eht1p strongly decreases the fruity aromatic notes of
red wine in connection with the concentration drop in linear and some substituted esters
(Figure 2a). Since the production of other molecules (not assayed) might also have an effect
on fruity aroma, we completed this sensorial analysis by an aromatic reconstitution. Wines
fermented with Fx10-∆AE and Fx10 strains were supplemented in various esters up to the
same level of ester in the supplemented wines (Table S4). A second panelist used triangular
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tests to confirm that the supplemented wines did not show significative differences with
the control. This result confirms that the ester production discrepancy was the unique
cause of the sensorial differences observed between the tasted wines.
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Figure 3. Sensory analysis of fruity perception of nearly “ester free” wines. Wines fermented by the yeast strains Fx10 and
Fx10-∆AE were evaluated by sensorial analysis by 26 panelists who evaluated the intensity of different fruity descriptors:
OA: overall aroma, FA: fermentative aroma, RF: red fruit, BF: black fruit, FF: fresh fruit, JF: jammy fruit. The average
intensity value for each descriptor and each strain is represented for the Merlot and Tempranillo wines. A Wilcoxon test
was carried out to identify the difference of intensity between the two strains; the symbol * indicates a significant difference
(α = 0.05).

2.4. Functional Characterization of Mgl2p and Yju3p, Two Mono-Acyl Glycerol Lipases Involved
in the Synthesis of Substituted Esters

In the previous sections we clarified the role of AATses and AEATases in the biosynthe-
sis of linear esters and 3hC4C2. However, AEE and ethyl leucate biosynthesis have not yet
been completely elucidated. As well as Atf1p, Atf2p, Eeb1p, and Eht1p, other enzymes may
play a role in substituted ester biosynthesis. We hypothesized that the two proteins Mgl2p
and Yju3p may modulate the concentration of fatty acids, which are the precursors of ethyl
esters. Indeed, these proteins have been characterized for their mono-acyl glycerol lipase
(MAGLase) activity [26,27]. To test this hypothesis, the same functional genetic strategy
was applied and both enzymes were inactivated in the strains Fx10-∆M (∆mgl2) and Fx10-
∆Y (∆yju3). Their combined effect was also evaluated in the double mutant Fx10-∆YM
(∆yju3, ∆mgl2) (Table 2). Again, the fermentation kinetics of such strains was similar to the
control (data not shown). The depletion effect of MAGLase activity is summarized in a
heat map (Figure 4a). Mgl2p and Yju3p played a very moderate role in the biosynthesis of
linear esters of fatty acids and did not influence the production level of higher alcohols and
their corresponding acetate esters (Figure S2a,b). Although significant, the inactivation of
MAGLases had only a slight effect on FAEE production (−10%) (Figure S2c,d) compared to
AEATse inactivation (Figures 1 and 2). In contrast, MAGLases were significantly involved
in the de novo synthesis of most substituted ethyl esters. Indeed, AEE production was re-
duced by nearly 50% compared to the control in single and double mutants (Kruskal–Wallis
test α = 0.01) (Figure 4b). However, the double deletion of MGL2 and YJU3 did not abolish
AEE production, suggesting that other enzymes (including Eeb1p and Eth1p) compensated
for their inactivation. Remarkably, Mgl2p and Yju3p did not affect the production level
of a phenyl-substituted ester (PhC2C2), which seemed to have been produced by another
enzyme (Figure 4a). The biosynthesis of hydroxylated esters showed a more contrasted
genetic determinism. Ethyl-leucate (2h4mC5C2) was reduced by nearly 50% in the dou-
ble mutant (Figure 4c) but, as observed for alkylated esters, its production was not fully
abolished. This drop was positively coupled with the biosynthesis of its corresponding
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acid (2h4mC5) (Figure 4c). This suggests that MAGL may control the biosynthesis of the
ethyl 2-hydroxy-4-methylpentanoic acid, which in turn influences the production level of
ethyl-leucate. In contrast, the production level of ethyl-3 hydroxy-butanoate (3hC4C2) was
not evenly impacted by MAGL inactivation. MGL2 deletion promoted 3hC4C2 synthesis
(+50%), whereas YJU3 deletion had no impact with a dominant effect on MGL2 (Figure 4c).
Altogether, these findings demonstrate for the first time the impact of MAGLase activity
on the biosynthesis of volatile substituted esters in the context of alcoholic fermentation.
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(b) Deletion effect for significantly impacted AEE. (c) Deletion effect for HEE and their relative metabolic precursors. Each
point and bar represents the mean and the standard error computed from 4 independent biological repetitions measured in
two grape juices. The symbols * indicate which modality is significantly different from the wt according to a post hoc HSD
test (α = 0.001).

