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Abstract

Background: Value of information is now recognized as a reference method in the decision process underpinning
cost-effectiveness evaluation. The expected value of perfect information (EVPI) is the expected value from completely
reducing the uncertainty surrounding the cost-effectiveness of an innovative intervention.
Among sample size calculation methods used in cost-effectiveness studies, only one is coherent with this decision
framework. It uses a Bayesian approach and requires data of a pre-existing cost-effectiveness study to derive a valid
prior EVPI. When evaluating the cost-effectiveness of innovations, no observed prior EVPI is usually available to calculate
the sample size.
We here propose a sample size calculation method for cost-effectiveness studies, that follows the value of information
theory, and, being frequentist, can be based on assumptions if no observed prior EVPI is available.

Methods: The general principle of our method is to define the sampling distribution of the incremental net monetary
benefit (ΔB), or the distribution of ΔB that would be observed in a planned cost-effectiveness study of size n. Based on
this sampling distribution, the EVPI that would remain at the end of the trial (EVPIn) is estimated. The optimal sample
size of the planned cost-effectiveness study is the n for which the cost of including an additional participant becomes
equal or higher than the value of the information gathered through this inclusion.

Results: Our method is illustrated through four examples. The first one is used to present the method in depth and
describe how the sample size may vary according to the parameters’ value. The three other examples are used to
illustrate in different situations how the sample size may vary according to the ceiling cost-effectiveness ratio, and how
it compares with a test statistic-based method. We developed an R package (EBASS) to run these calculations.

Conclusions: Our sample size calculation method follows the value of information theory that is now recommended
for analyzing and interpreting cost-effectiveness data, and sets the size of a study that balances its cost and the value
of its information.

Keywords: Cost-benefit analysis, Sample size, Value of information, Clinical trials, Comparative studies, Epidemiologic
methods
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Introduction
When analyzing cost-effectiveness data, it is argued that
rules of inference are arbitrary and entirely irrelevant to
the decisions which clinical and economic evaluations
claim to inform. When a choice is to be made between
two interventions, a statistical test is of no use if its result
is not significant. Indeed, a statistically insignificant differ-
ence at the level of a study sample cannot exclude a major
difference at the level of a population. Furthermore, when
the difference between interventions is statistically signifi-
cant, the p-value quantifies the risk that there is truly no
difference between interventions at the level of the popu-
lation, a situation where choosing one of the compared in-
terventions will have no consequence [1]. The decision
process underpinning cost-effectiveness evaluation should
be based only on the mean net benefits of each interven-
tion irrespective of whether the difference between them
is statistically significant [2].
The net monetary benefit (B) of an intervention is

given by E × λ −C, where E and C are the effect and cost
of this intervention, and λ is the threshold monetary
value for a unit of effect.
When evaluating the cost-effectiveness of a new inter-

vention in comparison with the reference, one can esti-
mate the difference between the net monetary benefit of
the new intervention (BN) and the net monetary benefit
of the reference (BR). This difference is the incremental
net monetary benefit (ΔB) [3].
The uncertainty surrounding the decision based on

the incremental net monetary benefit can be expressed
through the risk of making the wrong decision or the
risk of ΔB being negative when its point estimate is posi-
tive, or vice versa. The expected value from completely
reducing this uncertainty can then be defined as the ex-
pected opportunity loss when making the wrong deci-
sion, a situation which could be avoided having perfect
information [4]. This is known as the expected value of
perfect information (EVPI). The EVPI is used as a neces-
sary requirement for determining the profitability of fur-
ther research: additional research should be considered
only if the EVPI exceeds the expected cost of further re-
search [2, 5].
Comparative studies, including clinical trials, are com-

monly used as a vehicle for health economic evaluations
[6]. A key aspect in the elaboration of such studies is the
sample size calculation. It must yield sufficient precision
in the estimations, and has ethical implications as it is
unnecessary to expose too many individuals to the con-
straints of a clinical study [7]. As expected, the sample
size calculation should be in agreement with the statis-
tical methods planned to use for the data analysis [8].
Various sample size calculation methods have been de-

