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Abstract

Lockdown curbs the COVID-19 epidemics but at huge costs. Public debates question its

impact compared to reliance on individual responsibility. We study how rationally chosen

self-protective behavior impacts the spread of the epidemics and interacts with policies. We

first assess the value of lockdown in terms of mortality compared to a counterfactual scenario

that incorporates self-protection efforts; and second, assess how individual behavior modify

the epidemic dynamics when public regulations change. We couple an SLIAR model, that

includes asymptomatic transmission, with utility maximization: Individuals trade off economic

and wellbeing costs from physical distancing with a lower infection risk. Physical distancing

effort depends on risk aversion, perceptions of the epidemics and average distancing effort in

the population. Rational distancing effort is computed as a Nash Equilibrium. Equilibrium

effort differs markedly from constant, stochastic or proportional contacts reduction. It adjusts

to daily incidence of hospitalization in a way that creates a slightly decreasing plateau in epi-

demic prevalence. Calibration on French data shows that a business-as-usual benchmark

yields an overestimation of the number of deaths by a factor of 10 compared to benchmarks

with equilibrium efforts. However, lockdown saves nearly twice as many lives as individual

efforts alone. Public policies post-lockdown have a limited impact as they partly crowd out

individual efforts. Communication that increases risk salience is more effective.

Introduction

The COVID-19 pandemic is partly controllable with non-pharmaceutical interventions (NPI)

such as physical distancing, especially its most extreme form, lockdown. The latter has curbed

the spread of the epidemics during winter 2020 in Wuhan and Shanghai [1, 2], where contacts

have been reduced 7- to 8-fold [3]. Vaccination campaigns take time, and new variants intro-

duce additional uncertainty regarding transmission rates, severity and resistance to vaccines.

Diverse forms of lockdown remain the main resort to lessen the death toll of the epidemics.

When temperatures dropped, large parts of Europe resumed lockdown over the fall and win-

ter. But the associated drastic reduction in activity involves huge economic and welfare costs
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[4]. The tensions between health and economic impacts lead politics and public opinion to

question whether lockdown is necessary or excessive. Opponents to lockdown argue that indi-

viduals would take enough precautions if left to choose their behavior. To evaluate this claim,

we explicit the interactions between equilibrium effort choices and epidemic spread.

Scientific evidence about the benefits of lockdown does not account for individuals’ efforts.

[5] estimate that lockdown has saved 3 million lives in 11 European countries up to May 4,

2020, using constant R0 values that change with policy interventions. [6] estimate that lock-

down-related measures have avoided 500 million cases in in China, South Korea, Italy, Iran,

France and the United States between January and April 6, 2020. However, mobility data show

that individuals largely adjusted their behavior before restrictions were imposed. Mobility

indices negatively correlate with virus reported prevalence (cf. [7, 8], for the US, [9] for France,

[10] for Germany). While mobility data is very useful for retrospective analysis, it does not

allow the computation of counterfactuals, nor predictions. Using contact matrices [11] pro-

vides very precise predictions in stable environments where individuals maintain their usual

activities. Our approach complements these: By modeling equilibrium efforts, that are endoge-

nous to the epidemic situation, we can assess the value of an implemented policy (such as lock-

down) relative to laissez-faire and predict the impact of others policies. We also provide an

analysis of the way behavioral adaptations and epidemic prevalence interact.

To estimate the ‘net impact’ of lockdown, we build a counterfactual scenario in which trans-

mission rates are driven by individual rational choices. We couple an SLIAR compartmental

model (with asymptomatic and symptomatic infectious individuals [12]), and a utility maximi-

zation model of self-protection under risk. The epidemic model differs from standard ones [13,

14] to reflect the high proportion of infectious individuals with no or only mild symptoms [15].

Asymptomatic transmission is key in determining the effectiveness of public policies [16]. It also

makes it difficult to estimate the infection risk. Individuals base their perception on the most

salient information available in the media, the number of severe, hospitalized, cases. Distancing

decisions are the outcome of a Nash equilibrium: Going out is more or less risky depending on

others’ choice to go out. The epidemic transmission rate depends on equilibrium distancing

efforts; and thus indirectly on individuals’ risk aversion, costs to avoiding contacts, and beliefs.

Epidemiological parameters are fitted on French data. The start of the first lockdown is very

well identified in France (contrary to countries where is was more gradual). French citizens

could use information from Italy to better adapt their behavior, since the epidemic pattern was

similar, with a 7-day lag. We compute the number of deaths one would have experienced in the

absence of lockdown but with individual self-protection efforts, and compare it to simulations

based on business as usual and to the actual number of deaths under lockdown. Our results

contradict both the large estimates based on business-as-usual and the idea that individual

efforts would be as effective as lockdown. We also identify general results about the impact of

alternative policies after the end of global lockdown. Public policies that are effective at reducing

reported severe cases, induce a reduction in equilibrium efforts. This countervailing effect

largely undermines their efficiency. To the contrary, public discourse and measures that convey

the gravity of the epidemics situation can potentially lead to quite different epidemics dynamics,

since contacts intensity reacts very strongly to perceived salience of the infection risk. Our

results indeed show that this perception is a major determinant of the epidemics spread.