2.5. Attempts to Construct a Fully Esterase-Free Yeast Strain

The possible metabolic connection between enzymatic activities (AATase, AEATase,
and MAGLase) prompted us to integrate the MGL2::KanMx allele into the Fx10-∆AE strain,
which significantly impacts AEE and HEE biosynthesis. Using a breeding strategy, an
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F1 hybrid (Fx10-∆AEM) was obtained by crossing the appropriate haploid segregants of
Fx10-∆AE and Fx10-∆M. Since deleted genes are located in different chromosomes, the
expected frequency of an Fx10-∆AEM progeny with the quintuple-deleted genes would be
1/32. Surprisingly, by genotyping such progeny by PCR, we failed to identify any segregant
harboring all five deleted genes in the 296 spores dissected (Figure 5a). In order to increase
the chance of obtaining this progeny, different combinations of Fx10-∆AEM segregants
were crossed with each with the aim of fixing some desired alleles. For some haplotype
combinations, the isolated F2-zygotes did not develop a central bud and stopped their
growth at the first division stage. This prezygotic incompatibility was visually observed in
three haplotype combinations (H1xH2, H1xH3, and H3xH6) in 70 distinct zygotes (Table 3).
In contrast, other crosses (H1xH5 and H1xH6) developed zygotes with a perfect fitness.
The sporulation of these viable F2-hybrids (H1xH5 and H1xH6) would also allow the
isolation of segregants carrying the five deleted genes with a frequency of 1/8. Among
the 176 progenies dissected, we failed to obtain a strain deleted for the five genes (∆atf1,
∆atf2, ∆eeb1, ∆eht1, ∆mgl2). In these two F2-hybrids, seven pairs of double mutants were
expected with a frequency of 50% (Figure 5b). Surprisingly, the double mutant (∆atf1,
∆mgl2) was barely represented (5%) compared to other combination pairs (chi-square
test p = 1·10−7), indicating a probable deleterious interaction. However, this interaction
cannot be considered a synthetic lethality since some (∆atf1, ∆mgl2) strains were isolated
in the Fx10-∆AEM progeny (haplotypes H2 and H3). Another noteworthy result is the
low germination percentage of the hybrids dissected (between 82 and 75%), which is quite
unusual in nearly isogenic crosses. By typing all the progenies dissected, we inferred the
genotype of non-viable clones. Most of them appeared to have the “five deleted genes”
pattern sought (data not shown). These findings strongly suggest that the combined loss of
MGL2 and ATF1 genes confers a drastic and unexplained loss of viability.
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served (light blue) and expected (dark blue) occurrences of meiotic progeny of the Fx10-∆AEM (ATF1/∆atf1, ATF2/∆atf2,
EEB1/∆eeb1, EHT1/∆eht1, MGL2/∆mgl2) harboring 0 to 5 knocked-out genes. (b) Frequencies of meiotic segregants of the
hybrids H1xH5 and H1xH6 showing a double deletion for the genes ATF1, ATF1, EEB1, EHT1, and MGL2.

Table 3. Summary of haplotypes tested.

Pedigree Ploidy Haplotype 1 Viable Unviable
Number of Functional Copies

ATF1 ATF2 EEB1 EHT1 MGL2

Fx10-
Delta5-

progeny

n H1 5 0 0 0 0 0 2
n H2 1 0 0 2 2 2 0
n H3 1 0 0 2 2 0 0
n H4 1 0 2 0 0 0 0
n H5 2 0 2 2 0 0 0
n H6 2 0 2 0 0 2 0

F2-hybrids 2n H1/H2 0 20 0 1 1 1 1
2n H1/H3 0 20 0 1 1 0 1

1 For viable strains, haplotypes were verified by PCR; for the unviable background they were inferred from parental genotype.

2.6. Transcriptomic Analysis of the Fx10-∆AE Strain Reveals Unsuspected Consequences of the
Depletion of Esterase Activities

The genetic incompatibility revealed in the previous section contrasted with the
absence of macroscopic phenotypes in strains deleted for one or many esterase genes. For
instance, the strain Fx10-∆AE (∆atf1, ∆atf2, ∆eeb1, ∆eht1) showed very similar fermentation
kinetics to Fx10 (data not shown). This surprising result prompted us to investigate
in depth the physiological consequences of multiple gene deletion via a transcriptomic
approach. Biomass of strains Fx10-∆AE and Fx10 were collected at 30% of the alcoholic
fermentation (Merlot grape juice), total RNA was extracted, and the corresponding cDNAs
were sequenced using proton technology (see Methods). RNA sequencing allowed the
quantification of 6287 commonly detected genes. The average fold change ratio log2
(Fx10-∆AE/Fx10) was computed and genes showing a statistical difference were defined
by an ANOVA or Kruskal–Wallis test (whenever ANOVA assumptions were not met).
This analysis identified 1124 Differentially Expressed Genes (DEG) showing a significative
difference with at least a twofold change expression. This result suggests that the combined



