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During the flow of non-Newtonian fluids in porous media, the relationships between macroscopic quan-
tities are governed by extremely complex microscopic fluid dynamics resulting from solid-fluid interac-
tions. Consequently, the Darcy-scale viscosity exhibited by a shear-thinning fluid depends on the
injection velocity, contrarily to the case of Newtonian fluids. In the present work, pore network modelling
is used to investigate the relationships between local and macroscopic viscosities during the flow of
shear-thinning fluids in 3D porous media. Special efforts are devoted to 1) identifying the influence of
the viscosity exhibited by the fluid within the constrictions of the preferential flow paths on the value
of Darcy-scale viscosity and 2) proposing an analytical expression to upscale viscosity from the local vis-
cosity values. To go further, the reduction in average hydraulic tortuosity stemming from the directional
nature of shear-thinning behavior in 3D porous media will also be quantified. The results of the present
study show that Darcy-scale viscosity can be accurately calculated as the flow-rate weighted average of
local viscosities in the investigated media. Moreover, the velocity maps provided by the proposed pore
network flow simulations are suitable to assess hydraulic tortuosity reduction as compared to the flow
of a Newtonian fluid.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Shear-thinning fluids are ubiquitous in environmental, indus-
trial and biological environments. These fluids are mixtures in
which two phases coexist, and they are therefore structured to
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varying extents. When a continuum and homogeneous description
is assumed, shear-thinning fluids are mainly characterised by a
space-averaged viscosity which is dependent on the value of the
applied shear-rate. Such dependence is explained by the variations
in the dispersion of the structural units due to increased orienta-
tion, stretching deformation or disintegration when shear rate is
increased [1]. Some examples of shear-thinning fluids are paints,
blood, ketchup, foams and polymer solutions.

Numerous important industrial applications involve the injec-
tion of shear-thinning fluids through porous media [2]. For exam-
ple, polymers such as xanthan gum and synthetic polyacrylamide
in its partially hydrolyzed form (HPAM) are usually added to aque-
ous solutions to improve the macroscopic sweep efficiency in soil
remediation operations [3–5]. This is achieved due to the improve-
ment in the viscosity ratio between the injected and displaced flu-
ids provided by these additives. Apart from underground
operations, understanding the circulation of blood and interstitial
fluid (which are shear-thinning fluids) through the pores of bone
tissue during transport of nutrients to the bone cells and evacua-
tion of waste is also expected to shed light on several biomedical
problems [6,7].

Injecting a complex fluid through a porous medium generates a
wide diversity of local viscosities. In particular, the variability in
terms of morphology, topology and characteristic lengths of the
pores severely affects the distribution of local viscosities and veloc-
ities [2]. Therefore, the local interactions between the fluid and the
medium microstructure govern the pressure losses throughout the
medium and affect macroscopic flow. For most situations, Darcy
viscosity can only be related to local viscosities by using empirical
shift factors [4,5,8]. However, the shift factors approach fails to
provide reliable relationships between local and macroscopic vis-
cosities for shear-thinning fluids exhibiting Newtonian plateau vis-
cosities at the very low and very high shear rates [9,10], which
restricts the interest of this method mainly to the case of simple
power-law fluids. Without using any shift factor, Eberhard et al.
[11] derived a semi-analytical expression for the local viscosity
profile of a Carreau fluid. Their approach required estimating a
unique characteristic capillary radius for a given porous medium.
Then, the velocity and shear rates profiles were determined in such
a capillary and the Darcy viscosity was estimated by averaging the
viscosity profile over the cross section. For a pack of equal spheres,
the authors defined the characteristic radius as being the maximal
radius of the void space between three beads that are in contact
with each other. This model was experimentally validated only
within the transition region close to the low-shear-rates viscosity
plateau with some reservations imposed by the high uncertainty
of the low-shear-rate measurements.

The preceding methods do not provide the distribution of vis-
cosities within the pores space. In contrast, numerical simulations
could potentially be used to achieve this goal. In this regard, Morais
et al. [12] performed pioneer Direct Numerical Simulations (DNS)
of the flow of shear-thinning fluids, with and without yield stress,
through small samples of a 3D porous medium of extremely high
porosity generated by a Swiss-Cheese model. The results of the
preceding work showed that the interactions between the disor-
dered microstructure, the fluid rheological properties, and the iner-
tial effects accounted for the enhancement of the macroscopic
hydraulic conductance at intermediate values of Reynolds number.
However, neither local viscosity distributions nor the tortuosity of
the streamlines were characterized. DNS were also used in the past
to show that shear-thinning fluids exhibit high values of local vis-
cosity in the microscopic conduits of the porous media in which
the pressure gradient is low, which results in flow being diverted
from these zones. This is the case of the pore channels that are ori-
ented nearly perpendicularly to the main flow direction On this
topic, previous research works showed that the average macro-
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scopic tortuosity of flow paths was lower during flow of shear-
thinning and yield stress fluids as compared to the flow of a New-
tonian fluids, both in rough-walled fractures [13] and 2D porous
with varying levels of microstructural disorder media [14]. How-
ever, the conclusions of these works have not yet been extended
to the case of 3D porous media, which is mainly due to the
demanding requirements in terms of computational resources to
perform DNS for the flow of complex fluids.

Sochi [15] reviewed the four main approaches for describing the
flow of non-Newtonian fluids through porous media: continuum
models, bundle of tubes models, numerical methods, and pore-
scale network modeling. This author concluded that, despite being
unable to account for all microstructural complexities, pore net-
work modeling is the most efficient choice. Indeed, pore network
approach provides accurate predictions of experimental measure-
ments in many important applications [15,16], including blood
flow in arteries and tissues, food processing and environmental
engineering. The advantage of using pore network models in flow
simulations is double. First, the demanding computational cost of
DNS are drastically reduced, which is particularly important in
the presence of non-linearities as those arising from shear-
thinning behavior. Moreover, the use of regular pore shapes for
which the local viscosity can be analytically expressed as a func-
tion of the pressure gradient allows for the definition of an equiv-
alent viscosity in each pore.