Materials and methods

Data

We use publicly available data from the French national health agency, covering the period

between February 25 and October 30, 2020. The starting date of the lockdown is clearly
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identified at March 17, 2020: Different policies pertaining to lockdown were taken nearly at

the same time (school closure, closure of non-essential business facilities, confinement to a

1-kilometer range from home, outside leisure activities for no more than 1 hour per day. . .).

Data corresponds to different policy stages: pre-lockdown ([t0, t1], 02/25—03/17), full lock-

down ([t1, t2], 03/17—05/11), intermediate lockdown ([t2, t4], 05/11—10/30). The intermediate

lockdown period is separated into strong restrictions period, which aim to progressively end

the lockdown ([t2, t3], 5/11–6/17) and a period with fewer restrictions but local constraints

([t3, t4], 06/17—10/30, compulsory mask wearing and a curfew being gradually adopted in

many areas). On October 30th, corresponding in our modeling to time t4, a second lockdown

is imposed.

Fig 1 describes the periods we consider. On our figures, date t1 is marked by a dashed black

line, t2 by a dash-dot black line, t3 by a dashed blue line and t4 by a dashed red line.

Data reporting has been somewhat irregular but the counting method has been consistent

until June 3 [17, 18]. These data (in particular daily incidence of hospitalization and daily

number of deaths in hospital) are freely available at https://www.data.gouv.fr/fr/datasets/

donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/.

The epidemiological model

We consider an SLIAR compartmental epidemiological model in which the transmission rate

of the disease is endogenously defined through an economic model of self-protection choices

[19–22]. This epidemic model is widely used to model COVID-19 spread [12, 23–25] because

it takes into account a crucial feature of COVID-19: the high proportion of asymptomatic but

infectious individuals.

The epidemic model we consider is depicted in Fig 2.

The population is separated into susceptible individuals (in number S(t) at date t) who can

get infected, infectious latent individuals (L(t)), asymptomatic and mildly symptomatic infec-

tious individuals (A(t)) and severe symptomatic infectious individuals (I(t)). The latter corre-

spond in our study to hospitalized individuals. In France, up to June 2020, reported cases

tested and identified as suffering from COVID-19 were mostly hospitalized individuals, with

quite severe forms of the disease. After June, a massive screening campaign began so that the

number of reported cases increased largely relative to hospitalized cases. Hospitalized individ-

uals are isolated and no longer play a significant role in disease transmission. Transmission of

Fig 1. Periods and time intervals.

https://doi.org/10.1371/journal.pone.0250764.g001
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the disease is due to latent and asymptomatic and mild infectious individuals (in number L(t)
+A(t)).

At the population level, the dynamics is given by:

S0 ¼ � t0φðtÞSðLðtÞ þ AðtÞÞ

L0 ¼ t0φðtÞSðLðtÞ þ AðtÞÞ � nL

I0 ¼ f nL � ðZþ gðtÞÞI

A0 ¼ ð1 � f ÞnL � ZA

ð1Þ

Infected susceptible individuals become latent infectious for an average time ν−1. Then a

fraction 1 − f of them become asymptomatic or mild symptomatic infectious; they lose infec-

tiousness after an average time η−1. The other latent infectious individuals (in proportion f)
develop a severe form of the disease and become hospitalized; they remain infectious for an

average time η−1 and may also die. Eq 1 is built under the assumption that sojourn time in

each compartment is given by an exponential law. In S2 File, we discuss the impact of consid-

ering a Gamma distribution, in particular on perceptions. We allow the daily mortality rate to

depend on t: it highly depends on the processes implemented in hospitals [26], and these pro-

cesses have evolved during the epidemic spread, with less invasive ventilation techniques.

However, given data limitations, we do not account for ICUs capacity constraints. We thus

consider that γ is a piece-wise constant function, with a first part that prevails until June and a

second one, lower than the first, afterwards. The calibration of these values is specified in the

results section. We assume that individuals develop full immunity towards SARS-CoV19, and

thus do not re-enter the susceptible compartment. This assumption implies that recovered

play no role in epidemics transmission. As they also play no role in risk perception, we only

need to describe the dynamics for the susceptible and the three infectious compartments.

Assuming that individuals develop immunity appears to be appropriate for periods covering a

few months (as most of our simulations), given existing studies on immunity [27]. It is how-

ever unknown whether immunity persists on a longer time frame. Note that our assumption

has consequences on the dynamics as the number of susceptible individuals is always decreas-

ing, and thus in the long run the disease-free equilibrium is the only steady state of the model.