veloped for trial-based cost-effectiveness analyses. Most of
them are based on test statistics comparing ΔB to zero or

the incremental cost-effectiveness ratio to λ, with assump-
tion of asymptotic normality [9, 10] or by simulation [11].
Another sample size calculation method is based on a
Bayesian framework for value of information analysis [12].
In this Bayesian framework, the first step is to estimate
the difference between the posterior EVPI and the prior
EVPI (i.e.: the expected value of sample information,
EVSI). The EVSI is calculated at the level of a population
of size N and depends on the number of individuals (n) to
be included in the planned cost-effectiveness study. The
difference between the EVSI and the cost of the planned
study is the expected net gain (ENG) of further research.
If, for a given n, the ENG is positive (i.e.: EVSI>cost of the
trial) the planned study is considered useful and the opti-
mal sample size of the planned study is the n that maxi-
mizes ENG.
Methods based on test statistics are not coherent with

the decision process underpinning cost-effectiveness evalu-
ation which does not support the use of a statistical test to
compare the net monetary benefit between each interven-
tion [2]. The main limitation of the Bayesian value of infor-
mation framework is that determining the prior EVPI
requires data of a pre-existing cost-effectiveness study in
the same target population to derive a valid a priori distri-
bution of the incremental net monetary benefit. Indeed,
even if considering an uninformative prior is theoretically
feasible, no such extension of their method has been pro-
posed by the authors. Unfortunately, when evaluating the
cost-effectiveness of innovations, no observed prior distri-
bution of the incremental net monetary benefit is usually
available to calculate the sample size.
We here propose a new sample size calculation

method that follows the same principles as the Bayesian
approach proposed by Willan et al., but using a frequen-
tist approach. Our frequentist approach determines the
optimal sample size by comparing the decrease in the
expected EVPI due to the inclusion of additional partici-
pants to the cost of including more participants. It can
be based on assumptions if a prior distribution of the in-
cremental net monetary benefit from a pre-existing
study involving the same population is not available.

Methods
We primarily developed our method for situations where
current information is lacking to guide decision making. A
context where a cost-effectiveness study has to be con-
ducted and where no decision can be drawn before the
results are available. This context has two major implica-
tions for our method: 1) fixed costs, those required for set-
ting up the study before patients’ recruitment, are
considered mandatory and do not enter in our calcula-
tions; 2) If no prior information is available, the expected
value of information will not be estimated before the re-
sults of the planned cost-effectiveness study are available.
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N, the size of the population to be considered in our cal-
culation, is the number of individuals when a decision will
be made, that is at the end of the study. Thus, the number
of individuals recruited in the study is not taken into ac-
count in the calculation of the population EVPI.
In a first approach, we develop the case of a planned

randomised trial-based cost-effectiveness analysis (CEA)
with two parallel groups of equal size n/2 and equal vari-
ance of cost and effect.
The case of unequal variance of costs (σ2C ) and effect (

σ2E ) in each group, and the case of unequal group size
are further detailed in the Additional file 1.
The three steps of our calculation method are as

follows.

A. Defining the sampling distribution of ΔB.

Let cΔB be the estimate of ΔB in a planned randomised
trial-based CEA of size n. Being a difference of differences,
cΔB is a linear expression that may take all possible values
from −∞ to +∞. As reported elsewhere [3, 12–15], we as-

sume that cΔB follows a Normal distribution of mean μΔB

and variance 2σ
2
ΔB
.

n
.

When comparing two independent groups (i.e.: a ran-
domised clinical trial): σ2ΔB ¼ 2σ2

B , where σ2
B is the com-

mon variance of the net monetary benefit (B) in each
group. The variance of B is given by:

σ2B ¼ λ2σ2E þ σ2C−2λρσEσC ð1Þ

Where σ2C and σ2E are the expected common variances
of cost and effect in potential samples, and ρ the correl-
ation between cost and effect [3].