Int. J. Mol. Sci. 2021, 22, 4026 12 of 24

deletion of four genes triggers an extensive transcriptome remodeling. Surprisingly, a
strong bias toward gene overexpression in the strain Fx10-∆AE was found, since 1102 and
22 genes were up- and downregulated, respectively (Figure 6a and Table S5). As expected,
ATF1, EHT1, and EEB1 were part of the shut-down genes, since very few reads were
mapped at their positions. Initially, ATF2 did not appear as a DEG (Figure 6b). On closer
scrutiny it was revealed that ATF2 overlapped partially with another ORF, YGR176W.
In order to correctly quantify ATF2 only, overlapping reads between ATF2 and YGR176W
were subtracted, revealing an actual absence of ATF2 mRNA in the Fx10-∆AE mutant
(Figure 6b). This first analysis confirmed the correct and complete deletion of the four
genes in the strain Fx10-∆AE. Interestingly, the gene MGL2 was identified as up-regulated
in the Fx10-∆AE mutant, suggesting the existence of dosage compensation mechanisms
between esterase genes. In addition, YJU3, the second MAGL gene investigated in this
study, was also significantly upregulated in the mutant (p-value < 0.05). Since it showed a
small increase (44%, less than a twofold change), this gene was not considered as a DEG in
further analyses.
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A gene ontology (GO) analysis identified 23 GO categories that were significantly
enriched or depleted in DEGs (hypergeometric distribution with Holm–Bonferroni cor-
rection, α = 0.05). Interestingly, most of the GO categories concerned major biological
processes involved in cellular housekeeping functions, including mRNA and rRNA pro-
cessing (GO:0006397, GO:0006364), cell division (GO:0051301), transmembrane transport
(GO:0055085), and oxidoreduction process (GO:0055114). The strong enrichment in genes
related to RNA metabolism was also confirmed by a significative enrichment in RNA
binding function (GO: 0003723), as well by the fact that half (517) of the 1124 genes were as-
sociated with the nucleus (GO:0005634), i.e., three times more than the proportion expected
for the whole genome (Figure S3). This first analysis revealed that the deletion of the main
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esterase genes triggered an unexpected modification of genome expression in the strain
Fx10-∆AE. In order to unravel this surprising expression repatterning, we sought functional
connections between DEGs by searching in the protein–protein interactions (PPI) database
(string-db.org). A cluster analysis of the PPI score matrix allowed the identification of
13 PPI clusters sharing functional relationships (Figure 7). Each cluster encompassed more
than 14 proteins and reached an average score higher than 0.51. Most of them (clusters 1,
2, 6, 7, 8, 10, 11, and 12) were enriched in protein networks related to nitrogen and lipid
metabolism (GO:0006807, GO:1901564, GO:1901566, GO:0006629). This connection with
metabolism was not directly identified by the GO enrichment analysis, highlighting the
interest of using a PPI score to discover functional components in genome-wide datasets.
Interestingly, cluster 13 encompassed 14 proteins mostly involved in lipid metabolism
and acyl transferase activity (GO:0016746), including the MAGLase Mgl2p. This result
demonstrates that the lack of AATses and AEATase activities triggers the expression of
many genes involved in the amino acid and lipid biosynthesis pathway.
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of the 1124 differentially regulated genes in the Fx10-∆AE mutant. For each pair of genes, a protein–
protein interaction (PPI) confidence score was extracted from STRINGdb (http://string-db.org/).
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Other PPI clusters were related to RNA regulation (clusters 1, 2, and 6, GO:0016070),
mitochondrion and mitochondrial translation (clusters 5 and 10, GO:0005739, GO:0032543),
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cell cycle (cluster 3, GO:0007049), and the site of polarized growth (cluster 9, GO:0030427),
congruently with the previous GO analysis. A few other elements were identified by
PPI analysis: response to stimulus (cluster 4, GO:0050896), cellular aromatic compound
metabolic process (GO:0006725), and the involvement of phosphoprotein (clusters 3, 4,
and 9, KW-0597). Finally, cluster 12, particularly enriched in proteins, was involved in
covalent chromatin modification (CL:3190) encompassing proteins belonging to histone
acetyltransferase (CL:3659) and histone deacetylase (CL:3384) complexes (https://version-
11-0b.string-db.org/cgi/network?networkId=b8KiKTUhCG3J).

The presence of proteins related to chromatin modification and the wide overex-
pression pattern of the strain Fx10-∆AE led us to check possible connections with his-
tone modifications by searching in a dataset of nucleosome co-immuno-precipitation [28].
The average ratios of acetylation and methylation in up- and downregulated genes were
compared to those of non-significant genes (Figure 8). Most histone modifications were
significantly affected in the mutant, with seven out of eight modifications enriched in the
pool of upregulated genes. Accordingly, downregulated genes were depleted in histone
modifications (5/8). This general trend is consistent with the fact that histone modifications
such as acetylation or methylation are frequently associated with increased transcriptional
activities and chromatin structure. Altogether, these results underline a significant dis-
turbance of the histone modification and chromatin structure in the Fx10-∆AE mutant,
congruent with the high number of upregulated genes in this strain.
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3. Discussion
3.1. General Reassessment of the Esterase Contribution in Red Winemaking

Although esters are very impactful compounds of wine flavor, the functional charac-
terization of genes and enzymes involved in their biosynthesis has rarely been achieved
in natural grape juices. Indeed, the genetic basis of ester biosynthesis has been evaluated
in culture broths [18,21] and in synthetic grape juice [19]. Since the nitrogen composition
has a strong impact on ester metabolism [29,30], the use of artificial media may create
physiological biases with respect to natural grape juices. This discrepancy has recently
been confirmed in a comparison of the gene deletion of several genes in laboratory culture
broth and in white grape juice [20]. By analyzing the deletion effect of six genes in an
enological context, we clarified their role in the biosynthesis of linear and substituted esters,
including HEE. In order to draw robust conclusions, gene deletion effects were evaluated
in three different matrices (Cabernet Sauvignon, Merlot, and Tempranillo). The use of
a fully homozygous diploid background (Fx10) allowed for the convenient construction
of simple and multiple deleted strains by combining genetic engineering and classical
breeding approaches. Figure 9 summarizes their relative contributions to the biosynthesis
of ester classes considered in this study.
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context.