Fig 2. Epidemic diagram.

https://doi.org/10.1371/journal.pone.0250764.g002
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A specificity of our analysis is that the transmission rate τ0 φ(t) depends on the infectious-

ness of the disease but also on individual physical distancing decisions. We denote τ0 the trans-

mission rate of the disease that would apply in the absence of individual behavior adaptation

to the spread of the disease (‘business-as-usual’). This is the transmission rate that can be

observed at the beginning of the epidemics. Transmission rate at time t is the product of τ0

times contact intensity φ(t), defined as the ratio of the number of contacts at time t over the

number of contacts at the beginning of the epidemic outbreak. This contact intensity models

physical distancing.

The aim of this work is to propose a modeling of the contact intensity function under vari-

ous scenarios and to compare the spread of the epidemics according to these scenarios.

The behavioral model

In the absence of legal constraints, contact intensity φ is set by the self-protection effort ε that

individuals choose. This self-protection effort ε is the outcome of a Nash equilibrium, in

which individuals choose a best response to their economic, psychological and epidemiological

environment. This methodology is now classical [28, 29] but in most models the authors high-

light the impact of the perceived utility and perceived cost of the effort (e.g., vaccination). [30,

31] had highlighted that while epidemic-driven transmission increases in the number of

infected individuals, economically-driven transmission decreases with this number, due to

higher effort. The new paradigm specific to the COVID-19 epidemics is that, due to latent and

asymptomatic transmission, actual prevalence is unknown and perceived prevalence plays a

major role. [32, 33] also endogenize transmission to economic incentives, in different and con-

vincing ways, but they consider a classical SIR model with infectious individuals who are

aware of their immune status. We incorporate asymptomatic transmission and various prefer-

ence determinants. We study how effort and epidemic variables interact.

Perceived infection risk. Self-protection / distancing effort ε induces a reduction in equi-

librium contacts intensity. Function φðεÞ 2 ½φmin; 1� describes the reduction in risk an individ-

ual can achieve thanks to her individual choices. We assume that φðεÞ ¼ 1 � ε. The contact

intensity that would prevail in the absence of the epidemics is normalized to 1; The minimal

contact intensity achievable is φmin in ]0,1[.

An essential determinant of the equilibrium self-protection effort is the belief of the individ-

ual about her risk of becoming infected. We denote by pðε; �ε; P̂ðtÞÞ the probability describing

this belief. It depends on personal exposure (effort ε), on the average distancing effort �ε in the

population, and on perceived prevalence P̂ðtÞ. We assume the following specification, that sep-

arates factors controllable via effort (φðεÞ) from factors relating to perceived prevalence, which

is exogenous from the point of view of the individual:

pðε; �ε; P̂ðtÞÞ ¼ φðεÞpð�ε; P̂ðtÞÞ ¼ ð1 � εÞpð�ε; P̂ðtÞÞ

The exogenous element of the belief, pð�ε; P̂ðtÞÞ, decreases in others’ average distancing

effort �ε (others’ efforts reduce one’s own risk), and increases in perceived prevalence P̂ðtÞ.
Perceived prevalence P̂ðtÞ is a function of the salient information available in the media

[34], that is: the daily incidence of hospitalization fνL. Individuals use information that is not

complete (as the number of infectious individuals involved in the disease transmission is not

known). The infection risk is however very salient. Perceived prevalence incorporates a weight

k(t), k(t)>1, that reflects extra attention paid to the COVID-19 risk, awareness that many

infectious individuals are undetectable, and over-weighing of small probabilities in self-protec-

tion decisions [35]. Perception evolves over time, since there are non measurable variations in
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content of media, scientific and governmental communication and in general context, that can

all affect the salience of the COVID-19 risk over the period we study. Thus perceived preva-

lence is P̂ðtÞ ¼ kðtÞf nLðtÞ.
The individual’s belief about her infection risk can therefore be written as pðε; �ε; kf nLÞ. We

assume that pð�ε; kf nLÞ ¼
φð�εÞkt0f nL

nþφð�εÞkt0f nL
.

Individual distancing efforts and the corresponding Nash equilibrium. Each individual

independently chooses an effort ε to reduce her contacts, and thereby reduce her perceived

probability of infection at each date. However, reducing contacts creates a disutility, as it

involves psychological costs and economic foregone opportunities (like working only very few

hours). The chosen self-protection effort εmaximizes at time t the individual’s expected utility

defined as:

Uðε; �ε; LÞ ¼ ð1 � pðε; �ε; kf nLÞÞuðεÞ þ pðε; �ε; kf nLÞluðεÞ

where parameter λ measures the loss in utility when becoming sick.

In a large population, each individual considers the dynamics of the epidemic as unrespon-

sive to her own effort: Current effort only affects own immediate risk. Dynamic optimization

is thus equivalent to a sequence of instantaneous decisions. We assume that individuals can

instantly adjust their distancing behavior, which is very realistic for leisure and shopping activ-

ities but less so for work. Introducing a lag in adjustment would be similar to lengthening the

latent phase, by creating a longer gap between actual prevalence and behavioral choices.

