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Abstract

Microorganisms must make the right choice for nutrient consumption to adapt to their chang-

ing environment. As a consequence, bacteria and yeasts have developed regulatory mech-

anisms involving nutrient sensing and signaling, known as “catabolite repression,” allowing

redirection of cell metabolism to maximize the consumption of an energy-efficient carbon

source. Here, we report a new mechanism named “metabolic contest” for regulating the use

of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellu-

lar eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or

sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages

of this parasite developed a preference for glycerol over glucose, with glucose consumption

beginning after the depletion of glycerol present in the medium. This “metabolic contest”

depends on the combination of 3 conditions: (i) the sequestration of both metabolic path-

ways in the same subcellular compartment, here in the peroxisomal-related organelles

named glycosomes; (ii) the competition for the same substrate, here ATP, with the first

enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent

(glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the

competing enzymes, here the glycerol kinase activity being approximately 80-fold higher

than the hexokinase activity. As predicted by our model, an approximately 50-fold down-reg-

ulation of the GK expression abolished the preference for glycerol over glucose, with glu-

cose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be

found in any organism provided that the 3 conditions listed above are met.
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Introduction

The diauxic growth observed in microorganisms consists of the sequential use of carbon

sources when several are available, with the first one consumed, often glucose, being the one

that ensures the highest growth rate. This concept emerged in the 1940s with the description

in prokaryotes of preference for certain sugars, such as glucose over lactose or maltose, fol-

lowed by the first description in 1964 of the phosphoenolpyruvate:sugar phosphotransferase

system (PTS) [1]. PTS is a carbohydrate transport and phosphorylation system composed of 3

protein complexes that regulates numerous cellular processes by either phosphorylating target

proteins or interacting with them in a phosphorylation-dependent manner [2]. The diauxic

growth pattern also occurs in yeasts, which first consume glucose; then, the fermentative

product ethanol is oxidized in a noticeably slower second growth phase, if oxygen is available

[3]. In addition, the presence of glucose suppresses molecular activity of yeasts involved in the

use of alternate carbon sources [4]. Whether a carbon source behaves as a preferred or non-

preferred one is not defined by its chemical structure but by the rate at which it enters metabo-

lism. The mechanisms by which repression is imposed are quite variable; however, they follow

a general pattern, with complex sensory systems relying mostly on protein kinases and phos-

phatases [4–6]. These carbon “catabolite repression” processes prevent expression of enzymes

for catabolism of less preferred carbon sources when the preferred substrate is present.

Trypanosoma brucei is a unicellular eukaryote that causes human African trypanosomiasis,

also known as sleeping sickness [7]. Parasite transmission between mammals (bloodstream

form [BSF] of T. brucei) is ensured by a hematophagous insect vector of the genus Glossina
(tsetse fly). When grown in vitro in standard rich medium, the procyclic form (PCF) of T. bru-
cei, present in the digestive tract of the insect vector, metabolizes glucose, which is converted

by aerobic fermentation into partially oxidized end products, succinate, acetate, and alanine

[8–10]. One unique particularity of trypanosome glycolysis is the occurrence of the first 6 gly-

colytic steps in specialized peroxisomes called glycosomes (see Fig 1A), while this pathway is

cytosolic in all other eukaryotes [11]. No exchange of nucleotides has been described so far

between the glycosomal and cytosolic compartments. Consequently, consumption and pro-

duction of ATP are tightly balanced within the organelle [12].

Here we report a novel molecular mechanism for management of available resources,

named “metabolic contest,” that does not require complex sensory and signal transduction sys-

tems, as opposed to “catabolite repression.” This is illustrated by the PCF trypanosomes, which

prefer glycerol, a gluconeogenic carbon source, to glucose. The glycerol preference is due to

the approximately 80-fold excess of glycosomal glycerol kinase (GK) activity (EC 2.7.1.30; the

first step of glycerol assimilation) compared to glycosomal hexokinase (HK) activity (EC

2.7.1.1; the first glycolytic step), which compete for the same glycosomal pool of ATP (Fig 1A).

