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Abstract 
Adventitious budding from embryonic cotyledons of immature seeds of carob 
was obtained. The combination of BAP (4.44 µM) and NAA (1.5 µM) fur- 
thered the neoformation of adventitious buds. These latter were multiplied on 
MS medium added with BAP (2.22 µM). Stems and leaves growing were im-
proved by adding 2.02 µM GA3. Elongation was favored by 0.5 µM NAA. 70% 
of rooting was obtained with 10 µM IBA. 
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1. Introduction 

Carob tree (Ceratonia siliqua L., Fabaceae) is an agro-sylvo-pastoral species with 
socio-economic and ecological interests. It is very adapted to the various Medi-
terranean climates and different soil types [1] [2] [3]. 

Carob propagation is carried out in two main ways, by shoot and meristem 
culture for large-scale clonal propagation and by the development of cell and 
tissue culture techniques for the induction of calli in vitro. 

Traditionally, the propagation of carob trees has been achieved by grafting 
young trees with selected female buds of productive trees [4]. This traditional 
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propagation method has failed to respond to market demand. The carob tree can 
also be propagated by seedlings, but the seeds do not show correct germination 
rates unless after scarification; Moreover, this multiplication does not guarantee 
the sex and the genetic characteristics of the cultivars. Cuttings multiplication is 
problematic because rooting is difficult [5]. In this context, micropropagation 
techniques offer an alternative to the propagation of carob trees in order to sa-
tisfy the increased demand for this tree [6]. 

Among the various techniques developed for the in vitro propagation of Ce-
ratonia siliqua, we distinguish micropropagation by axillary budding from nodal 
explants of young stems, and by apex culture [6] [7] [8] or by adventive budding 
(direct organogenesis on leaf fragments, cotyledons or stems used as explants 
and indirect when buds appear without or after callus formation) [9], and so-
matic embryogenesis from immature cotyledons [10], mature cotyledons [11], 
zygotic embryos [12] or immature seeds [13]. 

In the present study, embryonic cotyledons culture was established to evaluate 
organogenic capacity of these explants. Thereby, we tested the effect of different 
auxins combined with BAP on the development of embryonic cotyledons. 
Seedlings were regenerated from broken buds; also, several combinations of BAP 
with NAA were evaluated to improve their organogenicity. Shoot multiplication 
was studied on MS and WPM mediums added with different growth regulators 
(auxins, 6-Benzylaminopurine; BAP, and Gibberellic acid; GA3) often combined 
to each other. 

2. Material and Methods 

2.1. Explants Preparation 

Immature carob fruits were harvested during June 2016, from a female tree on 
Tetouan-Chefchaouen road, Amtil region, Western Rif, Morocco (Figure 1). 

After abundant washing with running water, seeds were placed for 20 minutes 
in a calcium hypochlorite (Ca(OCl)2) solution (7%) and then subjected to three  
 

   
(a)                                       (b) 

Figure 1. (a) Female tree with immature seed; (b) Immature pod and seeds harvested in 
June. 
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successive 10 minutes washes with sterilized distilled water. Then, the seeds were 
removed aseptically under a hood, immersed 3 minutes in mercuric chloride 
(HgCl2) solution 0.1% and afterward washed three times for 10 minutes with 
sterile distilled water. These seeds were shelled and separated from their albu- 
men. The lower third of the embryonic cotyledons, with gemmule, plumule and 
radicle were removed and the upper part was implanted, either horizontally and 
vertically, in 200 ml flasks containing 50 ml of culture medium, solidified by 
0.7% agar. In addition, the basic nutrient medium consists of Woody Plant Me- 
dium (WPM) macronutrients [14], supplemented with Murashige and Skoog 
(MS) [15] micronutrients and vitamins, as well as 3% sucrose and 0.1 g/l myo- 
inositol, the pH was adjusted at 5.8. Moreover, cultures were placed in a culture 
room with 16 hours photoperiod (4000 lux) at 23˚C - 25˚C during the day and 
20˚C at night. Results were evaluated after one month growth. 

2.2. Characteristics of Immature Seeds 

A sample of thirty seeds was selected for which the means of length, width and 
thickness were determined. The weights of fresh (FM) and dry (DM) matter of 
the seeds were also estimated after drying in an oven at 70˚C for 15 days (Table 
1). 