Function u(ε) is the von Neumann and Morgenstern utility function. It is concave to repre-

sent risk aversion and decreasing in distancing effort ε. Because reducing contacts affects eco-

nomic opportunities and wellbeing when sane, the associated cost is part of the utility

function, and is affected by risk aversion. To allow for calibrations, we consider a standard

power utility function: uðεÞ ¼ ð1� yεÞ1� 1=s

1� 1=s
, where σ is the constant relative risk aversion (CRRA)

parameter. Parameter θ measures the utility loss due to contacts reduction: well-being costs

(limited activities, confinement in small spaces, isolation, . . .) and economic costs (reduced

work hours and opportunities). Note that in France, at the height of the lockdown only 24% of

active individuals were working remotely; 41% [resp. 43%] of workers reported a reduction in

their income due to COVID-19 in April [resp. September] 2020 [36].

The impact of reducing own social contacts depends on the average effort undertaken in

the population (�ε). In a large number population, each individual does not take into account

how her contacts reduction efforts affects the infection risk of others. Thus, the optimal indi-

vidual effort ε is the best response function

BRð�ε; L; k; s; yÞ ¼ argmax
ε
ðUðε; �ε; LÞÞ:

The Nash equilibrium physical distancing effort ε� is determined as a solution of the follow-

ing equation.

ε� ¼ BRðε�; L; k; s; yÞ ð2Þ

In a symmetric equilibrium, because all individuals make their choices in the same way, the

average effort within the population is exactly equal to individual effort, but each individual

effort is computed taking others’ behavior as given.

We denote the corresponding equilibrium contact intensity φð��ðLðtÞÞÞ ¼ φ�ðLðtÞÞ. When

needed to highlight the role of parameter k (the weight on perceived prevalence), we will write

the rational equilibrium contact intensity function as φ�(L(t);k).
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Results

We characterize the equilibrium distancing effort in the absence of lockdown, and use it to

contrast the number of deaths under three cases: full lockdown (data), ‘business-as-usual’, and

equilibrium effort (counterfactual). We then assess the impact of the prolonged intermediate

lockdown phase on epidemic dynamics given individual choices and latent and asymptomatic

transmission.

Equilibrium distancing effort

The individual physical distancing effort is a best response to others’ average behavior ��, and is

given by BRð�εÞ:

BRð�εÞ ¼ min

(

max

(
1

2s � 1

s

y
� ðs � 1Þ

1þ lkt0ð1 � �εÞfL
ð1 � lÞkt0ð1 � �εÞfL

� �

; 0

)

; 1 � φmin

)

The symmetric Nash equilibrium is the solution to equation ε� = BR(ε�) (i.e., all individuals

best-respond to average efforts), under the constraints that this solution lies in [0, 1 − φmin]. It

can be explicitly computed as

ε� ¼ maxfminðE; 1 � φminÞ; 0g ð3Þ

where

E ¼ �
ð2s � 1Þl � s

1 � l
þ
s

y

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
ð2s � 1Þl � s

1 � l
þ
s

y

� �2

� 4 ð2s � 1Þ
s

y
þ

1 � s

1 � l

� �

þ
ð2s � 1Þð1 � sÞ

kt0fL

� �s

All parameters change the equilibrium physical distancing effort in the expected direction.

Their impact is complex and quite different from proportionality. Equilibrium effort increases

non linearly in risk aversion σ, and in perceptions about disease severity λ and about perception

weight k. It decreases non linearly in personal economic and welfare costs θ. These costs repre-

sent lost economic revenues and opportunities as well as psychological costs from isolation. It

is noticeable that their impact on effort, while monotonic, takes a complex form, so that multi-

plicative approximations of their effect would be inadequate.

Distancing effort by age group. We analyze in S3 File the case with three age classes (chil-

dren, young adults and older adults), where the two adult classes choose their effort. Mortality

risks and general mobility differ significantly only after age 65 (our ‘older adults’ class). The

distancing effort of children is determined by exogenous factors, e.g., sanitary regulations and

school opening decisions. COnsidering different age classes increases the number of parame-

ters and, more importantly, the number of equilibrium configurations (the equilibrium effort

in each age class and the average in the population are bounded by 1 − φmin and by 1. An equi-

librium can involve any mix of internal and bounded solutions). We cannot use age classes in

the remainder of the analysis as the economic data to calibrate the model is not available (S3

File). The theoretical model however provides some insights: When the disease is (perceived

as) severe, equilibrium efforts from the young and the old are substitutes, and decrease in chil-

dren’ average effort and proportion. School closure, by increasing this average, would lead to

lower efforts from the other age groups. This would erode some of the benefits of school clo-

sure in terms of transmission between children, and forced distancing for homeschooling

parents.
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The impact of lockdown on number of deaths

We study the epidemic dynamics under various scenarios on contact intensity during lock-

down [t1, t2]. The list of epidemiological parameters is given in Table.1 in S1 File. The counter-

factual situations we consider enable to better understand the net impact of lockdown on the

number of deaths. We compare the counterfactual dynamics given by our rational equilibrium

physical distancing model to simulations based on business-as-usual (no reduction in contacts

intensity in comparison to what they were before the epidemic outbreak, i.e., φ = 1) and to the

actual lockdown situation, fitted by a time dependent function on the data.