The inactivation of AATses (Atf1p and Atf2p) and AEATses (Eeb1p, Eht1p) confirmed
their respective roles in the biogenesis of HAA and FAEE compounds. Both pathways
were quite independent, since the depletion of one class of enzyme had a null or very
moderate effect on the biosynthesis of the other group, except for the acetates of phenyl-
ethanol and ethyl-butanoate, which were slightly enhanced by the inactivation of AEATses
and AATses, respectively. When both enzymatic activities were inactivated (strain Fx10-
∆AE), linear ester biosynthesis was strongly reduced, especially for HAA. In contrast, the
biosynthesis of ethyl propanoate (C3C2) was not affected at all. In a recent study, the
production of this ester was linked to a mitochondrial ethanol acetyltransferase Eat1p.
EAT1 overexpression increases the biosynthesis of ethyl propanoate by condensing ethanol
and propionyl-CoA [20]. However, according to the same authors, the deletion of this gene
does not impact its biosynthesis in grape juice, likely due to a low oxygenation level.

Besides the well-documented biosynthesis of linear esters, this study focused on sub-
stituted ester metabolism, which contributes to the fruity notes of young red wines [25,31].
Our investigations demonstrated that yeast esterases (Atf1p, Atf2p, Eeb1p, Eht1p) are not
the main contributors to AEE and HEE biosynthesis. Indeed, the esterification of alkyl
substituted acids in enological conditions (2-methyl-propanoate, 2-methyl butanoate, and
3-methyl butanoate) was poorly impacted by AATases inactivation (−25%). Since AATases
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catalyze the condensation of acetyl-CoA and higher alcohols, their impact on substituted
ethyl ester is likely indirect and should be due to metabolic connections existing between
methylated alcohols and methylated acids that are derived from the respective reduction
and oxidation of methyl-substituted aldehydes [32]. AEATases have a more contrasted role,
since the production of some alkyl esters was reduced (3mC4C2) or enhanced (PhC2C2).
It is important to note that the concentrations measured for these latter compounds were
quite low and would not impact the sensory profile of wines. Although Eeb1p and Eht1p
did not efficiently catalyze the esterification of alkylated acids, they were clearly involved
in the biosynthesis of ethyl 3-hydroxy-butanoate (Figure 2 and Figure S1), which conferred
red-berry and fresh-fruit notes, even at subthreshold concentrations [33].

The reassessment of substituted ethyl ester metabolism was completed by an evalua-
tion of the role of two MAGLases. The deletion of MGL2 and YJU3 reduced the biosynthesis
of methyl substituted esters such as 2mC3C2, 2mC4C2, 3mC4C2, and 2h4mC5C2. In the
particular case of ethyl leucate biosynthesis, MAGLase inactivation also reduced the concen-
tration of its direct precursor, 2-hydroxy-4-methyl pentanoic acid, which was not observed
for the other methylated acids. This result suggests that the direct precursor of ethyl-leucate
may be derived from the degradation of lipid metabolism, which is consistent with the
primary function of mono acyl glycerol lipases.

To date, the sensorial consequences of ester depletion have never been investigated
in red wines. By fermenting two macerated grape juices with the strain Fx10-∆AE, we
demonstrated through sensory analyses that ester depletion has a significant effect on
various aromatic descriptors, as it reduces the perception of red and fresh fruit notes as
well as the overall aroma of the wines tasted. An aromatic reconstruction carried out with
synthetic molecules demonstrated that the drop in fruity perception observed was due to
the depletion of esters itself, thus ruling out the hypothetical impact of hidden compounds
not assayed.

3.2. Genetic and Transcriptomic Experiments Revealed Unsuspected Physiological Consequences of
Esterase Activity

Unexpectedly, we failed to obtain a strain deleted for all six genes investigated. Like
some colleagues [20], the construction of a quadruple deleted strain, Fx10-∆AE (∆atf1, ∆atf2,
∆eeb1, ∆eht1), was readily achieved with a breeding approach. However, we repeatedly
failed to isolate a strain carrying a fifth deletion (∆mgl2) using independent strategies (cross
or segregation). Strikingly, for several haplotype combinations, none of the zygotes isolated
developed a central bud or stopped their growth at the first division step, suggesting a
possible deficiency in cell polarization or in bud formation. This result led us to further
investigate the physiological changes provoked by the deletion of the four main esterases.
At the macroscopic level, no significative change with respect to the control was observed:
Both strains had a similar fitness in broth media and grape juice. In contrast, strong
variations were measured at the transcriptomic levels, since more than 1100 DEGs were
clearly identified. The significant overexpression of MGL2, and to a lesser extent of YJU3,
suggests the existence of genetic compensation mechanisms in the context of esterase
depletion. As a consequence, the deletion of MGL2 could impair such compensations, with
a synthetic lethal effect in the Fx10-∆AE background. This deleterious effect was observed
when all five genes were deleted, supporting the idea that Mgl2p, Eeb1p, Eht1p, Atf2p,
and Atf1p share complementary functions. Although we did not identify a precise genetic
interaction, the strong reduction in germination rate for progeny carrying the ∆mgl2 and
∆atf1 alleles supports the idea that these two genes may play a crucial role in yeast viability
through unknown mechanisms.