2.3. Initiation of Embryonic Cotyledons Culture 
2.3.1. Growth Regulators Effect 

1) Effect of Auxins Associated with BAP 
Embryonic cotyledons were cultured vertically on MS medium supplemented 

with four auxins (Indole-3-acetic acid; IAA, Indole-3-butyric acid; IBA, 2-naph- 
thalineacetic acid; NAA and 2,4-Dichlorophenoxyacetic acid; 2,4-D) in three 
concentrations (0.5; 1.5 and 2.5 µM) combined with BAP at 4.44 µM. Results 
were evaluated after one month. 

2) Effect of different concentrations of BAP combined with NAA 
1.5 µM NAA combined with BAP was the best concentration for the devel-

opment of adventitious buds from embryonic cotyledons. Then we tested other 
concentrations of BAP (0.44; 1.33; 2.22; 3.55; 4.44 and 6.66 µM). 

2.3.2. Effect of the Position of Embryonic Cotyledons  
To test the effect of the position, we tried on to put cotyledons vertically and ho-
rizontally in MS medium supplemented with three concentrations of BAP (1.33; 
2.22 and 4.4 µM) combined with 1.5 µM NAA. Results were reported after one 
month. 
 
Table 1. Mean dimensions and weights of thirty immature carob seeds harvested in June 
2016. 

Length (mm) Width (mm) Thickness (mm) FM (g) DM (g) 

10.40 ± 0.4 7.2 ± 0.4 3.95 ± 0.6 0.16 ± 0.03 0.05 ± 0.01 
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2.4. Multiplication of Shoots Obtained from Adventitious Buds 

Shoots obtained after the break of adventitious buds from embryonic cotyledons, 
that presented three internodes of 5 - 7 mm, were transplanted into different 
mediums. Results were evaluated after one month growth. 

2.4.1. Effect of Macronutrients MS and WPM 
The effect of MS and WPM macronutrients, supplemented with BAP (2.22; 4.44 
and 6.66 µM) was tested on the multiplication of shoots obtained after the break 
of adventitious buds on the embryonic cotyledons. 

2.4.2. Effect of Growth Regulators  
MS medium, more favorable than WPM for shoot multiplication and survival, 
was adopted to study the effect of other growth regulators. 

Thereby, to study the effect of gibberellins on the multiplication and elonga-
tion of shoots obtained from embryonic cotyledons, different concentrations of 
GA3 (0.29; 0.58; 0.87; 1.44; 2.02 and 2.89 µM) were combined with 2.22 µM BAP. 

Furthermore, different auxins (IAA, IBA, NAA and 2,4-D) at 0.5 µM, com-
bined with 2.22 µM BAP, were tested. 

2.5. Shoot Elongation 

Shoot elongation after multiplication was studied in the presence of three con- 
centrations of BAP (1.33; 2.22 and 4.44 µM) and in the presence of GA3 (0.58; 
1.44 and 2.02 µM) associated to BAP at 1.33 µM. 

2.6. Plantlets Rooting 

IBA and IAA were adopted to induce shoot rooting after multiplication and 
elongation. These shoots were first cultured under darkness at ½ MS medium 
supplemented with IBA or IAA at 5 or 10 µM during one week, then transferred 
to light in the same medium, but without growth regulators. Results were eva- 
luated after one month. 

2.7. Statistical Analysis 

For each study, three replicates of thirty explants were carried out. All results 
were analyzed with a completely randomized design and tested using an analysis 
of variance (ANOVA) and means were compared using Duncan’s multiple range 
test at p < 0.05. 

3. Results 
3.1. Embryonic Cotyledons Culture 
3.1.1. Growth Regulators Effect 

1) Effect of different auxins associated with BAP 
The reaction of embryonic cotyledons varies according to the conditions and 

the studied parameter. The percentage of only callogenic explants reaches 97% 
in the presence of 2,4-D at 2.5 µM, followed by NAA at 2.5 µM with a percentage 

https://doi.org/10.4236/ajps.2017.89146


B. El Bouzdoudi et al. 
 

 

DOI: 10.4236/ajps.2017.89146 2184 American Journal of Plant Sciences 
 

of 92%; moreover, the percentage of callogenic and caulogenic explants is gener-
ally low (Table 2, Figure 2). This latter reaches 27.86% in the presence of 1.5 µM 
NAA, the number of buds per explants is 4.8. The concentration of 1.5 µM 
seems to be the most appropriate for the neoformation of adventitious buds re-
gardless of the studied auxin, a higher concentration favors callogenesis at the 
expense of caulogenesis. 