Our methodology is the following. We first use the data to calibrate an exogenous time

dependent contact intensity function for the lockdown period. From our behavioral model, we

can then compute the corresponding disease perception weight k. Then we use these calibrated

values of k to run the counterfactual scenarios.

Calibration of lockdown on the data. The impact of lockdown on contact intensity is

modeled with a time dependent function φLoc, defined by System 4. Function φLoc is set to 1

for the period before public health measures had been taken: [t0, t1]) (with t1 = March 17). The

impact of these interventions is not instantaneous [37]. An exponential form can model this

delay, as in [38] for the 2014 Ebola virus outbreak or [24] for COVID-19. But because the

French lockdown was very long (9 weeks in its strictest form), we use a form that has a better

fit, similar to [37], where φLoc(t) decreases from 1 to a> 0. Function φLoc(t) is given by Eq 4.

φLoc tð Þ ¼

(
1 for t < t1

aþ ð1 � aÞe� mðt� t1Þ; for t > t1
ð4Þ

Parameters a, μ have been calibrated with least-squares fitting. We also use the lockdown

simulation and the data to fit mortality rate γ. The calibration resulted in: a = 0.1698953, μ =

0.1713832 and γ = 0.0278991 day−1. The value we obtain for the mortality rate is consistent

with other studies [39]. Moreover, contacts have been reduced 5-6 fold in France during lock-

down, as compared to 7-8 fold in Wuhan and Shanghai [40]; this is also consistent since the

French lockdown was comparatively less strict than in China. Because the first lockdown in

France was still very restrictive for the population, we assume that the lowest value of contact

intensity achieved during this lockdown is the incompressible level, i.e., the minimum value

that can be taken by the contact intensity function: we set φmin = a.

Counterfactual scenario with equilibrium efforts. Our characterization of equilibrium

effort is used to simulate the counterfactual epidemic dynamics if there had been no lockdown,

but rational individual self-protection. The epidemiological dynamics are given by System 1,

with counterfactual contact intensity function φ(t) = φCF(t) defined as

φCF tð Þ ¼

(
1 for t < t1

φ�ðLðtÞ; kðtÞÞ for t > t1
ð5Þ

Parameters in the utility function are set at θ = 0.1, λ = 0.1, and the CRRA coefficient of risk

aversion, σ, at σ = 1.5 [41].

We use Eq 2 together with contact intensity φLoc and the value of L(t) (computed using sys-

tem 1 and function φ = φLoc) to characterize the values of parameter k(t) during the lockdown.

k ¼
1 � s

f t0LðtÞ ð2s � 1Þð1 � φLocðtÞÞ �
s

y
φLocðtÞ

� �
ð1 � lÞ þ ðs � 1ÞlφLocÞ

ð6Þ
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Fig 3 represents this effective value of weight k over the lockdown period [t1, t2], using the

data to compute its actual values. It varies from k = 90.66 at the beginning of lockdown to

k = 1503.36 at the end of the lockdown period. S2 File similarly computes the value of k that

would best fit the data with a 2-parameter Erlang distribution, and shows that it would be

higher than the one here, but that the relative difference decreases in prevalence.

Contact intensity under lockdown vs. under equilibrium effort. Fig 4 represents contact

intensity under various scenarios. Function φLoc(t) is plotted to represent contact intensity

during the lockdown period (red line). Function φ�(L;k) is plotted to model contact intensity

under rational equilibrium, where L is endogenously determined using System 1 together with

function φ(t) = φCF(t) for various values of k. Business-as-usual corresponds to a contact inten-

sity equal to 1 by definition.

For a weight k remaining constant at the same level as at the start of the lockdown period

(k = 90), contact intensity in the counterfactual model is always larger than the actual contact

intensity during lockdown. For a large enough weight however (k = 800 or 1500), individuals

immediately reduce their contact intensity to is minimal value. As a consequence, the number

of infected individuals becomes very low in the dynamical system 1, and contact intensity

increases after a while as a consequence. This strong feedback mechanism between infectives

and distancing effort is consistent with survey data from Datacovid / Ipsos: the latter shows a

Fig 3. Computed value of weight k during the lockdown period [t1, t2].

https://doi.org/10.1371/journal.pone.0250764.g003
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weakening of distancing efforts after the end of lockdown, when prevalence was very low. At

the end of the lockdown, the average (self-reported) number of close contacts increased from

4.5 the first week to 5.8 the second week up to 7.1 between May 26 and May 31 [36] (data avail-

able at www.datacovid.org). This increase in the number of contacts remains however low

compared to the contact intensity prevalent at the beginning of the epidemics.