López et al. [9] extracted pore networks from artificially gener-
ated 3D images of sand packs and sandstones and proposed a flow
model to predict Darcy-scale viscosity for the flow of truncated
power-law fluids. Their predictions did not involve the use of any
adjustable parameter and proved to be accurate within the
power-law region when compared with experiments. Neverthe-
less, divergences between predictions and experiments were
observed in the range of Darcy viscosities close to the Newtonian
viscosity plateaus, which was potentially due to the inability of
the truncated power-law model to represent the bulk rheology of
real shear-thinning fluids in the corresponding range of shear rates.
A similar approach was used by Sochi and Blunt [17] and Sochi [18]
to incorporate the effects of yield stress in the pore network flow
simulations, leading to variable agreement between numerical
and experimental results. Such variable agreement was expected
to be improved by considering particle adsorption on the pore
walls and other neglected effects. As an alternative to typical cap-
illary tube networks, Balhoff and Thompson [19] performed pore
network flow simulations of Ellis and power-law fluids through
packs of spheres using the original geometry of pore throats and
obtained satisfactory agreement with experiments. In their
method, approximate expressions were needed for the flow
through the real throat geometries, which were obtained by per-
forming DNS. Furthermore, single and multiphase flows of shear-
thinning fluids in 2D pore networks consisting of regular geome-
tries were numerically simulated by Tsakiroglou [20,21]. The
author reported good agreement in many configurations between
the predictions of capillary pressure curves, relative permeability
and Darcy velocity vs. pressure gradient relationships and the
experimental measurements. Other authors also obtained good
agreement between Darcy viscosity predicted from 2D [22] and
3D pore network flow simulations [23] and the experimentally
measured values. Nevertheless, neither in this case were the distri-
butions of local shear viscosities and their relationship with Darcy
viscosity addressed. It was only recently that Eberhard et al. [24]
presented an experimental method to obtain the spatial distribu-
tion of local viscosities of non-Newtonian fluids within the pores
in micromodels. This was achieved by using high resolution image
velocimetry to map local shear rates, and the results showed that
the injection-velocity dependent variability of local viscosities
affects flow channelization and transport processes.
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Modelling the relationships between pore-scale flow and
macroscale quantities is required to closely simulate the move-
ment of complex fluids at larger scales. However, to the best
knowledge of the authors, the value of Darcy-scale viscosity has
not been upscaled from the distribution of local viscosities
throughout the whole pore network of a 3D porous medium in
any previous literature work. Motivated by this gap, the purpose
of the current work is to develop a method for predicting the value
of the macroscopic apparent viscosity from the distribution of local
viscosities during flow in unconsolidated porous media. With this
objective in mind, pore network flow simulations are presented
in which shear-thinning fluids with realistic rheological behavior
are injected through different pore networks extracted from artifi-
cial and natural porous samples. The computed distributions of
microscopic flow rates and the extracted pore characteristic
lengths will be used to compute the viscosities in the pore con-
duits. Then, a weighted average expression allowing for viscosity
upscaling will be deduced and validated from the comparison of
the obtained distributions of local viscosities to the macroscopic
viscosity values. Furthermore, the dependence of tortuosity on
the injection velocity will be numerically investigated for the first
time during the flow of complex fluids in 3D unconsolidated
media, by using the velocity maps provided by the pore network
flow simulations as input.
2. Theoretical considerations: bulk, effective and Darcy
viscosities.

The dependence of shear viscosity on shear rate during steady
simple shear flow of shear-thinning fluids, including semi-dilute
polymer solutions and biologic fluids, is frequently represented
by the empirical Carreau model [25]:

l� l1
l0 � l1

¼ 1þ k _cð Þ2
h in�1

2 ð1Þ

In this expression, l is the shear viscosity, _c is the shear rate, k is
the longest relaxation time, n is the flow index, l0 is the low shear
rate Newtonian viscosity plateau value and l1 is the high shear
rate Newtonian viscosity plateau value, with l1 being very close
to the viscosity of the solvent in most cases [3]. In the case of poly-
mer solutions, the values of l0, k and n mainly depend on the poly-
mer concentration Cp, and such shear-thinning behaviour stems
from the alignment and concentration of the polymer macro-
molecules in the solution. Indeed, higher shear rates result in the
macromolecules being more properly aligned with the direction
of flow, which reduces the drag between fluid layers and, and con-
sequently the viscosity exhibited by the polymer solution. Contrar-
ily to the simple power-law model, Carreau’s equation reliably
represents the transitions from the intermediate shear rates region
with shear-thinning behavior to the low shear rate and high shear
rate Newtonian viscosity plateaus, which are observed both during
the rheometric measurements of the bulk rheology and during
flow in porous media [8]. Moreover, Carreau’s model is based on
molecular network theory and has a firm theoretical basis [26].

The truncated power-law model has also been widely used in
the literature [9,13,23], which is expressed as:

l ¼ Max lT;1;Min cT _cnT�1;lT;0

� �h i
ð2Þ

where lT;0 and lT;1 are the low shear rates and high shear rates
viscosity plateaus, cT is the consistency and nT is the shear-
thinning index. This model allows for the development of simple
analytical solutions to relate effective viscosity to pressure drop
during the flow of a non-Newtonian fluid in a capillary, which is
not the case of Carreau fluids despite recent progress
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[11,15,27,28]. Nonetheless, whereas the truncated power law
approximates reasonably well Carreau model under low shear
rates, the differences are important at the highest shear rates [3].

From Eq. (1), it can be deduced that in the region far from the
low shear viscosity plateau, i.e., when _c � 1

k, Carreau’s law can be
expressed as follows [3,29]:

l � l1 þ l0 � l1
� �

kn�1 _cn�1 ¼ l1 þ c _cn�1 ð3Þ
To take into account the viscosity plateau at the lowest shear-

rates, Eq. (3) can be modified as:

l ¼ Min l0;l1 þ c _cn�1� � ð4Þ
This simplified version of Carreau model can be efficiently

implemented in the pore network simulations, as will be explained
in subsection 3.3.