In phase with this genetic incompatibility, a preliminary transcriptomic analysis con-
firmed that the drastic reduction in ester production was not neutral in terms of molecular
physiology. Indeed, the strain Fx10-AE showed a striking expression repatterning with
a strong bias toward gene overexpression (1002 vs. 22 genes). GO enrichment and PPI
STRING analyses depicted a large set of activated pathways. Firstly, many genes involved
in nitrogen and lipid metabolism were identified. In particular, esterase inactivation en-
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hanced the expression of genes related to basic and aliphatic amino acid biosynthesis such
as lysine (LYS14, LYS20, LYS2, LYS9), arginine (ARG4 and ARG8), methionine (MET31),
leucine (LEU5), and threonine (THR4) (Supplementary File S8). The transport of these
amino acids was also enhanced with the overexpression of basic and substituted amino
acid transporters (VBA3, VBA5, BAP3). In addition, PPI analysis identified a small cluster
of 14 genes related to lipid metabolism, including MGL2 and YJU3. Most of them were
involved in triglyceride homeostasis and lipid droplet formation (CST6, LOA1, TGL2, TGL3,
TGL5) and were annotated for their acyl-transferase activity, which may have compensated
for the deletion of EEB1 and EHT1. Besides these broad metabolic adjustments, many
overexpressed genes were related to central cellular functions such as cell cycle and polar-
ization, as well as RNA binding. The detection of a small cluster of 32 proteins (cluster 12)
involved in chromatin modification retained our attention. This group encompassed key
components (HAD2, CTI6, AHC2, EAF7) of two protein complexes involved in histone
acetylation and deacetylation, HAD1 and ADA, respectively [34]. Since all genes were
overexpressed in the mutant, we hypothesized that Fx10 ∆AE had an abnormal chromatin
acetylation homeostasis, explaining the expression repatterning observed. This hypothesis
was corroborated by the fact that the DEG set was more subject to histone acetylation than
the rest of the genome. Since histone methylation and acetylation are partially correlated,
the DEG set was also more subject to histone methylation. A possible link between his-
tone modification and ester formation is the acetyl-CoA molecule itself, which constitutes
a common substrate for acetyl histone transferases and AATses. In yeast, the level of
acetyl-CoA is tightly regulated by acetyl-CoA synthetase (Acs1p, Acs2p) and acetyl-CoA
hydrolase (Ach1p). We hypothesized that AATses could also reduce the acetyl-CoA pool
by producing acetate esters of higher alcohols. Therefore, in the Fx10-∆AE strain, AATse
inactivation would increase the nucleocytosolic pool of acetyl-CoA, triggering histone
acetylation, which is consistent with an overall elevation of gene expression.

4. Materials and Methods
4.1. Culture Conditions and Classical Genetics Manipulations

All the chemical product used in this study were purchased from Sigma-Aldrich
company (Lyon, France). The yeast strains in this study belonged to the Saccharomyces
cerevisiae species and were propagated at 28 ◦C on YPD medium (1% yeast extract, 2% pep-
tone, dextrose 2%) complemented with 2% agar to prepare the solid medium. KanMx and
HygMx markers were selected using G418 (100 µg/mL) and hygromycin B (300 µg/mL),
respectively. Sporulation was induced in ACK medium (potassium acetate 1%, agar 2%) at
24 ◦C for three days and free spores were obtained by a cytohelicase treatment (2 mg/L,
90 min at 30 ◦C). Cell mating was performed by incubating 105/mL of spores and/or
haploid cells in YPD for 6 h at 30 ◦C. Newly formed zygotes were then isolated from the
mix by micromanipulation using a Singer apparatus MS200. The Mendelian segregation
of deleted genes was controlled by analyzing at least four complete tetrads isolated by
micromanipulation.

4.2. Construction of Esterase-Free Yeast Strains

A collection of nine knocked-out strains isogenic to the Fx10 background was obtained
(Table 2). This strain was a commercial starter Zymaflore Fx10 (Laffort, France), which is
widely used for red juice fermentation. This diploid, homothallic, and fully homozygous
strain was previously used by our laboratory [35]. The deletion of the six genes in this study
(ATF1, ATF2, EEB1, EHT1, MGL2, YJU3) was achieved using PCR-deletion cassettes ob-
tained by amplifying the genomic DNA of the Euroscarf collection strains Y31674, Y34807,
Y33317, Y32157, Y30796, and Y34943, respectively (Oberursel, Germany). The strain Fx10
was transformed using an optimized lithium acetate protocol [36]. All constructions were
verified by an appropriate insertion PCR. In brief, the verification consisted of positively
amplifying by PCR a fragment containing ~600 pb of the 5′-flanking region and the 5′ part
of the KanMx4 cassette. All the primers used for this test are listed in Table S6. Multiple
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deletion strains were obtained by meiotic segregation and iterative crosses with appropriate
deletion mutants. Meiotic segregants were selected based on G418 resistance and verified
for both marker insertion and gene deletion using appropriate PCRs. To simplify the cross
procedure, a haploid isogenic clone of Fx10 (YMP34) was used. This strain was deleted for
the HO gene by the ho::HygKx4 cassette, allowing easy selection of F1 hybrids with G418
resistant strains [35].

