
ORIGINAL RESEARCH
published: 18 September 2018
doi: 10.3389/fphar.2018.01010

Frontiers in Pharmacology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 1010

Edited by:

Marie-Christine Jaulent,

Institut National de la Santé et de la

Recherche Médicale (INSERM),

France

Reviewed by:

Robert L. Lins,

Retired, Antwerpen, Belgium

Juergen Landes,

Ludwig-Maximilians-Universität

München, Germany

*Correspondence:

Émeline Courtois

emeline.courtois@inserm.fr

†These authors share last authorship

Specialty section:

This article was submitted to

Pharmaceutical Medicine and

Outcomes Research,

a section of the journal

Frontiers in Pharmacology

Received: 29 November 2017

Accepted: 20 August 2018

Published: 18 September 2018

Citation:

Courtois É, Pariente A, Salvo F,

Volatier É, Tubert-Bitter P and Ahmed I

(2018) Propensity Score-Based

Approaches in High Dimension for

Pharmacovigilance Signal Detection:

an Empirical Comparison on the

French Spontaneous Reporting

Database. Front. Pharmacol. 9:1010.

doi: 10.3389/fphar.2018.01010

Propensity Score-Based Approaches
in High Dimension for
Pharmacovigilance Signal Detection:
an Empirical Comparison on the
French Spontaneous Reporting
Database
Émeline Courtois 1*, Antoine Pariente 2, Francesco Salvo 2, Étienne Volatier 1,
Pascale Tubert-Bitter 1† and Ismaïl Ahmed 1†

1 Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, INSERM, UVSQ (Université Paris-Saclay),

Institut Pasteur, Villejuif, France, 2 Bordeaux Population Health Research Center, Pharmacoepidemiology Team (UMR 1219),

INSERM, University of Bordeaux, Bordeaux, France

Classical methods used for signal detection in pharmacovigilance rely on

disproportionality analysis of counts aggregating spontaneous reports of a given

adverse drug reaction. In recent years, alternative methods have been proposed to

analyze individual spontaneous reports such as penalized multiple logistic regression

approaches. These approaches address some well-known biases resulting from

disproportionality methods. However, while penalization accounts for computational

constraints due to high-dimensional data, it raises the issue of determining the

regularization parameter and eventually that of an error-controlling decision rule. We

present a new automated signal detection strategy for pharmacovigilance systems,

based on propensity scores (PS) in high dimension. PSs are increasingly used to

assess a given association with high-dimensional observational healthcare databases

in accounting for confusion bias. Our main aim was to develop a method having the

same advantages as multiple regression approaches in dealing with bias, while relying

on the statistical multiple comparison framework as regards decision thresholds, by

considering false discovery rate (FDR)-based decision rules. We investigate four PS

estimation methods in high dimension: a gradient tree boosting (GTB) algorithm from

machine-learning and three variable selection algorithms. For each (drug, adverse

event) pair, the PS is then applied as adjustment covariate or by using two kinds of

weighting: inverse proportional treatment weighting and matching weights. The different

versions of the new approach were compared to a univariate approach, which is a

disproportionality method, and to two penalized multiple logistic regression approaches,

directly applied on spontaneous reporting data. Performance was assessed through an

empirical comparative study conducted on a reference signal set in the French national

pharmacovigilance database (2000–2016) that was recently proposed for drug-induced

liver injury. Multiple regression approaches performed better in detecting true positives

and false positives. Nonetheless, the performances of the PS-based methods using
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matching weights was very similar to that of multiple regression and better than with

the univariate approach. In addition to being able to control FDR statistical errors,

the proposed PS-based strategy is an interesting alternative to multiple regression

approaches.

Keywords: pharmacovigilance, signal detection, propensity score in high dimension, spontaneous reports,

penalized multiple regression, FDR

1. INTRODUCTION

Once a drug is introduced on the market, many people
are exposed to it in real-life conditions, which can be very
different from those evaluated in clinical trials. The goal of
pharmacovigilance is to detect as quickly as possible potential
adverse reactions which could be induced by drug exposure.
To achieve this challenging task, health authorities collect and
monitor spontaneous reports of suspected adverse events (AEs),
mainly from practitioners. In France, such a pharmacovigilance
database is maintained by the National Agency for the Safety
of Drugs and Health Products (Agence Nationale de Sécurité
du Médicament et des Produits de Santé, ANSM). It contained
around 431,000 reports at the end of July 2016. In recent years,
about 36,000 reports have been reported annually.