2) Effect of different concentrations of BAP combined with NAA 
The combination of BAP at different concentrations with NAA (1.5 µM) does 

not improve the percentage of caulogenic explants. Indeed, the best results are 
obtained, like before, with 4.44 µM BAP. 3.55 µM does not present significant 
difference with 4.44 µM BAP (Table 3, Figure 3). In some cases with low con-
centrations of BAP, roots are formed on the embryonic cotyledons. 
 

 
Figure 2. Adventitious buds obtained from embryonic cotyledons cultured in WPM me-
dium added with NAA (1.5 µM) combined with BAP (4.44 µM), after one month growth. 
 
Table 2. Effect of four auxins combined with BAP (4.44 µM) on the morphogenesis of 
carob embryonic cotyledons after one monthculture. 

Auxins 
Concentrations 

(µM) 
% callogenic 

explants 

% callogenic and 
caulogenic  
explants 

Number of  
buds by  

caulogenic explant 

% of explants 
without 
reaction 

IAA 

0.5 74.20 g 6.45 c 1 c 19.35 a 

1.5 86.30 cd 6.80 c 1 c 6.90 e 

2.5 92.05 b 0 e 0 d 7.95 de 

IBA 

0.5 80.77 ef 0 e 0 d 19.23 a 

1.5 77.42 fg 6.45 c 1 c 16.13 b 

2.5 89.50 bc 0 e 0 d 10.50 c 

NAA 

0.5 82.35 e 8.55 b 2.50 ± 0.17 b 9.10 cd 

1.5 78.57 f 27.86 a 4.80 ± 0.39 a 3.57 gh 

2.5 92.12 b 2.70 d 1 c 5.18 fg 

2,4-D 

0.5 83.33 de 0 e 0 d 16.67 b 

1.5 86.28 cd 6.82 c 1 c 6.90 ef 

2.5 97.48 a 0 e 0 d 2.52 h 

Means in the same column followed by the same letters are not significantly different from each other ac-
cording to the Duncan’s multiple range test (p < 0.05). 
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(a)                          (b)                         (c) 

Figure 3. Effect of different concentrations of BAP combined with NAA. (a) Adventitious 
buds obtained from embryonic cotyledons cultured in WPM medium, added with NAA 
(1.5 µM) and BAP (1.33 µM) after one month growth; (b) Adventitious buds obtained 
from embryonic cotyledons cultured in WPM medium added with 1.5 µM NAA com-
bined with BAP (4.44 µM), after one month growth; (c) Rooting of embryonic cotyledons 
cultured in WPM medium added with NAA (1.5 µM) and BAP (0.44 µM) after one 
month growth. 
 
Table 3. Effect of BAP combined with NAA (1.5 µM) on the morphogenesis of carob em- 
bryonic cotyledons, after one month culture. 

BAP (µM) 
% of callogenic 

explants 
% of callogenic and 
caulogenic explants 

Number of buds by  
caulogenic explants 

% of explants 
without reaction 

0.44 86.67 a 0 e 0 e 13.33 b 

1.33 76.22 c 7.92 c 1.87 ± 0.17 d 15.86 a 

2.22 79.86 bc 10.04 c 2.50 ± 0.21 c 10.10 c 

3.55 80.95 bc 14.28 b 4.32 ± 0.35 a 4.76 d 

4.44 61.11 c 28.78 a 4.50 ± 0.43 a 11.11 c 

6.66 85.31 ab 14.59 b 3.02 ± 0.28 bc 0 e 

Means in the same column followed by the same letters are not significantly different from each other ac-
cording to the Duncan’s multiple range test (p < 0.05). 

3.1.2. Effect of Embryonic Cotyledons Position 
The position of embryonic cotyledons does not have a remarkable effect on their 
development (Table 4). Generally, the values obtained are close, with a slight 
preference for the vertical position, especially for the number of buds by explant, 
significantly higher at 4.44 µM. 