Results and discussion

Glycerol down-regulates glucose catabolism

The PCF of T. brucei catabolizes glucose and glycerol within glycosomes [13] (see Fig 1A). To

determine their preferred carbon source, we first measured the consumption of glucose or

glycerol by PCF trypanosomes maintained in culture in SDM79 medium supplemented with

either glycerol or glucose or both. As expected, glycerol (compound with 3 carbons) was con-

sumed by PCF faster than glucose (compound with 6 carbons). The rate of glycerol consump-

tion was not affected by the presence of glucose. In contrast, the latter was not consumed as

long as glycerol was present in the medium (Fig 1B). After glycerol exhaustion, glucose was

consumed at a rate similar to under glucose-alone conditions. This absence of glucose
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consumption in the presence of glycerol clearly showed a strong catabolic-repression-like

effect exerted by glycerol on glucose. It is noteworthy that the consumption of glucose started

as soon as glycerol was exhausted, with no delay.

To confirm this glycerol preference in PCF trypanosomes, we monitored the metabolic fate

of uniformly 13C-labeled glycerol ([U-13C]-glycerol) alone or in combination with equimolar

amounts of unlabeled glucose. The analysis of metabolic end products by proton nuclear mag-

netic resonance (1H-NMR) spectroscopy (Fig 1C; S1 Table) allowed determining the

Fig 1. Procyclic trypanosomes prefer glycerol to glucose. (A) Schematic representation of glycerol (black) and glucose (blue) metabolism in procyclic form

(PCF) trypanosomes. The metabolic end products are shown in rectangles, and metabolites analyzed by ion chromatography high-resolution mass

spectrometry (IC-HRMS) are underlined and in italic (a–g). The ATP molecules consumed and produced by substrate-level phosphorylation are shown, as well

as the enzymes hexokinase (HK) and glycerol kinase (GK). (B) Glucose and glycerol consumption by PCF trypanosomes incubated in glucose (2 mM), glycerol

(2 mM) and glucose + glycerol (2 mM each) conditions. (C) Metabolic end products produced by PCF trypanosomes from [U-13C]-glycerol (13C-Glyc) and/or

glucose (Glc), as measured by proton nuclear magnetic resonance (1H-NMR) spectroscopy (the values are calculated from the data presented in S1 Table). (D)

IC-HRMS analyses of intracellular metabolites collected from PCF trypanosomes after incubation with 2 mM [U-13C]-labeled carbon sources in the presence or

not of unlabeled carbon sources, as indicated on the right margin. The figure shows the proportion (%) of molecules having incorporated 0 to 6 13C atoms (m0

to m6, color code indicated on the left margin). G6P (a), glucose 6-phosphate; F6P (b), fructose 6-phosphate; M6P (c), mannose 6-phosphate; F1,6BP (d),

fructose 1,6-bisphosphate; Gly3P (e), glycerol 3-phosphate; 2/3PG, 2- or 3-phosphoglycerate (which are not undistinguished by IC-HRMS); PEP (g),
phosphoenolpyruvate. (E) Western blot analysis of total protein extracts from the parental (wild-type [WT]) and tetracycline-induced (.i) or uninduced (.ni)
RNAiGK cell line probed with anti-GK (αGK) and anti-paraflagellar-rod (αPFR) immune sera. The table below the blots shows the relative levels of GK

expression in 5 × 106 (1), 5 × 105 (/10) and 105 (/50) parental cells, and 5 × 106 RNAiGK.ni and RNAiGK.i cells, as well as the corresponding GK activity. ND, not

detectable. (F and G) Glucose and glycerol consumption by the (F) tetracycline-induced RNAiGK (RNAiGK.i) and (G) uninduced RNAiGK (RNAiGK.ni) mutant cell

lines incubated in glucose (2 mM), glycerol (2 mM) and glucose + glycerol (2 mM each) conditions. (H) Production of metabolic end products by the parental

(WT), RNAiGK.ni, and RNAiGK.i cell lines from [U-13C]-glycerol (13C-Glyc) and/or glucose (Glc), as measured by 1H-NMR spectroscopy (the values are

calculated from the data presented in S1 Table). Data supporting the results described in this figure can be found at https://zenodo.org/record/5075637#.