As mentioned above, no analytical expression relating the flow
rate or pressure gradient to the effective viscosity during the flow
of a Carreau fluid through a cylindrical capillary is available. Con-
sequently, the following empirical expression will be considered
to approximate the effective viscosity of the fluids exhibiting the
dynamic bulk viscosity given by simplified Carreau model (Eq. (4)):

leff ¼ Min l0;l1 þ c
3nþ 1
4n

� �
rDP
2cL

� �n�1
n

 !
ð5Þ

Eq.(5) is obtained by introducing the effective shear rate exhib-
ited by a power-law fluid during its flow through a cylinder

_cpower�law ¼ c 3nþ1
4n

� �
rDP
2cL

� �1
n in Eq.(4). It may be noted that the previous

equation reduces to the exact analytical expression of leff for
power-law fluid flow through a cylindrical capillary when l1 = 0
and l0 ! 1. This expression also ensures that the Newtonian vis-
cosity plateaus are attained at the lowest and highest shear rates.
Similar empirical approximations of leff were also used in the
works of López [3], Perrin et al. [22] and Shende et al. [28]. In order
to assess the accuracy of the approximations of leff provided by Eq.
(5), these were compared to the results of direct numerical simula-
tions of the creeping flow of fluids with different values of c and n
through a cylindrical capillary. The average and maximum errors
were close to 7% and 12%, respectively, for all the rheological
parameters tested in the simulations over four orders of magnitude
of the imposed pressure gradient. Therefore, Eq. (5) will be used in
subsection 3.3. to calculate the effective viscosity value in each
cylindrical conduit of the pore networks.

For the single-phase creeping flow of incompressible fluids
through a porous medium at the macroscopic scale, Darcy viscosity
lD, also known as apparent viscosity, can be calculated from
Darcy’s law as:

lD ¼ �KA
Q

rP ð6Þ

with K being the intrinsic permeability of the porous medium, A
being its cross-sectional area, Q being the injection flow rate and
rP being the pression gradient.

3. Numerical simulations

3.1. Investigated porous media and fluids

The freely available digital 3D image of a pack of identical
spheres obtained by Finney [30,31] was considered in the current
analysis. The pack of spheres used by the latter author was gener-
ated by shaking together monodisperse 1/4-in-diameter steel ball-
bearings, and the 3D image was optically obtained using a special
marking technique. Discretization of the digital image was per-
formed using cubic voxels of 0.04 length (in units normalized by
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sphere radius). The total size of the image was 500 � 500 � 500
voxels. The same image was scaled to each of the sphere diameters
ds considered in this work (1 mm, 3 mm, 4 mm and 5 mm) using
ImageJ software. Moreover, a poorly sorted unconsolidated fluvial
sand pack from southern Australia was also investigated. This
medium was imaged using an X-ray micro-CT device by Sheppard
and Prodanovic [32] and is also freely available. The 3D image of
the sand pack is displayed in Fig. 1(a). The voxel size was
9.184 mm and the total size of the image was 512 � 512 � 512
voxels.

In order to reproduce realistic conditions in the current numer-
ical experiments, the rheological parameters of the three investi-
gated shear-thinning fluids, listed in Table 1, were chosen to be
equal to those used in the experimental work presented by Rodrí-
guez de Castro and Radilla [33]. These authors injected three differ-
ent xanthan gum solutions through a set of 4 packs of spherical
Fig. 1. Pore network model of the investigated sand pack. (a) Input 3D image of the
sand pack for the extraction of the pore network [32]. (b) Image of the network as
extracted from the 3D digital image. Warmer colors correspond to greater
equivalent diameters of the pore bodies and pore throats. (c) Body size distribution
and throat size distribution of the conducting throats.
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beads. The shear-rheology of these polymer solutions was shown
to be well represented by the rheological model expressed by Eq.
(4). Given that l0 was not characterized by the preceding authors,
a value of l0 = 100 Pa s were used in the present numerical simu-
lations. As can be deduced from Table 1, an increase in the polymer
concentration Cp leads to a more pronounced shear-thinning beha-
viour (lower values of n) and highest values of the consistency. In
the context of biomedical applications, xanthan gum solutions
have been traditionally used in the literature as blood analog fluids
[34,35].

The Carreau model parameters for a given fluid can be obtained
by following the experimental procedures described in the litera-
ture [29,33]. In these previous works, a stress-controlled rheome-
ter equipped with a cone-and-plate geometry was used. The
applied shear stresses were linearly sampled from 0 to a maximum
value producing a shear rate of approximately 1000 s�1. Then, a
least squares method was used to fit the shear stress vs. shear rate
experimental data to Carreau’s model (Eq. (1)).
3.2. Pore network extraction

Pore network modeling allows for the reduction of the compu-
tational resources required for the simulation of flow in porous
media at the pore scale as compared to direct numerical simula-
tions while ensuring reasonable accuracy [36]. The digital images
of the packs of spherical beads and the sand pack presented in
the preceding subsection were used as input for the extraction of
equivalent pore networks consisting of spherical pore bodies con-
nected by cylindrical throats. In the procedure followed to extract
such a simplified geometry, the subnetwork of the oversegmented
watershed (SNOW) algorithm presented by Gostick [37] was used.
SNOW algorithm starts by extracting the distance map of the void
spaces, which is subsequently filtered through the exclusion of the
peaks on saddles and plateaus. Next, the peaks that lie very near
each other are merged, thus generating a set of markers. These
markers are used as inputs to a marker-based watershed algorithm
that finds the basins of the distance map, yielding the segmenta-
tion of each pore region. SNOW algorithm is included in PoreSpy
[38], an open-source toolkit for quantitative post-processing of
porous media digital images. By using the preceding procedure,
the pore networks displayed in Fig. 1(b) and Figure 2(a)were
obtained from the digital images. In the case of the pack of spher-
ical beads, the pore networks corresponding to different sphere
diameters (1 mm, 3 mm, 4 mm and 5 mm) were also extracted.
Then, the porosities of both types of porous media, their perme-
abilities, their tortuosity values and some essential features of their
microstructure were computed from the extracted pore networks.
These characteristics are listed in Table 2 together with the dimen-
sions of the analyzed samples. It should be noted that the body and
throat dimensions listed in this table are given in terms of the
equivalent diameters. The equivalent diameter of a pore body is
equal to the diameter of a sphere with same volume as the pore,
while the equivalent diameter of a throat is equal to the diameter
of a circle with same area as the throat. The distributions of body
equivalent diameters and throat equivalent diameters are repre-
sented in Fig. 1(c) for the sand pack and in Fig. 2(c) for the pack
of 4 mm spheres. The maxima shown in the Fig. 1(c) and the
Fig. 2(c) represent the modal classes of the throat and body sizes.
3.3. Flow simulations

It must be mentioned that establishing relationships between
the local viscosities at the pore scale and the efficient viscosity at
the Darcy scale is not straightforward in the presence of
microstructural heterogeneity. Indeed, Darcy-scale viscosity



Table 1
Shear-rheology parameters of the investigated fluids, which correspond to those of the xanthan gum solutions used by Rodríguez de Castro and Radilla [33] in their laboratory
experiments. Given that l0 was not characterized by the preceding authors, a value of l0 = 100 Pa s was used in the present numerical simulations.