3.2. Multiplication of Shoots Obtained from Adventitious Buds 
3.2.1. Effect of Macronutrients MS and WPM 
The size of shoots varies according to the macronutrients used and the concen- 
tration of BAP (Table 5, Figure 4). In WPM medium, the elongation of shoots is 
maximal at 4.44 and 6.66 µM (1.5 mm), and a similar value without significant 
difference is obtained at 2.22 µM with MS medium. 

The neoformation of shoots and leaves seems to be more favorable on MS 
medium, especially with BAP 2.22 µM. Similar values are obtained on WPM  
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(a)                                      (b) 

Figure 4. Effect of macronutrients MS and WPM. (a) Shoots of one month, obtained 
from adventitious buds deriving from embryonic cotyledons, on MS medium added with 
BAP (2.22 µM); (b) Shoots of one month, obtained from adventitious buds deriving from 
embryonic cotyledons, on WPM medium added with BAP (2.22 µM). 
 
Table 4. Effect of two positions (vertical V and horizontal H) on the growth and develop- 
ment of embryonic cotyledons, cultured in WPM medium in presence of NAA (1.5 µM) 
and BAP. 

BAP (µM) Position 
% of callogenic 

explants 

% of callogenic  
and caulogenic 

explants 

Number of  
buds by caulogenic 

explant 

% of explants 
without  
reaction 

1.33 V 73.58 b 8.80 bc 2.31 ± 0.21 cd 17.62 a 

 H 73.35 b 7.78 c 1.65 ± 0.15 de 18.72 a 

2.22 V 72.56 b 13.81 b 3.66 ± 0.35 b 13.64 b 

 H 80.34 a 9.64 bc 2.70 ± 0.28 c 10.02 c 

4.44 V 58.10 c 30.79 a 5.10 ± 0.43 a 11.10 c 

 H 60.60 c 29.21 a 1.17 ± 0.10 e 10.20 c 

Means in the same column followed by the same letters are not significantly different from each other ac-
cording to the Duncan’s multiple range test (p < 0.05). 

 
Table 5. Effect of two basic medium (MS and WPM) on carob shoot multiplication from 
adventitious buds after 30 day growth. 

 
BAP  
(µM) 

Shoots size  
(mm) 

Shoots  
number 

Number of  
leaves by shoot 

% of poorly  
developed shoots 

(<5 mm) 

WPM 

2.22 12.2 ± 1.1 c 3.25 ± 0.31 c 2.46 ± 0.24 c 0 

4.44 14.5 ± 1.2 ab 3.34 ± 0.34 c 3.83 ± 0.32 a 0 

6.66 15.1 ± 1.3 a 4.00 ± 0.38 ab 3.90 ± 0.35 a 0 

MS 

2.22 15.7 ± 1.3 a 4.80 ± 0.45 a 3.30 ± 0.34 b 0 

4.44 13.5 ± 1.1 bc 4.52 ± 0.44 a 3.01 ± 0.31 b 0 

6.66 12.1 ± 1.1 c 3.39 ± 0.40 ab 3.75 ± 0.32 a 0 

Means in the same column followed by the same letters are not significantly different from each other ac-
cording to the Duncan’s multiple range test (p < 0.05). 
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medium at a high concentration of BAP, however, some physiological disorders 
were observed, such as the formation of lenticels or the vitrification of explants. 

3.2.2. Effect of Growth Regulators 
1) Effect of GA3 
The combination of GA3 with BAP does not influence strongly shoot growth. 

Values registered are generally lower than those obtained with BAP alone. Nev-
ertheless, neoformation of shoots and leaves is improved and the best results 
(6.13 and 3.94, respectively) are obtained with 2.02 µM of GA3 (Table 6, Figure 
5). 

2) Effect of auxins 
The combination of auxins (IAA, IBA and NAA) does not improve signifi- 

cantly shoot elongation. Furthermore, the neoformation of shoots seems to be 
globally inhibited by the addition of auxins, especially in the case of NAA and 
2,4-D, while leaf neoformation increases slightly (Table 7). 
 

 
Figure 5. Shoots of one month obtained from adventitious buds deriving from embryonic 
cotyledons, on MS medium added with GA3 (2.02 µM) and BAP (2.22 µM). 
 