YORd2B069yA.

https://doi.org/10.1371/journal.pbio.3001359.g001
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respective contribution of [U-13C]-glycerol (labeled compounds) and glucose (unlabeled com-

pounds) [14–16]. Trypanosomes mostly excreted acetate and succinate from glycerol or glu-

cose (see Fig 1A). The rate at which glycerol was converted into these compounds was only

slightly modified by the presence of glucose. In contrast, the conversion of glucose into acetate

and succinate was reduced by approximately 30-fold in the presence of [U-13C]-glycerol.

Moreover, the small production of lactate and alanine from glucose observed in the absence of

glycerol was abolished in its presence. This significant reduction in the conversion of glucose

into end products in the presence of glycerol was correlated with an approximately 20-fold

decrease in glucose consumption in this experimental setup (see S1 Table), confirming that

glucose metabolism was strongly down-regulated in the presence of glycerol.

Since production of glucose 6-phosphate (G6P) through gluconeogenesis is essential in the

absence of glucose (see Fig 1A), we measured by ion chromatography high-resolution mass

spectrometry (IC-HRMS) the incorporation of 13C label into glycolytic intermediates in PCF

trypanosomes incubated with [U-13C]-glycerol. In this experiment, most hexose phosphate

glycolytic intermediates were fully 13C-labeled (88.2% ± 1.8% of total molecules on average)

after 2 h of incubation with [U-13C]-glycerol as the sole carbon source (Fig 1D). Addition of

an equal amount of unlabeled glucose only slightly reduced 13C incorporation into hexose

phosphates, with an average of 69.9% ± 9.7% fully 13C-labeled molecules (Fig 1D). To confirm

this preference for glycerol over glucose, the equivalent experiment was performed with

[U-13C]-glucose (Fig 1D). Addition of an equal amount of unlabeled glycerol abolished incor-

poration of 13C from [U-13C]-glucose into triose phosphates and fructose 1,6-bisphosphate

(F1,6BP). The 13C incorporation into G6P was strongly reduced (40% ± 0.9% versus 98% ±
0.1% fully 13C-labeled molecules in the presence and absence of glycerol, respectively).

Altogether, these data demonstrate that PCF trypanosomes significantly prefer glycerol to

glucose for the production of hexose phosphates, including the first glycolytic intermediate,

i.e., G6P. These data also suggest that HK, which produces G6P from glucose, and/or the PCF

glucose transporter (THT2), may be the target of the glycerol-induced down-regulation of glu-

cose metabolism. As far as we are aware, PCF trypanosomes are the only extracellular microor-

ganisms described to date showing a preference for glycerol over glucose. T. brucei PCF is also

the only known glycolytic-competent lower eukaryote performing gluconeogenesis in the

presence of glucose.

Glycerol metabolism is critical for glucose catabolism repression

To further study glycerol metabolism in PCF trypanosomes, the expression of the first enzyme

of the glycerol pathway was down-regulated by an RNA interference (RNAi) silencing

approach simultaneously targeting the 5 tandemly arranged GK genes (Tb927.9.12550–

Tb927.9.12630) under control of a tetracycline-inducible system. In the absence of tetracycline,

the uninduced RNAiGK (RNAiGK.ni) cell line presented strong constitutive leakage of the RNAi

silencing system, with a 50-fold reduction of GK protein content, reducing overall GK enzyme

activity to an undetectable level (Fig 1E). The residual GK protein level could be further

reduced after tetracycline induction (RNAiGK.i). Thus, the direct involvement of GK in glycerol

metabolism in these cells was determined by measuring glycerol consumption and release of

metabolic end products under glycerol conditions (Fig 1F–1H; S1 Table). Both glycerol con-

sumption (Fig 1F) and acetate/succinate production from glycerol metabolism (Fig 1H; S1

Table) were almost abolished in the RNAiGK.i mutant, demonstrating that there is no alterna-

tive to GK for glycerol breakdown in PCF trypanosomes. Interestingly, the presence of glycerol

did not affect glucose consumption by the RNAiGK.i mutant (Fig 1F), indicating that the pres-

ence of glycerol in the medium is not per se responsible for glucose metabolism repression. In
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other words, glycerol does not directly affect glucose uptake and metabolism, which implies

that intracellular glycerol metabolism is required to repress glucose metabolism. It is also

important to mention that replacing glucose by glycerol did not affect growth of the RNAiGK.i

mutant (S1 Fig), given that proline was the main carbon source used in these conditions, as in

the insect vector midgut [8,10,17]. It is worth mentioning that knocking down the 10 identical

GK genes is far easier than doing the alternative experiment consisting on knocking down/out

the 3 different aquaglyceroporin genes (AQP1–AQP3) responsible for glycerol uptake in T.

brucei [18].