4.3. Fermentation Conditions

Two distinct fermentation batches were made. Simple and double deletion mutants of
genes involved in linear ester biosynthesis were tested in a thermo-treated grape juice of
Cabernet Sauvignon (CS) harvested in 2013 in the Bordeaux area and conserved at −20 ◦C.
The assimilable nitrogen concentration of this grape juice was 200 mg N/L with mixed
sources of 18 α-amino acids and ammonium nitrogen (60/40 ratio). The source of α-amino
acids was previously described by [37]; the source of mineral nitrogen was a solution of
(NH4)2SO4. Fermentation took place in cylindric glass vessels of 300 mL with permanent
stirring (200 rpm) according to the conditions described by [38].

A second fermentation batch was made in larger volumes in order to test the organolep-
tic impact of gene deletion. Two different grape varieties harvested in 2015 were used: a
Merlot (Bordeaux area, France) and a Tempranillo (Rioja area, Spain). In order to mimic
red-grape vinification, a specific protocol was developed. Full grapes were destemmed,
crushed, pressed, and both the juice and the skins were conserved separately. Before
freezing, potassium metabisulfite was added to the must to reach 50 mg/L of total SO2.
For both grape varieties, the sugar concentration was set at 230 g/L of reducing sugar
by adding an equimolar amount of D-glucose and D-fructose. The assimilable nitrogen
concentration was adjusted to 210 mg N/L, keeping a 66:34 balance ratio between amino
acids and ammonium nitrogen source using the solution described above. Fermentations
took place in 2.5 L cylindric glass flasks filled with 1.6 L of juice and with 400 mL of grape
skin in order to keep a juice/solid ratio of 80:20, as is usual in oenology, and each flask was
mixed twice a day to ensure a homogenous fermentation.

In all fermentation batches, the grape juice was inoculated with 1.106 viable cell/mL
obtained from 24 h precultures carried out in half-diluted grape must sterilized by mem-
brane filtration (cellulose acetate 0.45 µm Sartorius Stedim Biotech, Aubagne, France).
Yeast viability and concentration were estimated by flux cytometry “Cell Lab Quanta SC”
(Beckman Coulter, USA, California) according to the procedure previously described [39].
Fermentation kinetics were monitored by CO2 release [40]. At the end of the alcoholic
fermentation, the wines were collected in glass bottles and stored at 10 ◦C for 1 week after
the addition of SO2 (50 mg/L).

4.4. Total RNA Isolation and mRNA Sequencing

The fermenting yeasts were aseptically sampled at 30% of the alcoholic fermentation
to achieve RNA seq analysis. Cells were pelleted by centrifugation, washed 4 times, and
frozen at −80 ◦C. Since the grape must was rich in polyphenols and anthocyanins, the mR-
NAs were extracted according to Reid’s procedure (2006) adapted for yeast. The extraction
buffer contained 300 mM Tris HCl (pH 8.0), 25 mM EDTA, 2 M NaCl, 2% CTAB, 2%
PVPP, 0.05% spermidine trihydrochloride, and, just prior to use, 2% β-mercapto-ethanol.
The yeasts were ground to a fine powder in liquid nitrogen using a mortar and pestle.
The powder was added to pre-warmed (65 ◦C) extraction buffer at 20 mL/g of yeast
and shaken vigorously. The tubes were subsequently incubated in a 65 ◦C water bath
for 10 min and shaken every couple of min. Mixtures were extracted twice with equal
volumes chloroform:isoamyl alcohol (24:1) then centrifuged at 3500× g for 15 min at 4 ◦C.
The aqueous layer was transferred to a new tube and centrifuged at 30,000× g for 20 min at
4 ◦C to remove any remaining insoluble material. To the supernatant, 0.1 vol 3 M sodium
acetate (pH 5.2) and 0.6 vol isopropanol were added, mixed, and then stored at −80 ◦C for
30 min. Nucleic acid pellets (including any remaining carbohydrates) were collected by
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centrifugation at 3500× g for 30 min at 4 ◦C. The pellet was dissolved in 1 mL TE (pH 7.5)
and transferred to a microcentrifuge tube. To selectively precipitate the RNA, 0.3 vol of
8 M LiCl was added and the sample was stored overnight at 4 ◦C. The RNA was pelleted
by centrifugation at 20,000× g for 30 min at 4 ◦C then washed with ice-cold 70% EtOH, air
dried, and dissolved in 50–150 µL DEPC-treated water.