Hence cΔB∼NðμΔB; 4ðλ
2σ2E þ σ2C−2λρσEσCÞ

�

n
Þ

B. Estimating the remaining value of perfect
information for a defined sample size (EVPIn).

Taking into account cΔB, the value of perfect informa-
tion that would remain after completing the planned
randomised trial-based CEA of n participants is:

EVPIn ¼ N I μΔB > 0ð Þ
Z 0

−∞
−b f̂ bð Þdbþ I μΔB≤0ð Þ

Z þ∞

0
b f̂ bð Þdb

� �

ð2Þ

Where f̂ is the density function for cΔB � NðμΔB;
4σ2B

.

n
Þ , b is a possible value (i.e.: a realization) of cΔB ,

and I (·) is the indicator function.

When N, the size of the population targeted by the in-
novative intervention, is calculated over a time horizon
of more than a year, the EVPI has to be discounted,

weighted by the term
Pk−1

k¼0ð 1
ð1þτÞk:Þ

Where k is the time horizon of the calculation (in
years) and τ is the discount rate.

C. Determining the optimal sample size in the planned
randomised trial-based CEA.

Each additional participant included in a cost-effect-
iveness study induces a decrease of uncertainty in the
cost-effectiveness of the innovative intervention, and
consequently a decrease in the expected EVPIn.
Our method defines the optimal sample size as the n

for which the cost of including two (one in each group)
additional participants (2Cp) becomes equal or higher
than the EVPIn decrement due to their inclusion (EVPIn
− EVPIn + 2).
Consequently, the optimal sample size is n when:

EVPIn−2−EVPInð Þ > 2Cp AND EVPIn−EVPInþ2ð Þ≤2Cp ð3Þ

Development of an R package
In order to ease the use of our method and to facilitate
calculations, we developed an R package (EBASS) (https://
CRAN.R-project.org/package=EBASS). This package han-
dles the cases of unequal variances or unbalanced groups.
The package tutorial explains how to conduct sample size
calculation using our method and how to conduct sensi-
tivity analyses according to a defined range of parameters’
values.

Obtaining the necessary data
Through his publication, Glick provides guidance on
ways to obtain data on parameters required for calculat-
ing a sample size based on a test statistic, especially
when data require to be generated through specific as-
sumptions when evaluating new interventions [10].
Additional parameters are needed for using our

method: the size of the target population (N), the annual
discount rate (τ), the time horizon in years (k), and the
cost per participant included (Cp).
The size of the target population can be estimated

through prevalence and incidence data from registries,
large cohort studies, medico-administrative databases, or
surveillance systems. N has to be calculated over the en-
tire time horizon used for the estimation of EVPIn. It is
usually easier to gather data on the annual number of in-
dividuals susceptible to benefit from the new interven-
tion. If this number is expected to be constant over the
time horizon, N is the product of this time horizon (in
years) and the annual number of individuals. The annual
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discount rate is defined in each country, generally be-
tween 3 to 6%. Finite time horizons are recommended
because the value of information depends on future
changes in technologies, prices, and evidence. Further-
more, because of discounting, the impact of a time hori-
zon over 15 or 20 years on the estimation of EVPIn is
not significant [16].
Estimating the total cost of a trial is mandatory in the

process of setting it up. For estimating Cp, we propose
to calculate the total cost of the planned trial for a given
sample size n. The cost per participant (Cp) is obtained
after subtracting fixed costs from the total cost and div-
iding the remaining cost by n.