Fluid cðPa:snÞ n l1ðPa:sÞ l0ðPa:sÞ
200 ppm xanthan gum solution 0.0048 0.66 0.0011 100
500 ppm xanthan gum solution 0.024 0.58
700 ppm xanthan gum solution 0.042 0.52

Table 2
Dimensions, porosities, permeabilities, tortuosities and essential microstructural
features of the investigated pore networks. 500 ppm at the highest u (50000 Pa pour
sand pack).

Sample Pack of spheres
(4 mm)

Sand pack

Dimensions [mm] 40 � 40 � 40 4.70 � 4.70 � 4.70
e [–] 0.36 0.36
K [m2] 7.07 � 10-9 4.97 � 10-11

TN [–] 1.55 1.59
Mean body diameter [m] 1.93 � 10-3 1.73 � 10-4

Standard deviation of body
diameters [m]

6.35 � 10-4 7.92 � 10-5

Ratio of body size standard deviation
to the mean

0.329 0.458

Mean throat diameter [m] 8.65 � 10-4 7.89 � 10-5

Standard deviation of throat
diameters [m]

5.42 � 10-4 4.52 � 10-5

Ratio of throat size standard
deviation to the mean

0.627 0.573

Ratio of mean body size to mean
throat size

2.23 2.19

Average coordination number 6.75 6.94
Average coordination number

(excluding boundaries)
6.37 6.51

Fig. 2. Pore network model of the investigated pack of spherical beads with ds = 4-
mm. (a) Image of the network as extracted from the 3D digital image. Warmer
colors correspond to greater equivalent diameters of the pore bodies and pore
throats. (b) Image representing the conducting and stagnant throats for the 700-
ppm xanthan gum solution flowing at u = 3.67 � 10-2 m/s. Black color represents
pore bodies, red color represents conducting throats and white color represents
stagnant throats. (c) Body size distribution and throat size distribution of the
conducting throats. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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cannot be accurately calculated from direct volume-averaging of
the local viscosity values over the whole pore space, given the exis-
tence of interconnected preferential flow paths with varying cross-
sections and the different viscosity values exhibited by the non-
Newtonian fluid within the cross-section of a single pore. The
approach followed in the current study consisted in reducing the
whole range of local viscosities exhibited by the fluid within a sin-
gle flow conduit to a unique efficient viscosity value. This was
made possible by taking advantage of the regular geometries dis-
played by the extracted pore network, for which analytical solu-
tions exist allowing for the modelling of the flow rate vs.
pressure gradient relationships.

In the present pore network modelling approach, the porous
matrix is considered as being a network of conduits [39,40]. Then,
1D analytical solutions of the relevant transport equations are
solved inside the network by using finite difference schemes
[41]. As reviewed by Blunt et al. [42], despite this simplification,
many aspects of single and multiphase transport can be accurately
predicted by using pore network modelling simulations. In order to
perform the flow simulations, the files containing the geometrical
information of the pore networks were first imported using
OpenPNM [41].

If the simple case of the creeping flow of an incompressible fluid
flowing through a cylindrical duct of cross-sectional area Ai and
length Li is considered, the hydraulic conductance gi can be
expressed using Hagen-Poiseuille law:

gi ¼
1
8

A2
i

pLi

 !
ð7Þ

In the currently considered networks, each conduit is composed
of a series combination of 1/2 body - full throat � 1/2 body. The
ratio between the pressure difference (pi – pj) and the flow rate
qij through a conduit connecting the pores i and j will be named
Gij, and can be calculated as:
450
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Gij ¼
leff;i

giei
þ leff ;ij

gijeij
þ leff ;j

gjej

 !�1

ð8Þ

with gi, gj, gij being the hydraulic conductances of the upstream
half pore body, the downstream half pore body, and the pore
throat, respectively. Analogously, leff ;i, leff ;j and leff ;ij are the effec-
tive shear viscosities of the fluid in the upstream half pore body,
the downstream half pore body, and the pore throat, respectively,
and ei, ej. and eij are the corresponding shape factors. The following
expression, based on Eq. (5), is used to calculate the values of leff ;i,
leff ;j and leff;ij.

leff ;k ¼ Min l0;l1 þ c 3nþ1
4n

� � ffiffiffiffi
Ak
p

p
DPk

2cLk

� �n�1
n

" #
with k = i, j, ij (9)

In equations 9, DPi represents the pressure drop between the
center of the pore body i and the inlet of the throat ij, DPj repre-
sents the pressure drop between the outlet of the throat ij and
the center of the pore body j, and DPij is the pressure drop through
the pore throat.

For the calculation of gi, gj and gij, and subsequently leff ;i, leff ;j

and leff ;ij (equations (7) to (9)), the cross-sections of the conduits
were considered to be circular, with varying diameter. The value
of the cross-sectional area throughout each 1/2 body was calcu-
lated using the inscribed diameter of the pore body, and the
cross-sectional area throughout each throat was equal to the
boundary area between the connected pores, as provided by Pore-
Spy [38]. This boundary area corresponds to the surface of the
intersection between the dilated volumes of two neighbor pores
as provided by the SNOW algorithm [37]. The throat length Lij
was equal to the center-to-center distance between pores less
the inscribed radius of each neighboring pore body, and the body
lengths Li and Lj were equal to the inscribed radius of the con-
nected pore bodies. The shape factors were introduced in Eq. (8)
to take into account the non-circularity of the pore conduits, and
are calculated in OpenPNM [41] by following the procedure
described in the work of Akbari et al. [43]. In equations (9) to
(11), the pressures at the inlet and the outlet of the throat obtained
through interpolation of the pore pressures were used.