To exploit this amount of data, several automated signal
detection tools have been developed. The term signal refers
to a (drug, AE) pair whose association is highlighted by
a signal detection method. The aim of such methods is
to draw attention to unexpected associations by acting as
hypothesis generators. The signals thus generatedmust be further
investigated by pharmacovigilance experts in order to draw
definite conclusions. The most common methods used by health
agencies are disproportionality methods (Almenoff et al., 2007).
These methods rely on a three-step strategy: for each (drug,
AE) pair (1) determine the number of reports involving this
specific pair; (2) construct a measure of the degree to which
the observed count of reports exceeds the expected count if
independence applies (the disproportionality measure); and (3)
decide that a signal has occurred if this measure exceeds a
specified threshold value. The procedure is conducted for all
(drug, AE) pairs simultaneously (Ahmed et al., 2015). More
recently, these disproportionality methods were extended by
integrating a false discovery rate (FDR) estimation procedure in
order to take into account comparison multiplicity (Benjamini
and Hochberg, 1995; Ahmed et al., 2010).

To address the shortcomings of disproportionality methods in
dealing with confounding like masking effect and co-prescription
bias (Harpaz et al., 2012), multiple logistic regression approaches
have been proposed. While being more computationally
intensive, they have been shown through empirical studies to be
promising signal detection methods (Caster et al., 2010; Harpaz
et al., 2013; Marbac et al., 2016; Ahmed et al., 2018). Instead of
considering aggregated data as disproportionality methods do,
these newer approaches analyse spontaneous reports directly:
the observation becomes the individual report, the outcome
is the presence/absence of a given AE, and the covariates are
all drug presence indicators (Caster et al., 2010). Because of

the very large number of potential covariates, a lasso version
of the logistic regression has been used (Tibshirani, 1996). It
consists in maximizing the log-likelihood of a classical multiple
logistic regression model, penalized by a function proportional
to the L1 norm of the regression coefficients. This penalty
makes it possible to shrink some coefficients associated with the
covariates to exactly zero. Cross validation is commonly used to
choose the penalty value and it achieves good performances in
terms of prediction. However, determining the best penalization
parameter in the variable selection framework is a challenging
task.

Another way to deal with confounding bias issues is to
summarize all the information into a propensity score (PS).
PSs are classically used in epidemiological studies investigating
one targeted association (i.e., one drug, one AE) to deal
with confounding like indication bias. In recent years, this
methodology has been used with high-dimensional health-care
databases, like claims data, by collapsing all the numerous
covariates present in these databases into a single value which is
easier to manipulate (Seeger et al., 2005; Schneeweiss et al., 2009).
Tatonetti et al. (2012) investigated the use of one PS strategy in the
context of spontaneous reporting data and illustrated its interest
by comparing it to a disproportionality method.

In this paper, we develop several PS-based approaches for
signal detection from spontaneous reporting and compare them
to penalized multiple regression approaches. We built the PSs
with four different algorithms adapted to high dimensional
settings and for each of them, we considered three different
integration strategies to perform signal detection. Our proposed
PS-based methods include a signal detection rule relying on
FDR estimation. This comparison is performed with the French
national pharmacovigilance database (2000–2016) using a large
and recently published reference set pertaining to a common
adverse reaction: drug-induced liver injury (DILI) (Chen et al.,
2011, 2016).