Table 6. Effect of GA3 combined with BAP (2.22 µM) on carob shoot proliferation from 
adventitious buds after 30 day growth on MS medium. 

GA3 (µM) Shoots size (mm) Shoots number 
Number of  

leaves by shoot 
% of shoots  

poorly developed 

0 15.1 ± 1.4 a 4.80 ± 0.50 b 3.29 ± 0.30 c 0 

0.29 11.7 ± 1.1 c 4.68 ± 0.47 b 4.16 ± 0.38 a 0 

0.58 12.1 ± 1.1 bc 4.84 ± 0.45 b 3.65 ± 0.33 b 0 

1.44 13.2 ± 1.2 bc 4.99 ± 0.52 b 3.53 ± 0.34 b 0 

2.02 14.5 ± 1.3 ab 6.13 ± 0.58 a 3.94 ± 0.35 a 0 

2.89 13.0 ± 1.2 bc 5.08 ± 0.46 b 3.62 ± 0.34 b 0 

Means in the same column followed by the same letters are not significantly different from each other ac-
cording to the Duncan’s multiple range test (p < 0.05). 
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Table 7. Effect of four auxins at 0.5 µM combined with BAP (2.22 µM) on carob shoot 
multiplication from adventitious buds after 30 day growth on MS medium. 

Auxin Shoots size (mm) Shoots number 
Number of leaves 

by shoot 
% of shoots poorly 

developed 

0 15.2 ± 1.3 ab 4.76 ± 0.47 a 3.36 ± 0.29 b 0 

IAA 15.3 ± 1.5 ab 3.67 ± 0.29 bc 3.70 ± 0.35 a 0 

IBA 15.4 ± 1.4 ab 4.21 ± 0.38 ab 2.91 ± 0.28 c 0 

NAA 16.3 ± 1.5 a 3.00 ± 0.26 c 3.71 ± 0.36 a 0 

2,4-D 13.3 ± 1.2 b 1.35 ± 0.32 d 3.65 ± 0.55 a 0 

Means in the same column followed by the same letters are not significantly different from each other ac-
cording to the Duncan’s multiple range test (p < 0.05). 

3.3. Shoot Elongation 

Shoot elongation is mostly promoted by BAP at 1.33 µM, but increasing the 
concentration has a negative effect on their growth. Besides, the addition of GA3 
does not improve shoot size. Moreover, an acceleration of growth is observed 
between the second and the third week, what is translated by a steep slope, 
which tends to dampen after this period (Figure 6 and Figure 7). 

3.4. Shoot Rooting and Acclimatization of Plantlets 
3.4.1. Shoot Rooting 
Induction of rooting in the presence of IAA and IBA shows that this latter is the 
most favorable, especially in 10 µM, with a maximum percentage of 70%. How-
ever, the maximum size of roots is obtained at 5 µM of IBA (Table 8, Figure 8). 

3.4.2. Acclimatization of Plantlets 
The acclimatization of the resulted plantlets in the peat is difficult; they often 
wither during the first week. The success rate did not exceed 40% (Figure 9). 

4. Discussion 

The culture of embryonic cotyledons of carob tree, established only recently [9], 
offers a new way of micropropagation. Shoots obtained after multiplication 
phase are very similar to those obtained by apex culture or by cotyledonary buds 
culture. 

After culturing, embryonic cotyledons, with reduced size (about 7 mm), un- 
dergo a considerable increase (about 20 mm). Generally, a callus develops in the 
contact of explants with culture medium. The development of adventitious buds 
is made anarchically within the culture medium. In rare cases, a neoformation of 
roots is noticed. The percentage of callogenic explants is often high (74.2% - 
97.48%), while that of callogenic and caulogenic explants is globally low (0% - 
27.86%). 

Among the studied auxins, in different concentrations and combined with  
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Figure 6. Effect of the concentration of BAP on the elongation of shoots obtained from 
adventitious buds. 
 

 
Figure 7. Effect of GA3 combined with BAP (1.33 µM) on the elongation of shoots ob-
tained from adventitious buds. 
 
Table 8. Effect of IAA and IBA on carob shoot rooting after one week under dark on ½ 
MS medium, added with auxins (IAA and IBA at 5 and 10 µM) and their transfer to ½ 
MS without auxins, under light. 