Results
Application
Data were extracted from a sample size calculation com-
puted for a planned randomized trial-based CEA compar-
ing telemedicine to face-to-face care in elderly patients
with complicated chronic wounds in nursing homes. The
expected per patient cost of telemedicine was 477€. It
took into account the mean number of teleconsultation/
patient; the duration of a teleconsultation; the cost of the
informatics equipment for telemedicine, and their
amortization over 3 years; and the expected number of
teleconsultations. The expected per patient cost of
face-to-face care was 645€ and took into account the
mean number of consultation/patient; the proportion of
patients needing a consultation with a dermatologist or a
day hospitalization in a geriatric department; the cost of
consultations and day hospitalizations, and the cost of
medical transportations. The difference in mean costs
(ΔC) was therefore − 168€. The difference in mean effect
(ΔE) was 0.04 QALY and corresponded to the minimal
clinically significant difference in utility over a one-year
time horizon. Sample size calculations in clinical trials are
usually conducted based on the minimal clinically mean-
ingful difference [17], especially when very little informa-
tion on the endpoint is available. This could be the case
when developing a trial-based CEA after having imple-
mented a clinical trial where QALY were not measured.
The expected standard deviation of costs (σC) and effect
(σE) were 2100€ and 0.12, respectively, which reflected a
high level of uncertainty surrounding the estimation of
costs and effect. The ceiling cost-effectiveness ratio (λ)
was 20,000€/QALY. The coefficient of correlation (ρ) be-
tween cost and effect was set at 0.1.
Given the incidence of chronic wounds in nursing

homes, the expected size of the target population was
52,000/year over a time horizon of 20 years. The annual
discount rate was 0.04 as recommended by the French
National Health Authority [18].
Based on these data, it is possible to calculate the

mean incremental net monetary benefit (μΔB) and the

common variance of individual net monetary benefits in
each group (σ2B).

μΔB ¼ 0:04� 20 000− −168ð Þ ¼ 968€

σ2B ¼ 20 0002 � 0:122 þ 2 1002−2� 20 000� 0:1
� 0:12� 2 100

¼ 9 162 000 €2

The cost of including an additional participant is fixed
and depends on the study design. In this case, Cp was
2257.25 €.
The EVPIn calculated for a range of different n are pre-

sented in Table 1. As n increases, the variability of ΔB is
reduced, resulting in an increase of the cost-effectiveness
probability (the probability of ΔB being positive when its
point estimate is positive) and a decrease of EVPIn. Fur-
thermore, the larger the sample size, the slower the de-
crease in EVPIn. As long as the EVPIn decrease is higher
than Cp, there is a benefit of including more participants.
When this decrease is lower or equal to Cp, it is no longer
worthwhile to include additional participants.
Figure 1 shows the expected gain from including an

additional participant in each group, according to total
sample size (n). This gain, presented on a logarithmic
scale, is estimated through the difference between the
EVPIn decrement and the cost of including two add-
itional participants:

Expected gain ¼ EVPIn−EVPInþ2ð Þ−2Cp

As shown in Fig. 1, the optimal sample size is reached
when any additional inclusion makes this expected gain
negative, or when the cost of including two additional
participants (2Cp) becomes equal or higher than the
value of the information gathered through these inclu-
sions (EVPIn − EVPIn + 2).
The optimal sample size calculated through our

method is n=328, compared to n=306 using a test
statistic-based method with a 80% power and a 5% alpha
risk. For n=328, EVPIn is 135,950 €, and the
cost-effectiveness probability reaches 99.81%.

Effect of variation of the parameters’ values on n
Given the complex relationship between all parameters,
variation of the sample size when changing parameters’
values cannot be easily predicted. Figure 2 shows total
sample size variations as we vary one by one the param-
eters of the sample size calculation above: λ, σC, σE, ρ,
the size of the target population (N), the time horizon
(k), the discount rate (τ), the cost of one inclusion/fol-
low-up, ΔE, and ΔC. The variation range for each of
these parameters is limited to most plausible values. To
facilitate interpretation, variations of σC, σE, ΔE, and ΔC
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values range from 0.1 to 10 times the values used in the
base-case calculation.
These simulations show which parameters’ inflation

increases the sample size (σC, σE, N and k) while other
parameters’ inflation decreases it (Cp, τ and ρ). Particular
attention should be given to the impact of the value
given to λ on the sample size calculation results. Firstly
and as shown in Fig. 2, when the value of λ increases the
sample size can either increase or decrease. Secondly,
and as shown by Glick using a test statistic-based
method, the impact of a variation of λ is different ac-
cording to the value of the other parameters.
To further illustrate our sample size calculation method,

we took the example of three cost-effectiveness studies
currently conducted with the support of our clinical epi-
demiology unit, and sponsored by the Bordeaux