2. METHODS

2.1. Reference Methods
The most common proposed methods for signal detection are
disproportionality methods, which rely on the aggregated form
of the data. These methods aim to detect higher-than-expected
combinations of drugs and events in the database. Nevertheless,
two kinds of biases are created by the univariate feature
of disproportionality methods: masking and the co-reporting
confounding effect (Harpaz et al., 2012). In order to address these
two bias issues, other approaches in pharmacovigilance have
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lately emerged that rely on multiple logistic regressions (Caster
et al., 2010). Individual spontaneous reports are directly analyzed
instead of aggregated counts of drug-event combinations. We
denote by I the total number of drugs and J the total number
of AEs in the database. Let Yj indicate the presence or absence
of AEj, and Xi denote the presence or absence of drugi. The
corresponding logistic model for each AEj is

logit(Pr(Yj = 1)) = β
j
0 +

I∑

i =1

β
j
iXi. (1)

In spontaneous reporting databases, the number of drug
covariates I is very large. To deal with this high-dimensional
issue and in order to derive the most parsimonious model, a
penalized lasso logistic regression was implemented (Tibshirani,
1996). This consists in maximizing the log-likelihood of model
(1) minus a penalization term

penj(λ) = λ |β j|1 = λ

I∑

i =1

|β
j
i |. (2)

Depending on the penalization parameter λ, the lasso regression
shrinks most of the coefficients associated to the covariates to
exactly zero, so these covariates are not retained in the model.
Usually cross validation is used to select the best value of λ

in terms of prediction error, but this does not achieve good
performance in a variable selection framework which is that of
signal detection. Here, we considered two alternative strategies
to this penalization parameter selection: the BIC-Lasso and the
class-imbalance subsampling lasso (CISL) (Ahmed et al., 2018).

2.1.1. BIC-Lasso
This method uses the Bayesian Information Criterion. First, a
lasso regression is computed for a predefined set of penalization
parameter values λks. To each tested λk is associated a set
of variables selected by the lasso regression. The BIC is then
calculated from a classical logistic regression model for each of
these sets:

BIC = −2ln(L)+ kln(N) (3)

where L is the likelihood of the regression model, N the number
of observations, and k the number of parameters in the model.
We declared as signals all drugs positively associated with the
outcome in the model that minimizes the BIC.

2.1.2. CISL
Another way to get around the penalization parameter
selection issue is the stability selection method (Meinshausen
and Bühlmann, 2010). To take into account the sparsity
of pharmacovigilance databases with low frequencies of the
outcomes, Ahmed et al. (2018) proposed a variation of this
method: the CISL algorithm. In this method, samples are
drawn following an nonequiprobable sampling scheme with
replacement to allow a better representation of individuals
who experienced the outcome of interest. For a given set
of penalization parameter values, lasso logistic regressions are

computed in each of these samples. The CISL procedure consists
in computing the quantity:

π̂b
i =

1

E

E∑

η =1

1[β̂η,b
i > 0], (4)

where E is the maximum value of covariates selected by all
the lasso regressions, η ∈ {1, ..,E} is the number of predictors

selected and β̂
η,b
i is the regression coefficient estimated by the

logistic lasso for drug i, on sample b ∈ {1, ..,B}, for a model
including η covariates. An empirical distribution of π̂b

i for each
drug is obtained over all B samples. A covariate is finally selected
by the CISL method if a given quantile of the distribution
of π̂b

i is non-zero. In this work, we considered the covariate
sets established with the 5% and the 10% quantiles of these
distributions.

In the following we refer to these two methods as the multiple
regression approaches.

2.2. Propensity Score Approaches
The PS is defined as the probability of being exposed to a
treatment given the observed covariates (Rosenbaum and Rubin,
1983). Conditionally on the PS, treatment exposure and the
observed covariates are independent: patients with similar PSs
will have on average similar covariate distributions between
the exposed and unexposed subjects. This relies on the strong
assumption that there are no unmeasured confounders. This
means that all variables that affect both treatment assignment and
outcome, thus potentially inducing spurious associations, have
been measured. The PS is used in the context of observational
studies as a balancing score that allows for non-randomized
trials to reproduce the conditions of a randomized experiment
by making observed baseline characteristics comparable in two
different treatment groups. Thus, it addresses confounding biases
like indication bias. In this framework, the PS is unknown and
has to be estimated from observed data, usually using a logistic
regression. Each patient is then assigned a predicted probability
of being exposed that is calculated from the PS regression.