The flow rate through a given conduit qij can be computed by
using the following expression:

qij ¼ Gijðpi � pjÞ ð10Þ
with pi and pj being the pressure in the pore bodies i and j

located at the inlet and the outlet of the throat, respectively. There-
fore, the mass conservation equation over each pore i of the pore
network is expressed as:

XZ
j¼1

Gij pi � pj

� � ¼ 0 ð11Þ

where Z is the number of pores and Gij is equal to zero when the
pores i and j are not directly connected. The pressure field across
the whole network can be calculated through application of the
mass conservation equation to all pores with appropriate inlet
and outlet boundary conditions. The system of equations was
solved using the sparse solver included in the open-source soft-
ware for mathematics, science, and engineering SciPy [44]. When
applying the solver algorithm, the results obtained from a prelim-
inary simulation with a Newtonian fluid were used as initial guess
in each case for the computation of local viscosities. In the present
simulations, two external faces of the investigated cubic volumes
represented in Fig. 1(b) and 2(a) having their normal vector ori-
ented in the same direction were chosen as the inlet and the outlet
of the flow. Also, the value of the pressure of the pores located at
the inlet face of the network was imposed as controlled boundary
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condition, while the pressure of the pores at the outlet face was
kept constant. On this topic, Balhoff et al. [45] compared different
numerical methods in terms of their stability, convergence and
computation times when applied to simulate the flow of shear-
thinning fluids in pore networks extracted from digital images of
sandstones and packs of spheres.

3.4. Calculation of the average hydraulic tortuosity

The results of the flow simulations performed using the
extracted pore networks were also used to quantify the hydraulic
tortuosity of the flow paths, named T, observed during the flow
of Newtonian and shear-thinning fluids through the pack of
4 mm beads and the sand pack. T is commonly defined as the ratio
between the average length of the actual fluid flow path through
the porous matrix, Le, and the apparent length of the porous med-
ium, L. In the absence of recirculation zones during the flow of an
incompressible fluid, the surface average of Le/L weighted by the
local flux over a reference surface perpendicular to the main flow
direction is equivalent to the ratio between the surface average

of the velocity magnitude field uj j
�

and the surface average of the

component of velocity in the main flow direction ux
�

[46]. By taking
the previous observation into account, T was calculated from the
velocity maps obtained in the current simulations by using the fol-
lowing expression [14,46,47,48]:

T ¼ uj j
�

ux
� ð12Þ

It should be mentioned that, if recirculation zones exist, T given
by Eq. (12) corresponds to the upper limit of the surface average of
Le/L weighted by the local flux.
4. Results and analysis

4.1. Percentage of conducting throats

The distribution of pore pressures was calculated by following
the procedure described in subsection 3.3. From the pore pressure
map, the effective throat viscosities meff,th were computed by using
Eq. (9). The individual flow rates through each throat were subse-
quently calculated with Eq. (10). It was observed that the value of
the flow rate was very low in an important number of throats. The
group of ‘‘stagnant” throats were formed to a great extent by the
throats with the smallest equivalent diameters. Also, the throats
being oriented nearly perpendicularly to the main flow direction
presented very small pressure gradients, and therefore very high
values of meff,th resulting in negligible flow rates. In the further anal-
ysis, the throats in which the flow rate was lower than 10% of the
average flow rate (arbitrary value) will be referred to as ‘‘stagnant
throats”, and the rest of the throats will be named ‘‘conducting
throats”. An example of the stagnant and conducting throats in
the pack of 4 mm spheres is represented in Fig. 2(b).

The amount and percentage of conducting throats under differ-
ent u values were calculated and listed for the flow of the three
investigated fluids through the pack of 4 mm spheres, and the
results are listed in Table 3. It can be observed that the percentage
of conducting throats it almost constant (59 ± 2%) for the consid-
ered range of u and Cp. The slightly lower percentage of conducting
throats reported for the higher values of Cp resulted from a more
pronounced shear-thinning behaviour (lower values of n), which
favors more strongly the flow in the main flow direction as
reported by Fadili et al. [49]. The percentage of conducting throats
was also computed for the flow of the 500 ppm polymer solution
through the sand pack, as listed in Table 4, and the obtained values



Table 3
Amount and percentage of conducting throats for different values of u and Cp during the flow of the shear-thinning fluids through the pack of 4 mm spheres. The deviations from
the listed average values of u are due to slight differences between the considered u values for each Cp.

Porous medium Cp (ppm) Total number of throats Number of conducting throats
u = 3.30 � 10-3 ± 6 � 10-4 m/s

Number of conducting throats
u = 1.70 � 10-2 ± 1 � 10-3 m/s

Number of conducting throats
u = 3.30 � 10-2 ± 4 � 10-3 m/s

Pack of spheres 4 mm 200 15,417 9337 (60.56%) 9411(61.04%) 9431 (61.17%)
500 8987 (58.29%) 9109 (59.08%) 9160 (59.41%)
700 8807 (57.13%) 8973 (58.20%) 9034 (58.60%)

Table 5
Essential microstructural features of the conducting pores. The listed values were
obtained for the flow of the 500-ppm solution under injection velocities of 3.04 � 10-2

m/s for the pack of 4 mm spheres and 1.97 � 10-3 m/s for the sand pack.