The RNA concentration and 260/280 nm ratios were determined with a NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies, Wilmingon, DE, USA), and 1%
agarose gels were run to visualize the integrity of the RNA. To improve our ability to
visually assess RNA quality, the same RNA samples were run on a TapeStation 4200 system
(Agilent Technologies, Santa Clara, CA, USA), using High Sensitivity RNA ScreenTape
assays. mRNA isolation was performed using a NEBNext Poly(A) mRNA Magnetic
Isolation Module (New England Biolabs, Ipswich, MA, USA) and library preparation was
achieved using Ion Total RNA-Seq Kit v2 (Thermo Fisher Scientific, Waltham, MA, USA),
following the manufacturer’s instructions. Six barcoded samples were simultaneously
sequenced on an Ion Proton System (Thermo Fisher Scientific, Waltham, MA, USA) at
the Genome Transcriptome Facility of Bordeaux. Reads were deposited in the NCBI SRA
database www.ncbi.nlm.nih.gov in the bioproject: PRJNA704978.

4.5. RNA-Seq Alignment and Quantification

For read alignment, we used a reference genome composed of the sequence of the S.
cerevisiae laboratory strain S288c (assembly: GCF_000146045.2, www.ebi.ac.uk) manually
added with the 34 genes specific to the wine strain EC1118 (assembly: GCA_000218975.1,
www.ebi.ac.uk [41]. Alignment was performed using the Torrent Mapping Alignment
Program (TMAP) map4 module implemented in the Ion Torrent Suite 5.0.5. Default
parameters were used to generate BAM files for each sample.

A Galaxy server [42] was used to create tool suites called a “workflow” in a simple
way: Data alignment was checked and filtered using SAMtools [43,44]. Unmapped reads
were eliminated, as well as reads with mapping quality <20. The number of reads per gene
was counted using HTseq-count [45] with the following options: format (-f): BAM, type (-t):
mRNA, ID (-i): transcript_id, quality min. (-a): 20. In this case, we used a GFF3 reference
file containing features from S288c (EnsemblFungi website, S. cerevisiae R64-1-1 release 40)
added with the 34 EC1118-specific genes. Finally, gene expression was normalized to reads
per kilobase million [46] using the R software [47]. A total of 6287 genes were quantified.

4.6. RNA-Seq Statistical Analyses

Differentially Expressed Genes (DEG) between wildtype and mutant strains were de-
termined using ANOVA. A Levene test was carried out beforehand to verify homoscedas-
ticity. For the genes showing heteroscedasticity, non-parametric tests were performed
(Kruskal–Wallis, agricolae package, R). The p-values were corrected for multiple tests with
the method of Benjamini–Hochberg (FDR, false discovery rate). We considered differ-
entially expressed genes with (i) p-values < 0.05 and (ii) higher than twofold changes
(1124 genes, 22 downregulated, and 1102 upregulated in the mutant).

For gene ontology (GO) analysis, the gene_association.sgd.gz file (December 2003,
http://www.geneontology.org/) was used to identify the GO terms associated with all
quantified genes. Hypergeometric tests were performed to identify over- or underrepre-
sented GO terms (functions, processes, or components) for upregulated and/or downregu-
lated genes in the mutant. p-Values were corrected for multiple tests with the method of
Benjamini–Hochberg with R.

Protein–protein interactions were analyzed using the STRING database v11
(http://string-db.org/) and the STRINGdb package ® [48]. For each pair of DEG genes, a
protein–protein interaction (PPI) confidence score was extracted from STRINGdb
(http://string-db.org/). Clustering was performed using the R hclust function and the
complete method. PPI clusters were defined visually and were retained when (i) they
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contained more than 10 genes and (ii) the mean score of the cluster was >0.4. Individual
clusters were then explored for specific functions and components using STRINGdb.

The enrichment or depletion in histone modification was assessed using data from
Pokholok et al., 2005 (http://younglab.wi.mit.edu/nucleosome/DataDownload.html).
In brief, 8 histone modifications (3 acetylations: H3K9ac, H3K14ac, and H4ac and 5 methy-
lations: H3K4me1, H3K4me2, H3K4me3, H3K36me3, and H3K7me3) were searched for
in up- or downregulated genes in the mutant, as well as in non-significant genes be-
tween mutant and wildtype. The average ratios of acetylation and methylation in up- and
downregulated genes were compared to those of non-significant genes (Kruskal–Wallis
tests, p-value < 0.05). p-values were corrected for multiple testing with the Benjamin–
Hochberg adjustment. The fold enrichment in up- or downregulated genes compared to
non-significant ones was also calculated.

4.7. Chemical Analyses
4.7.1. Apolar Ester Analysis

In order to prevent the evolution of the ester content, all the wines were then frozen at
−20 ◦C until analysis. Preliminary tests confirmed that freezing did not significantly affect
the concentration of the investigated compounds (data not shown). Volatile compounds
produced during fermentation in each condition were quantified. The concentrations
of 14 esters (Table 1) (6 fatty acid ethyl esters, 4 higher alcohol acetates, and 4 alkylated
ethyl esters) in each wine were determined using head space solid phase microextraction
(HS-SPME) followed by gas chromatography–mass spectrometry (GC–MS), as previously
described [49].