University Hospital. These three studies have been funded
by the French Ministry of Health. The hypotheses used
for calculating the sample size of these cost-effectiveness
studies are presented in Tables 2 and 3. Lost to follow-up
were not considered in these calculations. Sample size cal-
culation results using the method proposed by Glick [10]
are reported in Table 2.
FEMCAT (Clinicaltrials.gov identifier: NCT01982006)

is a multicenter, randomized, pragmatic clinical trial. Its
aim is to compare the cost and effect of femtosecond
laser-assisted cataract surgery to phacoemulsification
cataract surgery. The primary economic endpoint is the
cost per complication avoided at 3 months after surgery
from the perspective of the French National Health In-
surance. The resulting sample size calculated through
our method is 1233 eyes per group (Table 3).

Table 1 Cost-effectiveness probability, EVPIn, and expected gain for an additional inclusion according to total sample size (n)

Total Sample
size (n)

Cost-effectiveness
probability (%)

EVPIn (€) EVPI decreasing for an
additional inclusion in
each group (€)

Expected gain for an
additional inclusion in
each groupa (€)

100 94,51 10,365,256 480,869 + 476,355

200 98,81 1,289,276 47,695 + 43,181

300 99,72 216,451 7248 + 2734

328 99,81 135,950 4434 −81

400 99,93 41,514 1312 − 3203

500 99,98 8595 262 − 4253

600 99,99 1816 55 − 4460
a The monetary gain for an additional inclusion in each group (i.e. 2 participants in this example) is the difference between the EVPIn decrement and the costs
induced by the inclusion and follow-up of two additional participants in the study (2257.25 €/participant in this example)

Fig. 1 Expected gain from including an additional participant in each group according to the sample size (n) (logarithmic scale)
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INTACT (Clinicaltrials.gov identifier: NCT02599389) is
a multicenter triple-arm randomized clinical trial which
primary objective is to estimate the incremental
cost-effectiveness ratio of two innovative strategies for the
treatment of femoropopliteal artery in-stent restenosis:
drug-coated balloons (paclitaxel - antimitotic) used alone
or in association with the Excimer Laser, both groups be-
ing compared to uncoated balloons. The primary endpoint
is the cost per Quality adjusted life-years (Qaly) gained at
18 months from the perspective of the French Health Sys-
tem. The sample size calculation was based on the com-
parison of drug-coated balloons versus uncoated balloons,
a comparison that would yield the lowest difference in ef-
fect. The result of the sample size calculations using our
method is 75 individuals per group (Table 3).

OXYNAT (Clinicaltrials.gov identifier: NCT03078218)
is a multicenter controlled before and after study where
the cost-effectiveness of pulse oximetry (after), as com-
pared to current medical examination (before), is esti-
mated in the screening of critical congenital heart defects
in asymptomatic newborns. The primary endpoint is the
cost per complication avoided within a time horizon of
12 months of life from the perspective of the French
Health System. The value of the ceiling cost-effectiveness
ratio (λ) is 100,000 €/avoided complication because death
accounts for 20% of complications of critical congenital
heart defects. The resulting sample size calculated with
our method is 12,951 newborns per group (Table 3).
Figure 3 shows how widely and differently the sample

size can vary for these 3 studies according to the value

Fig. 2 Influence of variation of parameters’ values on total sample size (n)
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of the ceiling cost-effectiveness ratio (λ). On the x-axis,
λ values range from 0 to 200,000 €/unit of effect (QALY
or avoided complication). The sample size may quickly
reach a maximum for the lowest values of λ then de-
crease just as quickly to reach a plateau from 25,000 to
200,000 €/avoided complication as for the FEMCAT
study. The sample size may increase with λ following a
logarithmic shape with stair steps as for the INTACT
study. Or it may increase and decrease within a wide
range of λ values as for the OXYNAT study.
What may explain this variability is firstly that, in the