Auxins (µM) 
Shoots size 

(mm) 
Number of 

stems by shoot 

Number  
of leaves  
by shoot 

% of 
rooting 

Number  
of roots by  

plantlet 

Length  
of roots (mm) 

IAA 5 10.8 ± 1.1 b 1.00 ± 0.0 b 4.58 ± 0.36 b 32.45 c 1.97 ± 0.20 b 28.34 ± 2.33 c 

 10 10.4 ± 0.9 b 1.00 ± 0.0 b 3.20 ± 0.29 c 25.80 d 1.50 ± 0.45 b 25.62 ± 2.54 c 

IBA 5 12.8 ± 1.1 a 1.00 ± 0.0 b 4.35 ± 0.37 b 56.20 b 3.22 ± 0.27 a 43.54 ± 3.87 a 

 10 13.9 ± 1.2 a 2.45 ± 0.2 a 6.50 ± 0.54 a 70.37 a 4.33 ± 0.36 a 35.85 ± 2.65 b 

Means in the same column followed by the same letters are not significantly different from each other ac-
cording to the Duncan’s multiple range test (p < 0.05). 
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(a)                                       (b) 

Figure 8. Rooting phase. (a) Rooted plantlet obtained one month after rooting induction 
in darkness, on ½ MS added with 10 µM IBA; (b) Rooted plantlet obtained one month 
after rooting induction in darkness, on ½ MS added with 5 µM IBA. 
 

 
Figure 9. Plantlet obtained after three month acclimatization in peat substrate. 
 
BAP (4.44 µM), the neoformation of adventitious buds is mostly favored by 
NAA at 1.5 µM, contrary to 2,4-D, that favors callogenesis (reaching 97.48% at 
2.5 µM). Indeed, among various types of auxins, 2,4-D is employed in callusing 
induction [16] [17]. Custódio et al. (2004) [18] obtained the best result in terms 
of calli induction from anthers, with the higher tested concentration (2.26 µM). 
Also, Carimi et al. (1997) [19] demonstrated that concentrations ranging from 
0.45 to 4.52 µM promote a good development of callus on cultured ova. There-
fore, 2,4-D could induce callogenesis, while NAA could be used to induce both 
callogenesis and caulogenesis. We also want to point out that the effectiveness of 
BAP in cotyledonary nodes culture was well indicated and produced better re-
sults in multiplication of shoots. However, shoot tips, hypocotyls, cotyledonary 
leaves and roots produced only callus which were non-regenerative [9].  

The combination of NAA (1.5 µM) with other concentrations of BAP does not 
improve the percentage of caulogenic explants. The obtained results are less 
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important than those found with 4.44 µM; beyond this concentration, BAP 
seems to have an inhibitory effect on the neoformation of adventitious buds. The 
inhibitory effect of high concentration of BAP was observed in other studies: 
Belaizi et al. (1995) [20] noticed that during the study of carob regeneration 
from lateral buds, concentrations higher than 4.44 µM does not increase the 
number of broken buds. As well, Romano et al. (2002) [6] affirm that the best 
multiple shoot response was obtained in MS medium supplemented with 4.44 
µM BAP, for in vitro propagation protocol based on axillary bud proliferation. 

Also, survival of meristems reaches the maximum with 8.88 µM BAP and de- 
creases in a higher concentration [21]. However, Radi et al. (2013) [22] found 
that MS medium added with 8.88 µM BAP affects significantly the size of shoots 
obtained from lateral buds and gives the best results among lower concentra- 
tions. 

The position of embryonic cotyledons on culture medium does not have a 
considerable effect on their development. The area in contact with the medium 
reacts by initiating small clusters of callus that will end by forming a big calli ac- 
companied or not by adventitious buds. 

Concerning the multiplication and elongation of shoots deriving from adven-
titious buds, WPM and MS mediums give close results, even if the hormonal 
balance used is different. The maximum of shoots and leaves is obtained in 
WPM added with 6.66 µM BAP (4 and 3.9, respectively), while close values are 
obtained in MS medium added with 2.22 µM BAP (4.8 and 3.3, respectively). 
Gharnit and Ennabili (2009) [23] showed that WPM, in comparison with MS 
and Gresshoff and Doy (GD) [24], added with 0.44 µM BAP is the most favora- 
ble for the development of explants from shoot tip cultures, with 100% produc- 
tion of buds, a low rate of apical necrosis and callogenesis. 