4.7.2. Quantification of Volatile Acids and Hydroxylated Esters by Liquid–Liquid
Extraction and GC/MS Analysis

Two hydroxylated esters, ethyl 3-hydroxybutanoate (3hC4C2) and ethyl 2-hydroxy-4-
methylpentanoate or ethyl-leucate (2h4mC5C2), were assayed according to the method
previously described [25]. The same method was also used to quantify 4 volatile linear
acids (C3 to C8) as well as 3 alkylated acids (2mC3, 2mC4, and 3mC4). The monitored ions
are listed in Table S7. Compounds were characterized by comparing their linear retention
indices and mass spectra with those of standards.

4.7.3. Quantification of Hydroxylated Acids

Concentrations of 3-hydroxy butanoic acid (3hC4) and 2-hydroxy 4-methyl pentanoic
acid (2h4mC5) were determined by gas chromatography–mass spectrometry (GC–MS)
after derivatization steps, as previously described [25].

4.7.4. Higher Alcohol Analyses

Fifty microliters of internal standard (4-methylpentan-2-ol 50 g/L in pure alcohol)
were added to a 5 mL wine sample. The solution was homogenized in a vortex shaker, and
a microvolume was injected in split mode into an HP-6890 gas chromatograph coupled
with a flame ionization detector (FID) (injector temperature, 200 ◦C) using a CP-Wax 57 CB
column (50 m × 0.32 mm i.d.; film thickness, 0.25 µm; Varian). The oven was programmed
at 40 ◦C for the first minute and raised to 200 ◦C at 8 ◦C/min, with the final isotherm
lasting 20 min. The carrier gas was hydrogen 5.5 (Air Liquide, France).

4.8. Sensory Analyses
4.8.1. General Conditions

Sensory analyses were performed as described by Martin and de Revel [50]. The samples
were evaluated at controlled room temperature (20 ◦C) in individual booths using covered,
black glasses (NF V09-110, 1971) (AFNOR. Sensory analysis—apparatus—wine-tasting
glass—ISO 3591. Anal. Sensorielle, 1977), containing about 50 mL liquid, coded with
three-digit random numbers. Sessions lasted approximately 5 min.
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4.8.2. Sensory Panels

Panel 1 consisted of 22 judges, 8 males and 14 females, aged 26.4 ± 4.8 (mean ± SD).
Panel 2 consisted of 17 judges, 6 males and 11 females, aged 27.6 ± 5.3 (mean ± SD).
All panelists were research laboratory staff at Bordeaux University, selected for their expe-
rience in assessing fruity aromas in red wines.

4.8.3. Discriminative Tests

Panel 1 was used for the triangular tests of the various aromatic reconstitutions (AR)
(Table S4). For these AR, wines fermented with Fx10-AE were supplemented in FAEE, HAA,
AEE, and HEE up to concentrations found in wines made with commercial yeast Fx10, and
wines fermented with Fx10 were supplemented in C3C2 and AEE up to concentrations
found in wines made with Fx10-AE, in order to have the same ester concentrations in both
supplemented wines. These supplemented wines were then compared to one another
(Table S4).

For each triangular test, three numbered samples were presented in random order:
two identical and one different. The wines were presented to the panel in duplicate during
the same session. Each judge used direct olfaction to identify the sample perceived as
different in each test and gave an answer, even if he or she was not sure. The results of all
the triangular tests were statistically analyzed, based on the binomial law corresponding to
the distribution of answers in this type of test.

4.8.4. Descriptive Testing Methods

First, sensory profiles were realized by Panel 2 to precisely describe the nature of the
differences observed during the first triangular tests. In a second phase, other sensory
profiles for the aromatic reconstitutions (Table S4) were evaluated by Panel 1. The wines
were presented to the panel in duplicate during the same session to evaluate intensities
for overall aroma and red-, black-, fresh-, and jammy-fruit characteristics. These aromatic
descriptors were selected as the most typical of red wines from the Bordeaux area [51].
For each sample, the subject rated the intensity of these descriptors on a continuous 10 cm
scale printed on paper, labeled “no odor perceived” on the left and “very intense” on the
right.

4.9. Statistical Analysis

Quantitative data were analyzed using the R software with the following tests: A
one or two-way analysis of variance (ANOVA) was applied to a linear model using the
car package. The conditions of application (i.e., homogeneity of variance and normality
of residuals) were controlled using Levene’s test and the Shapiro–Wilk test, respectively.
Kruskal–Wallis tests were applied using the agricolae package, allowing the post hoc test
based on Fisher’s LSD criterium with Benjamini Hochberg (BH) multiple test correction.

5. Conclusions

This functional genetic study serves to reassess the biosynthesis of different classes
of esters in the context of alcoholic fermentation. As well as the four main esterases
previously described, we demonstrated the role of two MAGLases (Yju3p and Mgl2p) in
the biosynthesis of substituted ethyl esters. The multiple depletion of such esterases has
unsuspected consequences on cell viability and on transcriptome regulation, as it impacts
nitrogen and lipid metabolism as well as chromatin modification. The physiological role
of ester biosynthesis has been debated previously. Several authors proposed detoxifying
cytoplasm from medium-chain fatty acid and/or higher alcohols [12,52], but this hypothesis
has never been confirmed experimentally. Ester production also plays an ecological role
as it promotes yeast dissemination and migration by attracting insects [53]. In this study,
we argue that the biosynthesis of esters could also be involved in acetyl-CoA homeostasis
in fermentative conditions.
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