Sample Pack of spheres
(4 mm)

Sand pack

Mean body diameter of conducting
pores [m]

1.99 � 10-3 1.90 � 10-4

Standard deviation of body diameters
of conducting pores [m]

5.98 � 10-4

(30.05% of the
mean)

7.45 � 10-5

(39.21% of the
mean)

Ratio of body size standard deviation
to the mean of conducting pores

0.301 0.392

Mean throat diameter of conducting
pores [m]

1.19 � 10-3 1.03 � 10-4

Standard deviation of throat diameter
of conducting pores [mm]

3.69 � 10-4

(31.01% of the
mean)

3.96 � 10-5

(38.44% of the
mean)

Ratio of throat size standard deviation
to the mean of conducting pores

0.310 0.384

Ratio of mean body size to mean
throat size of conducting pores

1.67 1.84

Average coordination number of
conducting pores

4.27 4.48

Average coordination number of
conducting pores (excluding
boundaries)

4.20 4.70
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were very close to those reported for the pack of spheres (~55%).
No significant increase in the number of conducting throats was
associated to an increase in u. Given the weak effects of u and Cp,
it can be expected that the amount of conducting throats mainly
depends on the distribution of equivalent throat diameters and
the coordination number of the pore bodies.

For the sake of comparison with the characteristics of the whole
pore networks, some important microstructural features of the
conducting network (excluding the stagnant pores) are listed in
Table 5. The case of the 500-ppm solution flowing through the pack
of 4 mm spheres and the sand pack was used for the calculation of
the conducting network features. Through comparison of tables 2
and 5, it is noticed that the mean throat and body sizes of the con-
ducting pores are greater than the mean sizes of all pores. This dif-
ference is more marked in the case of the throat size, which seems
reasonable given that it is the size of pore constrictions which lim-
its to a greater extent the equivalent conductance of pores. Also,
the throat and bodies sizes are more narrowly distributed when
only the conducting pores are considered, given the exclusion of
the smallest sizes. A remarkable feature of this comparison is that
the average coordination number of the conducting network is sig-
nificantly lower than the one of the whole network.

4.2. Upscaling shear viscosity: From local viscosities to Darcy viscosity

The meff,th distributions corresponding to the injection of the
three investigated fluids through the pack of 4 mm spheres under
different values of u were computed and are represented in Fig. 3.
In the same manner, the meff,th distributions for the injection of the
500-ppm polymer solution through the sand pack are represented
in Fig. 4. Only the conducting throats were considered in these fig-
ures. This is consistent with the previous results of López [3], who
reported that the pores in which the fluid exhibits very high viscos-
ity values, have little impact on the macroscopic viscosity. The val-
ues of lD were also displayed in Figs. 3 and 4 for comparison.

The peaks displayed in Fig. 3 and Fig. 4 represent the most fre-
quent values of efficient viscosity meff,th in the throats of the pore
conduits for different combinations of polymer concentration and
Darcy velocity. Fig. 3 shows that the peak of the meff,th is practically
identical to lD in all cases for the pack of spheres. This means that
the macroscopic lD value corresponds to the most frequent local
meff,th value in the conducting throats. Apart from this, the distribu-
tions of meff,th are shifted towards the smaller values, similarly to
the throat size distributions displayed in Fig. 2(c). Another signifi-
cant feature is that the range of viscosities exhibited by the fluid
was wider at the lowest injection velocities and for the most con-
centrated polymer solutions (lower n).

By observing Fig. 4, which corresponds to the sand pack, it can
be noticed that the value of lD is slightly lower than the most
Table 4
Amount of percentage of conducting throats for different values of u during the flow of th

Porous medium Cp (ppm) Total number of throats Number of conductin
u = 1.00 � 10-9 m/s

Sand pack 500 28,713 15,789 (54.98%)
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frequent local meff,th. This may be stem from the wider dispersion
of the body and throats sizes distributions as compared to the pack
of spheres (as shown in Table 5). Indeed, the body and throat size
distributions overlap to a larger extent in the case of the sand pack,
as displayed in Fig. 1(c). Consequently, the value of lD is expected
to be more sensitive to the values of local viscosities in the pore
bodies (lower than in the throats) than in the case of the pack of
spheres, which results in a shift to the left of lD with respect to
the meff,th maximum in Fig. 4. To illustrate this point, the distribu-
tion of local viscosities in the throats and in the upstream and
downstream bodies are represented in Fig. 5 for the flow of the
500-ppm solution through both porous media. It can be deduced
from this figure that the body viscosities are closer to the throat
viscosity in the case of the pack of spheres, which is consistent
with the previous observations.

From the previous observations, it can be concluded that the
value of lD is intimately related to the viscosity exhibited by the
fluid in the conducting conduits. It should be noted that, for a sim-
ple bundle of capillaries, Darcy viscosity can be computed from the
flow-rate weighted average of the local viscosity values. Therefore,
with the objective to propose an analytical expression allowing for
the calculation of lD from the local viscosities in the conduits, it
seems reasonable to consider a flow-rate weighted average of the
local viscosities. Also, the viscosity in the pore bodies of each
e shear-thinning fluids through the sand pack.

g throats Number of conducting throats
u = 2.81 � 10-6 m/s

Number of conducting throats
u = 1.97 � 10-3 m/s

15,791 (55.00%) 16,240 (56.56%)



Fig. 3. Distribution of meff,th values throughout the pack of 4 mm spheres under
different values of u and Cp. Low, medium and high u correspond to u = 3.30 � 10-
3 ± 6 � 10-4 m/s, u = 1.80 � 10-2 ± 1 � 10-3 m/s and u = 3.09 � 10-2 ± 5 � 10-4 m/s,
respectively (deviations from the average value are due to slight differences
between the considered u values for each Cp). Black, red, and blue vertical dashed
lines correspond to the values of Darcy viscosity for the low, medium and high
values of u, respectively. (a) Cp = 200 ppm. (b) Cp = 500 ppm. (c) Cp = 700 ppm. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Distribution of meff,th values for the flow of the 500 ppm polymer solution
through the sand pack under different values of u. Low, medium and high u
correspond to u = 1.00 � 10-9, u = 2.81 � 10-6 m/s and u = 9.42 � 10-4 m/s,
respectively. Black, red, and blue vertical dashed lines correspond to the values of
Darcy viscosity for the low, medium and high values of u, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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conduit proved to be significant, especially in the cases in which
the body and throat size distributions overlap. Consequently, the
representative viscosity of each conduit should take into account
the viscosities in both pore bodies connected by the considered
throat as well as the viscosity in the throat itself. For these reasons,

the flow-rate averaged viscosity l
�
q was calculated in the present

experiments under different boundary conditions using the follow-
ing expression:

l
�
q ¼

PNt
y¼1qyleff ;conduityPNt

y¼1qy

ð13Þ
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with qy being the flow rate through the body-throat-body con-
duit y and Nt being the total number of conduits in the network.
leff ;conduity

was calculated as the arithmetic mean of the viscosity

values obtained in the different stretches of the conduit y, i.e.,
the mean of the viscosities in the upstream body, the throat, and
the downstream body.