INTACT study, the difference in costs is negative and
the difference in effect is positive. Theoretically, the
maximum sample size may be reached for a negative
value of λ. Another explanation is that both the mean
incremental net monetary benefit (μΔB) and the variance
of the net monetary benefit (σ2B) are a function of λ. This
induces a particularly complex interrelationship between
the parameters needed for our calculation method. Add-
itionally, the criterion defining the optimal sample size
in our method ((EVPIn − 2 − EVPIn ) > 2Cp AND EVPIn −
EVPIn + 2 ≤ 2Cp) explains why the sample size may in-
crease following stair steps shape according to λ.

Discussion
Our sample size calculation method is perfectly coherent
with the decision theory underpinning cost-effectiveness

evaluation. It is based on the EVPI which is the first step
of a value of information analysis. This criterion is crit-
ical as its result helps determining whether further re-
search is necessary or not to reduce the uncertainty in
the estimation of the incremental net monetary benefit.
Cost-effectiveness studies typically intervene after (or

within) efficacy trials, at the end of the process of evalu-
ating a new intervention. No other trial with the same
comparators and targeting the same population should
be undertaken after this type of trial. With our sample
size calculation method, additional participants should
be recruited as long as the expected value of information
brought by their inclusion exceeds the cost of their in-
clusion. Once the sample size calculated through our
method has been reached, assuming that the calculation
hypotheses are exact, any supplementary inclusion in the
same or in a new study aiming at answering the same
question would not be worthwhile.
As it is based on the EVPI, our method takes into ac-

count the size of the target population. All other param-
eters remaining unchanged, the lower the size of the
target population, the lower the EVPIn, and the lower
the resulting sample size. This is of particular added
value in the case of rare diseases where patients’ recruit-
ment in clinical trials is a major issue [19].
We only consider a Normal distribution of the incre-

mental net monetary benefit in our sample size calcula-
tion method. It is possible that a log-normal or a gamma

Table 3 Additional parameters needed for a sample size calculation method based on the value of information theory and resulting
sample size per group with our method

Study Annual size of the
target population

Time horizon
(years)

Discount
rate

Cost of an additional
participant in the study

Sample size per
group through
our method(N) (k) (τ) (Cp)

FEMCAT 670,000 10 0,04 1000 1233

INTACT 20,000 10 0,04 3606 75

OXYNAT 800,000 10 0,04 35 12,951

Table 2 Parameters needed for a sample size calculation method based on a test statistic and resulting sample size per group with
the method proposed by Glick

Study Difference in
mean costs (€)

Difference in
mean effectiveness

Ceiling cost-
effectiveness
ratio

Standard
deviation
of costs (€)

Standard deviation
of effectiveness

Coefficient of correlation
between the difference in
costs and the difference in
effectiveness

Sample size per
group through
the method
proposed by Glick a

(ΔC) (ΔE) (λ) (σC) (σE) (ρ)

FEMCAT 312 0,07 16,750 €
/complication
avoided

100 0,41 0 1000

INTACT − 725 0,075 20,000 € /QALY 800 0,24 0 75

OXYNAT 17,6 0,00048 100,000 €
/complication
avoided

1008 0,00078 0 17,350

QALY quality-adjusted life year
awith a 80% power and a 5% alpha risk
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distribution would be more appropriate and have an im-
pact on the resulting sample size [20]. Further develop-
ments of our method and our E-BASS R package could
integrate such distributions.
Another possible drawback of our method is the add-

itional number of parameters required for estimating the
sample size compared to methods based on
test-statistics. They refer to parameters required for esti-
mating the EVPI: the discount rate (τ), the size of the

target population (N), the time horizon (k), and the costs
of the trial. Hypotheses regarding the value of these pa-
rameters have to be made anyway for the recommended
value of information analysis of a cost-effectiveness trial.
Additionally, estimating the cost of a trial is mandatory
in the process of setting it up. Furthermore, there is little
uncertainty surrounding these four parameters, and the
variations in these parameters’ values change the result-
ing sample size in limited and predictable ways.