Avoided deaths under lockdown and equilibrium effort. To provide an assessment of

the number of lives saved thanks to lockdown, we compute the number of deaths in hospital

under various scenarios using dynamical system 1. COVID-19 results in death in hospital but

also in retirement homes and at home, which we do not take into account in our model. The

only data we can use for simulations is indeed that on deaths at hospitals: Deaths in retirement

homes have been announced in bulk, and death certificates for deaths at home can take

months to be included in the data [18]. We therefore need to extrapolate data from the lock-

down period in order to compute the total number of deaths. Using data on the number of

deaths at home (released on August 23, 2020) [17] and in retirement homes during lockdown,

we find that the total number of deaths is 1.45 times the number of deaths at hospital.

Fig 5 contrasts the cumulative number of deaths under various scenarios. Fig 5A shows the

number of deaths in the actual situation (lockdown beginning on March 17), in the business-

as-usual situation (if people had behaved as before the epidemics outbreak), and in the rational

self-protection equilibrium model for the weight parameter k taken to be as it prevailed at the

Fig 4. Contact intensity under actual lockdown, and counterfactual rational equilibrium contact intensity for different prevalence

weights k.

https://doi.org/10.1371/journal.pone.0250764.g004
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beginning of the lockdown period (k = 90). To better represent the number of deaths avoided

with lockdown and with equilibrium effort, Fig 5B graphs the difference between the cumula-

tive number of deaths in the business-as-usual case and the other situations.

Lockdown appears to have saved a total of nearly 400,000 lives compared to business as

usual. And because we cannot account for ICUs saturation, we may underestimate the total

number of deaths in the “business-as-usual” scenario, where the peak number of cases is very

high. However, this scenario seems unrealistic as it does not accounts for the behavioral

changes that would have been observed in the absence of lockdown. Our counterfactual based

on endogenously determined effort indeed provides very different results.

Lockdown corresponds to fewer than 25000 deaths over its duration, while unconstrained

equilibrium efforts (with k = 90) would have lead to 45,200 deaths. Using business-as-usual as

a benchmark leads therefore to a very large overestimation of casualties. Nevertheless, com-

pared to lockdown as actually implemented, equilibrium efforts with k = 90 would have lead to

nearly twice as many deaths. Moreover, the public announcement of the lockdown, done 5

days before starting date t1, may have had an impact on parameter k, by credibly conveying the

gravity of the epidemic situation. The value for k could therefore have been even smaller than

90 in the absence of a lockdown (our computations show that for k = 15 and k = 30, the coun-

terfactual model would have led to resp. 7.5 and 4.6 times more deaths than lockdown). Lock-

down has not saved as many lives as sometimes claimed but it has had a very large impact

nevertheless and is in no way comparable to an appeal to freely chosen individual efforts.

Gradually lifting restrictions to prevent immediate rebounds

We now study the period between the end of full lockdown (t2, May 11) and the introduction

of a second lockdown (t4, October 30), in order to assess whether an intermediate period with

remaining constraints has helped contain the epidemics. After a long lockdown period, preva-

lence is very low and lifting restrictions is especially attractive. Our SLIAR behavioral model

however shows that a sudden lift of all restrictions could have led to a rebound, exactly—and

paradoxically—because prevalence is low, so that equilibrium effort plummets. French data

provides interesting evidence, because many restrictions remained imposed after full lock-

down ended (May 11). An ‘intermediate lockdown’ has been instituted with strongly

Fig 5. The impact of lockdown. (A) Cumulative number of deaths under various scenarios. (B) Avoided deaths compared to business-as-usual.

https://doi.org/10.1371/journal.pone.0250764.g005
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recommended remote work, compulsory mask wearing and priority rules for essential workers

in public transportation, very limited school reopening and a 100-km limit on travel. These

institutional intermediate constraints were officially relaxed on June 17, which we denote t3
and plot in the figures with a vertical blue dashed line.

Our methodology is the same as in the previous section. We first determine an exogenous

time-dependent contact intensity function, φI(t), that fits the data. We then use this calibration

to compute the corresponding weight k (Eq 6). This parameter, that comes from the data, is

then used to run the rational equilibrium model and compute the number of deaths in two sce-

narios for period t2—t4: i) An ‘actual scenario’ which corresponds to the actual epidemic

spread, calibrated on data and described by the function φ(t) = φILoc(t), and ii) a ‘counterfac-

tual scenario’, described by a function φ(t) = φCFILoc(t). In the ‘actual scenario’, social distanc-

ing remains constrained and given by the same function (φLoc, fitted on the data) as during

lockdown up to t3; the behavioral model is then applied from t3 to t4. In the ‘counterfactual sce-

nario’, the behavioral model is set immediately after the end of the full lockdown, from time t2,

to reflect that individuals would have been free to choose their distancing effort immediately

after the end of full lockdown.