2.2.1. Propensity Score Modeling
It is recommended to include predictors and confounders in
the PS model i.e., covariates that are related to the outcome or
to the outcome and the exposure. It is also strongly advised to
avoid instrumental variables i.e., variables that are only related to
the exposure (Patorno et al., 2013). In practice, it is sometimes
recommended to make a priori variable selection according
to expert knowledge (Brookhart et al., 2006). In the high-
dimensional framework such as health-care databases where
thousands of covariates are entered, this approach cannot hold.
The high-dimensional propensity score (hdPS) algorithm was
proposed to deal with this kind of difficulty (Schneeweiss et al.,
2009). For a given exposure, the choice of candidate covariates
to include in the PS model relies on empirical assessment
of covariates prevalence and strength of association with the
exposure and with the outcome of interest. The algorithm ranks
all input variables by their potential for confounding and the
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investigator must choose the top-ranked variables to be included
in the model for estimating the PS.

In the present work we aimed at computing the PS for each
drug in the database by selecting among all the other drugs those
to be included in the PS estimation model. We implemented four
PS-estimation methods. We considered three variable selection
algorithms: hdPS and the two other variable selection methods
described above: the BIC-Lasso and the CISL [with the positive
constraint for β replaced by a non-zero constraint in Equation
(4)]. Using the BIC-lasso methodology, each covariate associated
with the smallest BIC models was selected. Using CISL, all
covariates with a 10% percentile of its distribution greater than
zero were selected. Using hdPS, the 20 top-ranked variables were
selected. For the sake of completeness, we also implemented
a PS-estimation method which relies on a machine-learning
algorithm, as was recently proposed by Lee et al. (2010): we
considered a gradient tree boosting (GTB) algorithm (Hastie
et al., 2009).

2.2.2. Use of the Propensity Score
Once the PS is estimated, four methodologies may be used
to remove confounding in estimating the treatment effect: (1)
adjustment on the PS; (2) stratification on the PS; (3) matching
on the PS; (4) weighting on the PS. Adjustment on the PS consists
in considering the estimated PS as a covariate and including it as
an additional variable, with the exposure, in the regression model
on the outcome. Stratification on the PS is based on a population
stratification according to the quantiles of the PS distribution.
The treatment effect is then estimated in each subgroup of
patients. Matching on the PS consists in matching one treated
subject to one (or more) untreated subject which have similar
values of their estimated PS. Classically, subjects are matched
with a nearest neighbor matching algorithm within a specified
caliper distance equal to 0.2 of the standard deviation of the
estimated PS. Weighting on the PS amounts to assigning to each
subject a weight that is calculated from the estimated PS. The
treatment effect is estimated on the pseudo population which is
built according to these weights (Austin, 2011).

In this study, we considered two of these four different PS
methodologies. First we implemented an adjustment on the PS.
For every (AEj, drugi) pair of interest, we computed the following
logistic regression model:

logit(Pr(Yj = 1)) = β
j
0 + β

j
iXi + β̃

j
îei (5)

where êi is the estimated PS of drugi for all the observations.
We also implemented the inverse probability of treatment

weighting (IPTW, Austin, 2011). For a given drugi, the weights
to be attributed to each observation are defined by

wIPTW
i =

Xi

êi
+

1− Xi

1− êi
. (6)

Because some drugs have been reported very rarely, and do not
havemany reports in commonwith AEs, matching subjects on PS
may cause dramatic losses in terms of subjects who experienced
both the exposure and the outcome. Keeping this constraint

in mind, we performed another kind of weighting to mimic
the classical matching by targeting the same estimand as pair-
matching on the PS. The proposed weights are referred to the
matching weights (MW) (Li and Greene, 2013; Franklin et al.,
2017).

wMW
i =

min(̂ei, 1− êi)

Xîei + (1− Xi)(1− êi)
. (7)

For these two weighting approaches, we then computed
univariate weighted logistic regressions by considering wIPTW

i or
wMW
i .
For all these PS-based approaches, the signal detection rule

is the one applied in the hypothesis testing framework. To take
the multiplicity of the tested hypotheses into account, we applied
an FDR controlling procedure adapted to the one-sided null
hypothesis setting that stands in pharmacovigilance (Ahmed
et al., 2010). An FDR adjusted p-value is estimated for each
comparison tested. A signal is considered to occur if this p-value
corrected for multiplicity is below an FDR threshold.