Fig. 3 Impact of variation of λ on sample size according to three ongoing cost-effectiveness studies described in Tables 2 and 3
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A parameter that may have a great impact on the sample
size is the ceiling incremental cost-effectiveness ratio (λ).
The way variations in the values of λ affect the resulting
sample size is hardly predictable. Our EBASS R package al-
lows a quick calculation of sample sizes according to a
range of plausible values of parameters required for the cal-
culation. This gives the opportunity to choose a conserva-
tive sample size when the parameters’ value is uncertain.
We did not consider the question of optimal allocation

ratio, which is fixing the sample size and varying the al-
location ratio to yield the lowest EVPIn. This is not the
aim of our sample size calculation method. Indeed, we
consider the allocation ratio as a parameter used in the
calculation, as are mean differences in cost and effect
and their standard deviations.
An unbalanced allocation ratio is usually decided with

regards to ethical considerations, when the effectiveness
of the innovation has already been demonstrated (this
may be the case for cost-effectiveness trials that usually
come at the end of the evaluation process); or in order
to improve recruitment, in trials of potentially great
public health benefit, where patients may be reluctant to
have only 50% chance of receiving the innovation. There
are also cases where widespread knowledge about the
control intervention exists and more understanding is
needed about the innovation. All these situations are
taken into account before sample size calculation. We
did not see the allocation ratio as an output of our
method. However, our methods could be adapted to cal-
culate an optimal allocation as well as an optimal sample
size.
Our method follows the same principles than the one

proposed by Willan et al. which uses a Bayesian ap-
proach [12], while we use a frequentist approach.
When no observed prior distribution of the incremen-

tal net monetary benefit is available and that sample size
calculations must be computed on hypothesized cost
and effect differences, and on hypothesized variance in
cost, effect, and their covariance [9, 10], a
non-informative prior may be used to run the Bayesian
approach. However, in this case, the Bayesian method
proposed by Willan et al. and our method may theoret-
ically yield the same sample size. Indeed, in the method
proposed by Willan et al., the posterior variance of the

incremental net monetary benefit is given by v1

¼ 1
.

ð1
.

v0
þ n=2

.

2σ2B
Þ [12]. If the prior variance (v0)

tends towards infinity (i.e.: a non-informative prior),
1
.

v0
would tend towards 0 and v1 would be equal to

4σ2B
.

n
, which is the expected variance of the

incremental net monetary benefit in a planned study of
size n in our method.
We think that there is no added value of a Bayesian

method in such circumstances.
The results of a decision model or a previous

cost-effectiveness study could still be used to run our
method. In these situations where a decision could be
made based on the results of such studies, the calcula-
tion of the size of the target population should take into
account the number of individuals to be recruited in the
planned cost-effectiveness study and the time the study
accrual, follow-up and analysis, as proposed by Ecker-
mann et al [21]

Conclusions
Value of information is now recognized as a reference
for interpreting cost-effectiveness data [5]. Only two
sample size calculation methods for cost-effectiveness
studies are coherent with this recommendation: ours
and the Bayesian framework developed by Claxton [2],
and more recently reused by Willan et al [2, 12]. The
Bayesian approach seems the most accurate sample size
calculation method to use for cost-effectiveness studies
when an observed prior distribution of the incremental
net monetary benefit is available, such a situation being
rare. Our method seems more appropriate when param-
eters’ values required for the calculation have to be
hypothesized.

Additional file

Additional file 1: Adaptation of our sample size calculation method to
the case of unequal variance of costs and effect in each group, and the
case of unequal group size. This additional file describes how our sample
size calculation method can be used in the case of unequal group size
and unequal variances of costs and effectiveness expected in potential
samples. (DOCX 16 kb)
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