Calibration of the intermediate lockdown period on the data. Function φI(t) is defined

as follows and models contact intensity from time t2 to time t4.

φI tð Þ ¼

(φLocðtÞ for t < t3

að1þbect3 Þ
ð1þbectÞ for t > t3

Fitting the data with least square methods yields a = 0.1698953, b = 454.0929 and c = −-

0.0406419. Fig 6 shows the actual contact intensity during the intermediate lockdown period.

It can be seen that contact intensity has strongly increased in July and mid-September before

stabilizing. By October 30, contact intensity is 0.47.

The mortality rate in hospital has declined: least square methods yield γ = 0.0165696 for t>
t2 (cf. Fig 7). This is consistent with [26] according to which the medical practices that are now

used in ICU enabled to reduce the mortality rate in hospital.

Modeling with rational self-protection equilibrium. The contact intensity function for

the ‘actual scenario’ used for [t2, t4] is φ(t) = φILoc(t), defined as follows.

φILoc tð Þ ¼

(φLocðtÞ for t < t3

φ�ðL; kðtÞÞ for t > t3
ð7Þ

Using this expression, function φI(t) and Formula 6, we can compute the actual weight

parameter k that corresponds to the data. Fig 8 represents the evolution of k during the inter-

mediate lockdown period.

As during the lockdown period, weight perception k is time dependent. It increases up to

the July 1, and then decreases up to October 30, where the value of k reaches 108.94, which is

quite similar to its value at the beginning of the first lockdown.

Counterfactual: Assessing the impact of intermediate lockdown using the behavioral

model. We have assumed in the ‘actual scenario’ that the measures that have been taken after

lockdown prevented the behavioral model to fully apply between time t2 and time t3. In the

‘counterfactual model’ we now consider, we assume that individuals are free to choose their

level of contacts so that the behavioral model applies from time t2 onward. We model contact
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Fig 6. Contact intensity modeling up to Oct. 30.

https://doi.org/10.1371/journal.pone.0250764.g006

Fig 7. Calibration of daily hospitalizations. (A) Incidence. (B) Cumulative.

https://doi.org/10.1371/journal.pone.0250764.g007
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intensity as given by Eq 8 as follows.

φCFILoc tð Þ ¼

(φLocðtÞ; for t < t2

φ�ðL; 1500Þ; for t > t2
ð8Þ

Fig 9 plots the counterfactual dynamics obtained through function φCFILoc, that is: assuming

that individuals had been free to behave as in the rational equilibrium immediately at date t2.

By July 1, the total number of deaths was 29,861. In the counterfactual model, the total

number of deaths at the same date would have been 33,058. Thus the very progressive lifting of

lockdown saved around 3,200 lives.

Discussion

Equilibrium effort continuously adjusts to the number of daily hospitalizations, creating com-

plex epidemic dynamics. We use our model of behavior to analyze the interplay between ratio-

nal equilibrium contact intensity and various public policies after the beginning of the second

lockdown (t4 = October 30, 2020). The conditions for this second lockdown are drastically dif-

ferent from the ones of the first lockdown, with weaker constraints (e.g., schools are still open

and remote work is not mandatory in many sectors). Our simulations are not meant to be

exact quantitative predictions, given large remaining uncertainties on the consequences of this

Fig 8. Weight k up to Oct. 30.

https://doi.org/10.1371/journal.pone.0250764.g008
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lockdown. We highlight general patterns and complex interactions, between individual maxi-

mization, epidemic prevalence and policy effectiveness.

To fit the data, we assume that for t 2 ]t2, t3[(intermediate period), contact intensity is mod-

eled using φ(t) = φI(t). The subsequent transmission rate φ(t) for t> t3 is determined by our

behavioral assumptions, with adjustments to represent specific policies.

Distancing effort, perceptions and public salience

A main result of our SLIAR behavioral model is that, in the absence of a full lockdown, indi-

viduals adjust their rational equilibrium contact intensity according to epidemic variables.

However, this choice of contact intensity also has consequences on the spread of the epidem-

ics. We first study how this spread depends on individual perceptions about the disease.

Contact intensity and perception weight on prevalence. We consider that the rational

contact intensity function as given by φ(t) = φ�(L;k) for t> t4, with k = 103 (the computed

value at t4, beginning of second lockdown) and with k = 1500 (the computed value at t2, end of

fist lockdown). Fig 10 represents contact intensity for these two values of k as well as the con-

tinuation of the function that applied before the second lockdown (t4, red vertical line). When

k = 1500, contact intensity immediately drops to its minimal level (a = 0.1698953), meaning

Fig 9. Cumulative number of deaths during intermediate lockdown (data) vs in the equilibrium counterfactual.

https://doi.org/10.1371/journal.pone.0250764.g009
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individuals exert as much effort as possible. It begins to increase once the reported incidence

has lowered.