3. MATERIAL AND COMPARISON
SETTINGS

To assess the performances of our PS-based approaches, we
compared their ability to correctly classify true and false signals to
multiple regression approaches presented above and a univariate
approach, using the French pharmacovigilance database on a
recently proposed reference set pertaining to DILI adverse events.

3.1. Comparison Set-Up
We compared the ability of each method to detect true signals
and not to detect false signals. For the BIC-Lasso approach, we
declare as signals all drugs positively associated with the outcome
in the model that minimizes the BIC. All drugs selected by CISL
are considered as a signal since the positive association with the
outcome is taken into account in the algorithm. For all PS-based
approaches, a 5% level FDR controlling procedure was used to
determine which drug-AE associations are considered as signals.
We also included a method based on a simple univariate logistic
regression: for each AEj, j ∈ {1, .., J} and each drugi, i ∈ {1, .., I}
we computed:

logit(Pr(Yj = 1)) = β
j
0 + β

j
iXi. (8)

This method was implemented to serve as a reference level. It
can be assimilated to a reporting odds ratio method, which is a
disproportionality method for signal detection (van Puijenbroek
et al., 2002). We applied the same FDR controlling procedure to
this univariate approach.

All the analyses were performed with R version 3.4.0 (R
Core Team, 2017). All the logistic regressions were computed
with the speedglm R package v0.3–2. All lasso regressions
were implemented using the glmnet R package v2.0–10. GTB
algorithms for PS estimation were implemented with the
xgb.train function from the xgboost R package 0.6–4. The default
values of the xgb.train function were used, except for the learning
rate, which was fixed at 0.1.
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Table 1 summarizes themain advantages and disadvantages of
the different signal detection methods presented in this section.
For the sake of clarity, we refer to the multiple regression
approaches in the following as BIC-Lasso, CISL-5%, CISL-10%
and to the univariate approach as Univ. The terms adjustPS-BIC,
mwPS-BIC, iptwPS-BIC, adjustPS-CISL, mwPS-CISL, iptwPS-
CISL, adjustPS-GTB, mwPS-GTB, iptwPS-GTB, and adjustPS-
hdPS, mwPS-hdPS, iptwPS-hdPS refer to the PS approaches
implemented, the way PS was estimated (BIC, CISL, GTB or
hdPS) and how PS was taken into account (adjustment, MW, or
IPTW).

3.2. The French Pharmacovigilance
Database
The performances of our approaches were evaluated and
compared by an empirical analysis using data from the French
pharmacovigilance database. Drugs are coded according to
the 5th level of the Anatomical Therapeutic Chemical (ATC)
hierarchy, and the AEs to the Preferred Term (PT) level of the
Medical Dictionary for Regulatory Activities (MedDRA).

We applied some filters to the data and considered (i) only
products which are known to be a drug (leaving out vaccines,
phytotherapy, homeotherapy, dietary supplement, oligotherapy
and enzyme inhibitor); (ii) reactions which are targeted as AEs
(overdoses or medication errors are not taken into account).
Drugs are listed according to their active substances, which are
encoded with the ATC classification and additional codes for
substances that do not have a corresponding code. We extracted
data over the period 2000–2016, which represents 382,484 reports
with 5,906 different AEs and 2,344 different drugs.

3.3. Set of Reference Signals
The set of reference signals that we used to compare the
performances of the methods is the DILIrank set recently
established by Chen et al. (2011) which considers a specific
adverse event: DILI. After determining a list of keywords
related to the DILI event, this set was developed by text-
mining the FDA-approved drug labels. A severity level
was associated to each keyword. Drugs were classified into
three DILI-related categories according to where keywords
appear in the labeling section (Warnings & Precautions
section, for example) of the FDA-approved drug labels,
and the severity level of the involved keywords: most DILI
concern, less DILI concern and no DILI concern. In 2016,

this classification was refined by including information
from other data sources to assess the causal relationship
between each considered drug and a DILI event. Only
drugs confirmed as DILI cause were retained (Chen et al.,
2016).