Several pore network flow simulations were conducted in

which the values of l
�
q (from Eq. (13)) and lD (from Eq. (6)) were

computed and compared. A first set of simulations considered
the injection of the same 500-ppm solution through the pack of
4 mm spheres and through the sand pack. Table A1, presented in

the Appendix, shows that the obtained values of l
�
q are extremely

close to the values lD in all cases, with differences lower than 3.3%.
This means that lD can be successfully predicted from the local
scale viscosities by using the analytical expression given by Eq.

(13), i.e., .l
�
q lD for the considered media.

In order to confirm the validity of Eq. (13) to predict lD, a sec-
ond set of simulations assessed the accuracy of the predictions for
the flow of the 500 ppm solutions through 4 packs of equal spheres
of 1 mm, 2 mm, 3 mm and 4 mm diameter, respectively. The
results reported in Table A2 of the Appendix show that the use
of Eq. (13) to predict lD is appropriate independently of the size
of the spheres, and therefore of the permeability of the pack of
beads. Furthermore, a third set of simulations were devoted to

the comparison of l
�
q and lD for the injection of the three polymer

solutions through the same pack of 4 mm spherical beads (these
results are not shown in the manuscript). The observed differences

between l
�
q and lD were always lower than 2.5%, so the approach

is valid for the three shear-thinning fluids.
4.3. Average shear viscosity for each throat size

The dependency of the local throat viscosities on the value of
the equivalent throat diameter dth could also be quantified from
the results of the flow simulations. To do so, the average value of

meff,th in the throats of a given size class, named l
�
eff ;th, was calcu-

lated for the flow through the pack of 4 mm spheres and the results

were plotted in Fig. 6. The l
�
eff ;th vs. dth datasets were fitted by a lin-

ear function, which displayed in the same figure together with the



Fig. 5. Distribution of local viscosities in the throats (dark colors) and in the upstream and downstream bodies of the body-throat-body conduits (blue and red colors) for the
500-ppm polymer solution. (a) Pack of 4 mm spheres. (b) Sand pack. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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obtained average errors E between the fitting function and the
data. The reported values of E were lower than 2.5% in all cases.
It can be noticed that, independently of the considered value of

Cp and u, l
�
eff ;th tends to decrease as dth increases. This means that,

in general, shear-thinning fluids display higher viscosities in the
small pores, which is predicted by Eq. (5). The slope of the fitted
linear functions is higher at the lowest injection velocities, reflect-
ing a pronounced shear-thinning behavior. In contrast, lower
slopes are reported for the higher flow velocities, which is
explained by the attenuation of shear-thinning effects once the
values of local viscosities approach the Newtonian viscosity pla-
teau at high shear rates. These observations are confirmed for the
investigated three fluids, with the only significant difference being

the range of l
�
eff ;th covered depending on the Cp of the polymer

solution.
Fig. 6. Average effective throat viscosity l
�
eff;th for each pore throat size during the

flow of the three investigated fluids through the pack of 4 mm spheres under
different values of u. (a) 200 ppm solution.(b) 500 ppm solution. (c) 700 ppm
solution. Low, medium and high u correspond to u = 3.30 � 10-3 ± 6 � 10-4 m/s,
u = 1.80 � 10-2 ± 1 � 10-3 m/s and u = 3.09 � 10-2 ± 5 � 10-4 m/s, respectively
(deviations from the average value are due to slight differences between the
considered u values for each Cp). All data sets were fitted by a linear function, which
is displayed in the figure (dashed lines) together with the average error of the fit E.
4.4. Tortuosity during the flow of shear-thinning fluids

The average hydraulic tortuosity T was calculated for a set of
numerical simulations by following the procedure presented in
subsection 3.4. First, the flows of the considered shear-thinning
fluids and water through the pack of 4 mm spheres were simu-
lated. The same range of u used in the experimental works of
Rodríguez de Castro and Radilla [33] was used. Then, the flows of
the 500-ppm solution and water through the sand pack were sim-
ulated by considering a wider range of u covering more than 4
orders of magnitude. The T vs. u relationships obtained from these
numerical simulations are displayed in Fig. 7.

Fig. 7(a) shows that, contrarily to the case of the Newtonian
fluid (water), T depends on u for the flow of shear-thinning fluids.
This dependency is stronger as the shear-thinning behaviour
becomes more pronounced (higher values of Cp). These results
are in good agreement with the previous numerical results dealing
with the flow of yield stress fluids through 2D porous media [14].
The tortuosity of the streamlines is always lower in the case of the
shear-thinning fluid as compared to the Newtonian fluid, which is
due to the directional nature of shear-thinning behavior. In other
words, the flow of a shear-thinning fluid is extremely penalized
in the directions of low-pressure gradient (e.g., when the axial
direction of a conduit is perpendicular to the main flow direction),
as can be deduced from Eq. (5), which results in increased straight-
ness of the flow paths. Such a reduction of T becomes less signifi-
cant as u is increased, because of the increasing number of pores in
which the fluid exhibits the Newtonian plateau viscosity value l1.
454



Fig. 7. Average hydraulic tortuosity of the streamlines as a function of Darcy velocity u. (a) Flow through the pack of 4 mm spheres. (b) Flow through the sand pack.
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A thorough assessment of the dependency of T on u, covering a
wide range of u, can be undertaken from the results reported in
Fig. 7(b) for the 3D sand pack. In the same manner as for the pack
of spheres, T decreased when increasing u, and some supplemen-
tary conclusions can be drawn. First, the value of T for the shear-
thinning fluid attains the Newtonian hydraulic tortuosity value
when the injection velocity is extremely high. The analysis of the
viscosity distribution in the pores at the highest values of u (not
shown in the manuscript) revealed that the fluid exhibited the
high-shear-rates Newtonian plateau viscosity value l1 in almost
all pores, which is consistent with the previous observation. Sec-
ond, the value of T at the lowest injection velocities is also equal
to the Newtonian tortuosity value, which resulted from the fluid
exhibiting a viscosity equal to the low-shear-rates Newtonian pla-
teau viscosity value l0 in almost all pores. Third, a plateau of low
tortuosity was reported as the injection velocity was varied
between 10-3 m/s and 10-11 m/s. In this case, the whole distribution
of viscosities fell between the plateau values l1 and l0.