The addition of GA3 at 2.02 µM to BAP (2.22 µM) increases slightly the num- 
ber of shoots and leaves. Thus, GA3 could be added to BAP during shoot multip- 
lication. In fact, Sebastian and McComb (1986) [25] affirmed that addition of 
GA3 (2.5 µM) in the shoot multiplication medium inhibited subsequent rooting. 
This inhibition was partially overcome by a passage in a medium added with 
zeatin (5 µM) and without GA3. As well, multiple shoots, developed using axil- 
lary buds, were regenerated when explants were cultured in MS medium, sup- 
plemented with 6.66 µM BAP and 1.44 µM GA3 [26]. Furthermore, bud break 
via lateral budding, was ensured with BAP and improved with 2.22 µM BAP 
combined with 1.44 µM GA3 [27]. Belaizi et al. (1995) [20] also obtained good 
results when combining BAP and GA3, but high concentrations of BAP causes 
some physiological disorders, like shoot vitrification, apical necrosis, appearance 
of lenticels and reduction in leaf size. 

The combination of auxins with BAP does not improve shoot multiplication. 
However, auxins like IAA and IBA, in low concentration (0.57 and 0.49 µM, re- 
spectively), have been already used, combined with several concentrations of 
BAP, and sometimes with GA3, with good results when culturing microshoots 
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from a tree [28] and using micropropagation by shoot tip cultures [29]. Other 
studies proved also that high concentrations of auxins combined with BAP and 
GA3 give good results in the culture of young buds [26], as well as for apical buds 
break from a mature tree [21]. Radi et al. (2013) [22] observed that the best ef- 
fect of the combination of auxins and BAP was obtained with 2.22 BAP and 2.46 
µM IBA, 2.68 NAA, and 2.58 IAA, but the combination of 2.22 µM BAP, 2.46 
µM IBA and 1.44 µM GA3 induced shoot multiplication and also provided root-
ing of shoots. 

Actually, an elongation phase of shoots was added to favor the rooting phase, 
as in vitro propagation of some other tree species [30] [31]. According to Belaizi 
et al. (1989) [32], this step is optional and is only required for very small shoots 
in order to obtain elongated leafy stems of Pyros malus which are then used for 
rooting. Moreover, after the multiplication phase, small shoots can be directly 
placed on a rooting medium, but it was proved that the success of this phase de- 
pended on the size of the explant. Thus, very short stems (2 to 3 mm), placed on 
a rooting medium containing IBA, showed necrosis very frequently, also, the 
growth of those who developed roots was blocked subsequently [33]. The same 
observations were also made by Boxus and Quoirin (1974) [34], IBA applied too 
early to buds can irreversibly inhibit their elongation. However, after the multip- 
lication phase, the length of new shoots is very variable. In some clones, some 
buds eventually lengthen after several subcultures and can then be rooted. How- 
ever, this elongation seems to occur randomly and in most cases, the young 
shoots do not exceed 5 mm in length. It is therefore necessary to find a medium 
allowing the elongation of shoots obtained during the propagation phase, so that 
they can react to the rhizogenic treatments and then have a normal development 
[33]. 

Initiation of shoot rooting after multiplication phase is mostly favored by IBA 
(10 µM) in half strength MS medium, which is in agreement with several other 
studies [6] [35]. Actually, in many woody plants, IBA is commonly used to pro- 
mote root initiation [36] [37]. 

Nevertheless, several authors have shown that auxins are only required during 
the initiation phase, and become inhibitory for root growth [38] [39] [40]. Also, 
the effect of mother tree age on rooting of carob shoots was demonstrated: root-
ing capacity of micro-shoots originated from juvenile parts of mature trees is the 
best [41]. In some other references, it was reported that carob shoots obtained 
from shoot tips cultures can root without auxins [23] [29] [42]. Shahzad et al. 
(2017) [9] reported that IBA promoted rhizogenic response in shoots.  

5. Conclusion 

The results of the present study demonstrate that carob can be cultured in vitro, 
starting from embryonic cotyledons and going through adventitious buds that 
develop stems, leaves and roots, to be finally acclimatized with a survival rate of 
40%. 
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