We translated DILI labeling keywords into PT codes from
the MedDRA classification: 91 PT codes were considered
as DILI related. Each spontaneous report involving one of
these 91 PT was thus considered as a reported DILI event,
which translated into 22,440 DILI reports in the French
pharmacovigilance database. To avoid numerical issues due to
very low drug-reporting frequency, we limited the comparison
to drugs which have more than three reports in common
with a DILI, and have more than ten reports in total. This
restriction applied, we considered 922 different drugs out
of the 2,344 original drugs from the spontaneous reporting
database. Considering these drugs, the final DILIrank set
accounted for 417 (drug, DILI) pairs: 90 no DILI concern
pairs, 213 less DILI concern pairs and 114 most DILI
concern pairs. We considered as negative controls the no
DILI concern pairs, and as positive controls the most DILI
concern ones, which involve drugs associated with severe DILI
outcomes.

4. RESULTS

Performances of the methods were assessed in terms of number
of signals detected, number of true positives and number of
false negatives identified, sensitivity and specificity, positive
predictive value (PPV) and false discovery proportion (FDP).
Table 2 summarizes the results. AdjustPS-BIC, adjustPS-CISL,
adjustPS-GTB, and adjustPS-hdPS detected more signals than
the other PS-based approaches with 308, 275, 273, and 310
signals respectively. All the iptwPS-based approaches led to
the lowest number of signals with 35, 63, 70, 34 signals
for iptwPS-BIC, iptwPS-CISL, iptwPS-GTB, and iptwPS-hdPS.
The mwPS-based approaches gave an intermediate number of
detected signals with 147, 121, 136, and 139 signals for mwPS-
BIC, mwPS-CISL, mwPS-GTB, and mwPS-hdPS respectively.
Multiple regression approaches detected between 99 and 173
signals. The univariate approach detected the largest number of
signals: 359.

Multiple regression approaches gave the highest positive
predictive values (PPV): 96.97, 100, and 100% for BIC-Lasso,

TABLE 1 | Main advantages and disadvantages of the compared signal detection methods.

Methods Advantages Disadvantages

Univariate approach (disproportionality method) Very fast computation time Do not account for multiple

Detection threshold based on classical test theory (p-values, FDR correction) exposures

Penalized multiple logistic regression methods Fast computation time Detection threshold not relying on

Account for multiple exposures classical test theory

Propensity-score based methods Account for multiple exposures Long calculation time for

Detection threshold based on classical test theory (p-values, FDR correction) the propensity score estimation step
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TABLE 2 | Number of signals detected for each method.

Method Number of Number of signals True positives signals False positives signals

generated signals with known status

(positive or negative) n PPV Sensitivity n FDP Specificity

Univ 359 105 86 81.90 75.44 19 18.10 78.89

BIC-lasso 173 66 64 96.97 56.14 2 3.03 97.78

CISL-5% 99 43 43 100.00 37.72 0 0.00 100.00

CISL-10% 109 48 48 100.00 42.11 0 0.00 100.00

adjustPS-BIC 308 96 81 84.38 71.05 15 15.62 83.33

mwPS-BIC 147 53 52 98.11 45.61 1 1.89 98.89

iptwPS-BIC 35 14 13 92.86 11.40 1 7.14 98.89

adjustPS-CISL 275 86 75 87.21 65.79 11 12.79 87.78

mwPS-CISL 121 50 49 98.00 42.98 1 2.00 98.89

iptwPS-CISL 63 17 14 82.35 12.28 3 17.65 96.67

adjustPS-GTB 273 85 74 87.06 64.91 11 12.94 87.78

mwPS-GTB 136 52 49 94.23 42.98 3 5.77 96.67

iptwPS-GTB 70 28 25 89.29 21.93 3 10.71 96.67

adjustPS-hdPS 310 93 83 89.25 72.81 10 10.75 88.89

mwPS-hdPS 139 54 53 98.15 46.49 1 1.85 98.89

iptwPS-hdPS 34 16 15 93.75 13.16 1 6.25 98.89

For the BIC-lasso a signal is a positive association in the selected model, for CISL-5% and CISL-10% a signal is a selected variable obtained according to a distribution quantile (5%
or 10%) in the CISL methodology. For Univ and all the PS-based approaches, a signal is an association FDR significant. The number of true positives signals is the number of positives
controls detected by the method. The number of false positives signals is the number of negatives controls detected by the method.
PPV: Positive Predictive Value.
FDP: False Discovery Proportion.