It can be concluded that the dependency of T on u exists only
within the range of u in which the shear-thinning fluid exhibits a
Newtonian plateau viscosity in certain pores, but not in all pores.
These results are consistent with the results of the numerical sim-
ulations performed by Bao et al. [13] for the flow of truncated
power-law fluids in rough-walled fractures. Another significant
observation is that similar T vs. u curves were obtained for the pack
of spheres and the sand pack when plotted on the same scale, as
shown in the Figure S1 of the supplementary material.

An additional set of numerical experiments was conducted in
order to assess the effect of the value of l0 on the number of con-
ducting throats and the T vs. u relationship. To do so, the injection
of the three polymer solutions through the pack of 4 mm beads
was simulated by using l0 = 0.002 Pa s for 200 ppm, l0 = 0.007 P
a s for 500 ppm and l0 = 0.014 Pa s for 700 ppm [3] while keeping
the original values of c, n and l1 listed in Table 1. It was observed
that the percentage of conducting throats at the lowest values of u
was very close to those listed in Table 3. However, the decrease in
the value of l0 produced an increase in T at the lowest injection
velocities (as in the case of the sand pack), which is not observed
in Fig. 7a. The T vs. u relationship provided by this second set of
experiments was compared to the original one in Figure S2 of the
supplementary material.
5. Conclusions

Representative pore networks were extracted from 3D digital
images of a pack of spheres [31] and a sand pack [32]. Then, the
flow of different shear-thinning fluids was simulated through these
pore networks allowing for the computation of local viscosity and
flow rate maps. The analysis of the distribution of viscosities
within the active channels led to the following conclusions:
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- For packs of equal spheres, the value of macroscopic Darcy vis-
cosity matches the most frequent local viscosity value in the
conducting pore throats. This is in contrast with previous
research in which the non-conducting throats were not
excluded from the distribution of local viscosities [3]. Moreover,
a linear decrease in the average local viscosity exhibited by the
fluid in the pore throats of a given size class is observed as the
considered throat size is increased.

- Darcy viscosity is sensitive to the values of local viscosities in
the pore bodies for the sand pack, due to overlap between the
pore body and pore throat size distributions.

Furthermore, an expression to calculate Darcy viscosity from
the local viscosity distribution was proposed and validated in both
unconsolidated media (Eq. (13)), filling a gap in the literature
[9,12,17–23]. By using this expression, Darcy viscosity was accu-
rately calculated independently of the permeability of the pack of
spheres and the Carreau model parameters.

Additional results showed that the average hydraulic tortuosity
depends on u for the flow of shear-thinning fluids through 3D por-
ous media. Such dependence exists only within the range of injec-
tion velocities in which the shear-thinning fluid exhibits a
Newtonian plateau viscosity in certain pores, but not in all pores.
Moreover, the directional nature of shear-thinning behavior
resulted in decreased tortuosity values as compared to the flow
of Newtonian fluids, in agreement with previous results in 2D
media [14] and rough-walled fractures [13].

The current study provided valuable insight into the interplay
between microstructural characteristics, local shear rheology and
macroscopic quantities. The gained knowledge of pore-scale mech-
anisms is expected to improve the decision algorithms used to
optimize the process conditions in many industrial situations in
which non-Newtonian fluids are involved, including biomedical
[6,7,50] and environmental applications [5]. However, taking into
account the evolving microstructure exhibited by the living tissues
involved in biomedical research remains a challenge. On this sub-
ject, Ezeuko et al. [51] developed a pore network simulator for
modeling biofilm evolution in porous media. The model used by
the preceding authors implemented a modified form of the classi-
cal Poiseuille equation in the pore network simulations to account
for the presence of porous biofilms within the flow channels [52].
Moreover, future works are required to extend the present results
to consolidated porous media and fluids with different constitutive
equations, such as Meter and Ellis models.

The effects of viscoelasticity and yield stress should be specifi-
cally evaluated, as they are not negligible for many shear-
thinning fluids [53]. In particular, polymer coils often stretch under
high flow rates during extensional flow of viscoelastic polymer
solutions. Such stretching makes the flow unstable and causes
irregular secondary flow resulting in elastic turbulence [54]. By
means of particle image velocimetry experiments performed in a
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microfluidic device, Ekanem et al. [55] showed that the elastic tur-
bulence effect occurs within a single pore throat with no flow his-
tory. Also, Browne et al. [56] proved that unstable eddies form
upstream of pore constrictions when the pore spacing is large,
while switching between two distinct unstable flow states occur
when pore spacing is sufficiently small. Future works should inves-
tigate how to take into account viscoelastic effects and the effec-
tive behavior of elastic turbulence in the pore network
simulations. Furthermore, it should be noted that pure shear has
been assumed in the present flow model. Nevertheless, flows pre-
sent both a shear and an extensional component in many real
applications. Zamani et al. [57] numerically showed that aspect
ratio plays an important role on the local rheology exhibited by
non-Newtonian fluids, and the work of van den Ende [58] provided
some expressions allowing for the computation of the total pres-
sure drops through a sinusoidal tube from the sum of the shear
and elongational contributions to pressure drop. It is worth consid-
ering the use of these expressions to extend the current viscosity
upscaling approach to situations in which pure shear flow does
not apply.

Several high-molecular-weight bio polymers are not only shear-
thinning, but also show shear-thickening effects related to elastic
turbulence [59]. In this regard, Shende et al. [60] recently proposed
an empirical equation to express the viscosity of typical shear-
thickening fluids as a function of shear stress over a wide range
of shear stresses, covering the viscosity plateau, the shear-
thinning, and the shear-thickening regions. Future research efforts
may be devoted to the implementation of this empirical equation
in the pore network simulations presented in this work.
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