Fig 11 shows the impact of perception weights on the daily hospitalizations incidence and

on the total number of deaths. In the absence of a second lockdown and with the continuation

of the contacts intensity fitted on the data up to date t4, the peak of the epidemics would have

been at the end of December 2020. As this second wave outbreak would have lasted several

months, it would have led to a huge number of deaths (200,000 cumulative deaths from the

start of the epidemics). In the rational behavioral model, individual equilibrium efforts enable

to flatten the curve, but a perception weight of k = 103 (as was prevalent just before the second

lockdown) is not enough to avoid a total number of deaths above 150,000. A much higher per-

ception weight, such as k = 1500, is needed to avoid an epidemic peak after date t4.

Public salience. Survey data in [42] report that the main drivers of Japanese’s precaution-

ary efforts have been the highly media-covered infection aboard the Diamond Princess cruise

ship (February 2020), and governmental information, both corresponding to an increase in k.

A potentially effective public policy consists in exacerbating public awareness about the dis-

ease, with media intervention and legal measures that draw attention to the infection risk. Var-

iations in k can be used to represent the impact of media coverage and public discourse, as well

as the expressive power of legal measures. This is a double-sword tool: Any relaxing of a legal

constraint may be interpreted as a signal of a low infection risk, leading to a drop in k.

Fig 10. Contact intensity under various perception weights.

https://doi.org/10.1371/journal.pone.0250764.g010
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Importantly, effort can increase when the perception of infection risk increases (as mea-

sured by k) despite the lower epidemics spread associated with this higher effort. This is a spe-

cific advantage of the communication policy.

Public policies partly crowd out individual efforts

We use our model to simulate the impact of various public policies on the COVID-19 epidem-

ics, given individuals’ reaction to reported cases. The effectiveness of policies indeed strongly

depends on the side impact they have on equilibrium self-protection efforts.

Partial lockdown. Imposing partial lockdown (for instance for vulnerable population or

employees who have the ability to work remotely, or by closing some businesses such as bars

and restaurants) helps reduce the cumulative number of deaths. We show however that its

impact is lower than could be expected, once equilibrium rational choices are taken into

account.

Partial lockdown reduces infection prevalence, but this leads to increased contacts intensity

for the proportion of individuals and/or activities not subjected to lockdown. Because there

are fewer new cases than in the absence of any lockdown, effort decreases in the percentage of

the population that remains under lockdown.

In our simulations, the direct distancing effect of lockdown still dominates, and both 30%-

and 60%- partial lockdown reduce contacts intensity compared with no lockdown (Fig 12).

However average contacts intensity is much more similar for the 3 scenarios considered than

one would expect if one assumed behavior to be independent from prevalence. In particular

the 30%- and 60%- scenarios yield nearly identical contact intensities after a few weeks. A siz-

able part of the potential benefits of partial lockdown thus disappears due to behavioral

adjustments.

Partial lockdown is also not very effective at markedly reducing the number of deaths in the

long run. A lockdown of 30% [resp. 60%] of the population or activities reduces the number of

deaths to about 119,000 [resp. 100,000] instead of 200,000 (Fig 13). Despite locking in twice as

many individuals (with the associated costs for the population), a 60% lockdown reduces the

number of cumulative deaths by only 1/6th compared to a 30% lockdown.

Fig 11. The impact of perceptions.

https://doi.org/10.1371/journal.pone.0250764.g011
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Fig 12. Impact of 30% and 60% partial lockdown on contact intensity.

https://doi.org/10.1371/journal.pone.0250764.g012

Fig 13. The impact of 30% and 60% partial lockdown. (A) Daily hospitalizations. (B) Cumulative number of deaths.

https://doi.org/10.1371/journal.pone.0250764.g013
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For both a 30% and a 60% lockdown, the number of cumulative deaths is much lower than

in the absence of restrictions, but remains very high. The benefit of partial lockdown comes

from the fact that it (legally) imposes a low average contact intensity despite the decrease in

prevalence. In our simulations, this strongly reduces hospitalizations and casualties. However,

the crowding-out effect (reduced distancing effort) that arises on the activities or individuals

not subjected to this partial lockdown reduces its effectiveness.

Conclusion

Our results provide insight on public debates: Ignoring distancing choices likely leads to a

strong overestimation (by a factor of 10) of the number of deaths avoided thanks to lockdown;

but lockdown saves nearly twice as many lives as freely chosen efforts. Policies post-lockdown

crowd out self-protection efforts so that their overall effectiveness is limited. Partial lockdown

or business closure has much less impact than expected once behavioral adjustments are taken

into account. Communication on the disease is a low-cost intervention that can increase dis-

tancing effort for given reported prevalence levels.
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