CISL-5% and CISL-10% respectively. All the mwPS-based
approaches gave similar results with a PPV around 98%,
except for mwPS-GTB with a PPV equal to 94.23%. The
univariate approach had the lowest PPV: 81.90%. AdjustPS-based
approaches had slightly better performances: 84.38, 87.21, 87.06,
and 89.25% for adjustPS-BIC, adjustPS-CISL, adjustPS-GTB, and
adjustPS-hdPS respectively. Depending on the method used to
estimate the PS, iptwPS-based approaches performed differently
with PPVs ranging from 82.35% for iptwPS-CISL to 93.75% for
iptwPS-hdPS.

Univ, adjustPS-BIC, adjustPS-CISL, adjustPS-GTB, and
adjustPS-hdPS had the best performance in terms of sensitivity:
between 64.91% for adjustPS-GTB and 75.44% for Univ, but
they had the poorest specificity: between 78.9% for Univ
and 88.9% for adjsutPS-hdPS. On the other hand, multiple
regression approaches and mwPS-based approaches had
very good specificity. BIC-Lasso, CISL-5% and CISL-10%
had a specificity equal to 96.97, 100, and 100% respectively.
MwPS-BIC, mwPS-CISL, mwPS-GTB, and mwPS-hdPS had a
specificity equal to 98.11, 98.00, 94.23, and 98.15% respectively.
Multiple regression approaches had sensitivity between 37.72%
for CISL-5% and 56.14% for BIC-Lasso. MwPS-based approaches

had sensitivity between 42.98% for mwPS-CISL and mwPS-GTB,
and 46.49% for mwPS-hdPS. IptwPS-based approaches had good
specificity but very low sensitivity.

Figure 1 shows the number of true positives or true negatives
according to the number of signals generated by Univ, BIC-
Lasso and mwPS-BIC, where signals are ranked according to
their p-values for BIC-Lasso, and according to their adjusted
p-values for Univ and mwPS-BIC. BIC-Lasso and mwPS-BIC
were chosen to be represented here since they showed either
better or similar performances to the other multiple regression
or PS-based approaches respectively (Figures S1–S3). Regarding
true positive signal detection, BIC-Lasso performed the best and
Univ the worst, mwPS-BIC having a comparable performance
to BIC-Lasso. Concerning false positive signal detection, mwPS-
BIC performed the best since it detected the first false positive the
latest. Univ detected far more signals than mwPS-BIC and BIC-
Lasso, but its true positive detection rate was worse on its latest
detected signals. Indeed, 36% of its first 150 generated signals
were true positive controls compared to 15% of its last 209 signals.
The same trend was observed for false positive detection: Univ
detected 2% of false positives within its first 150 generated signals
and about 7% over its last 209 signals.
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FIGURE 1 | (A) Number of positive reference signals detected according to number of signals generated by BIC-Lasso, mwPS-BIC and Univ, where signals are

ranked in ascending order by their associated p-values for BIC-Lasso and by their adjusted p-values for mwPS-BIC and Univ. (B) Number of negative reference

signals detected according to number of signals generated by BIC-lasso, mwPS-BIC and Univ, where signals are ranked in ascending order by their associated

p-values for BIC-Lasso and by their adjusted p-values for mwPS-BIC and Univ.

FIGURE 2 | (A) Distribution of the first 147 signals generated between Univ, BIC-Lasso and mwPS-BIC. (B) Observed counts vs. expected counts of signals

generated by Univ only, BIC-Lasso only, mwPS-BIC only and by the three methods, considering their first 147 generated signals. Observed counts n are number of

reports which involved the signal considered, expected counts e are those expected if independence applies between the drug and the AE that form the signal

considered . They are calculated as follows: for a signal (drugi , AEj ) ei,j =
Ni×Nj
N where Ni ,Nj are the observed counts of drugi and AEj respectively, and N the total

number of observations.

Looking more specifically at the PS-based approaches,
they behaved similarly within a given PS-estimation method
(Figures S1, S2). Considering the three PS methodologies,
mwPS-based approaches performed better for an equal number
of signals generated (Figure S3).

Figure 2A shows the overlap between the first 147 signals
generated by Univ, BIC-Lasso and mwPS-BIC and Figure 2B the
observed counts n vs. the expected counts e of some of these
signals according to the method(s) by which they were detected.
111 signals were detected by all methods: Figure 2B shows that
these signals are characterized by a greater observed risk ratio
( ne ) and/or a greater support of the data (large n) in comparison
to signals detected solely by one method. Figure 2B also shows
that the methods tend to focus on different types of signals: in

particular the BIC-Lasso highlighted some signals with relatively
weak support of the data (n < 10) whereas Univ highlighted
signals with low observed risk but a large number of reports.
mwPS-BIC had an intermediary behavior.

5. DISCUSSION

Development of novel signal detection methods is crucial to
improve the responsiveness and the efficiency of post-marketing
surveillance systems. The main issue is to develop techniques
that give a reasonable number of signals for further analysis
by experts, while providing a list of relevant signals with the
fewest possible false associations. Using spontaneous reporting
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databases is difficult because of their high dimension and extreme
imbalance. This study compared recently proposed multiple
approaches and a set of methods based on the PS in a signal
detection framework. To do so, we used a recently developed set
of reference signals pertaining to liver injury: the DILIrank set.

The best performing PS-based approach is the one which
relies on the MW. Its performance in terms of true/false signal
detection, specificity and sensitivity is very close to that of
the multiple regression approaches, which performs the best.
It also generates roughly the same number of signals as BIC-
Lasso and CISL, the latter being conservative for highly reported
adverse events, as is the case for DILI (Ahmed et al., 2018). The
mwPS-based approaches have an intermediary behavior between
multiple regression approaches and univariate approach in the
type of signal generated.

In accordance with the literature, adjustment on the PS does
not achieve the best performances (Stuart, 2010). The adjustment
approaches had similar behavior to the univariate approach.
In particular, they generated very large numbers of signals in
comparison to the other PS-based approaches and multiple
regression approaches, and they had poor specificity and good
sensitivity.

The iptwPS-based approaches performed extremely poorly.
Unlike the MW, weights from IPTW are not normalized and
could be very large for untreated individuals with low PS. This
numerical instability due to high weights with IPTW weighting
has already been reported (Yoshida et al., 2017). To avoid this
issue, a solution is to do weight-trimming: weights greater than a
given value are assigned this value (Seeger et al., 2017).

In addition to the well-known variable selection algorithm
in PS estimation, hdPS, here we implemented three other PS-
estimation methods: two based on variable selection algorithms,
BIC-Lasso or CISL, and one derived from a machine-learning
algorithm: GTB. A drawback with the hdPS algorithm in our
setting is that the PS obtained with this method is AE dependent:
for each drug to be included in the PS, its association with the
AE under study has to be computed. This can become very
time-consuming when screening several thousands of AEs. On
the contrary, the three other PS-estimation methods have a
computational advantage: once the PS is estimated for a given
drug, it can be used to test associations with any AEs. When
PS is estimated with the covariates selected by BIC-Lasso, CISL
or with a GTB algorithm, PS-based approaches are competitive
with multiple regression approaches in terms of calculation

time. Regressions like weighted univariate logistic regressions
can be easily performed. Depending on the PS methodology
used (adjustment or weighting), results are roughly comparable
according to the way PS is estimated.

A major constraint in developing signal detection methods is
to obtain a reliable set of reference signals to assess performances.
Here we used a recently established set, the DILIrank set
pertaining to a common adverse event, which is not the case for
all the AEs in the database. Furthermore, three levels of DILI risk
assessment are defined inDILIrank for drugs: most DILI concern,
less DILI concern and no DILI concern. We chose to consider
only most DILI concern drugs as true positive controls, leaving
less DILI concern drugs, because we decided to focus on drugs
which could lead to severe DILI related outcomes.

The results suggest that the proposed PS-based methodology
is an interesting complement to other existing methods. In a
sense, it combines the main strengths of both univariate and
multiple regression approaches: it makes it possible to account
for co-reported drugs while using multiple hypothesis testing
theory as regards the detection threshold. Further studies on
alternative reference sets and simulation studies will be useful
to confirm its potential for automated signal detection in
pharmacovigilance.
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