The analysis of the RNAiGK.ni cell line also provided relevant information regarding the

unexpected role of GK activity in the preference for glycerol over glucose. First, the consump-

tion of glycerol (Fig 1G) and its conversion into end products (Fig 1H; S1 Table) were reduced

only by 3.5-fold and 3.1-fold, respectively, in the RNAiGK.ni mutant as compared to the paren-

tal cells, while GK expression was approximately 50-fold down-regulated (Fig 1E). One can

extrapolate from these data that a reduction of GK activity by at least 90% would not affect the

glycerol metabolism flux, which would highlight a large excess of GK activity in PCF trypano-

somes (in the range of 10-fold). Second, glucose metabolism was no longer repressed by glyc-

erol in the RNAiGK.ni cells, which consumed glucose at the same rate as the parental cells,

without any glycerol-induced delay, although glycerol consumption remained constant over

the 10 h of incubation (Fig 1G). This strongly suggests that the abolition of the glycerol prefer-

ence in the RNAiGK.ni cells could be the consequence of the 50-fold reduction of GK activity.

The glucose catabolism repression is due to a large excess of GK activity

Interestingly, GK activity was approximately 80-fold higher than HK activity in total PCF

extracts (Fig 2B), using the enzymatic assays described in Fig 2A. Since these 2 glycosomal

enzymes can compete for the same ATP pool (glycosomal), we hypothesized that this signifi-

cant difference in activity would favor glycerol metabolism and disfavor glucose metabolism,

and would hence explain the unique repression of glucose by glycerol. To test this hypothesis,

we measured HK activity in the presence or absence of glycerol under incubation conditions

compatible with HK and GK activity. Importantly, the enzymatic assay included 0.6 mM ATP,

which corresponds to the measured glycosomal concentration [19]. The presence of glycerol

in the assay induced a 15-fold reduction of HK activity in the parental cell extracts, but not in

the RNAiGK.ni and RNAiGK.i cell extracts (Fig 2B), which demonstrates that the conversion of

glycerol into Gly3P, but not the presence of glycerol per se, inhibits HK activity and thus glu-

cose metabolism. In contrast, GK activity was not impaired by the presence of glucose in the

parental cell line extract (Fig 2B).

We took advantage of the fact that both the parental and RNAiGK.i cell extracts displayed

similar HK activity (see Fig 2B) to further characterize the GK-derived inhibition effect on HK

activity as a function of the HK/GK activity ratio, by diluting the parental cell extract with dif-

ferent volumes of the RNAiGK.i cell extract (Fig 2C). As expected, HK activity was equivalent in

all the samples in the presence of 10 mM glucose (S2 Fig). However, the addition of 10 mM

glycerol decreased HK activity, and this effect was dependent on the HK/GK ratio (Fig 2C).

Indeed, a reverse correlation between HK and GK activity was observed (Fig 2D), which was

consistent with our hypothesis that both enzymes are competing for the same ATP pool. To

confirm that this inhibitory effect was due to GK activity rather than to any other activities or

biochemical properties of the enzyme, GK and glycerol were replaced by acetate kinase and

acetate in the same HK activity assay. As anticipated, HK activity was inhibited concomitantly

with increasing amounts of acetate kinase (Fig 2E). Altogether, these data demonstrate that the
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Fig 2. The glycerol preference is the consequence of the high excess of GK activity. (A) Enzymatic assays used for

the quantification of hexokinase (HK) and glycerol kinase (GK) activity. The bold and underlined substrates and

enzymes are included in the assay for production of NADPH (HK assay) and consumption of NADH (GK assay) that

are detected by spectrometry at 350 nm. 6PG, 6-phosphogluconate; G6PDH, glucose-6-phosphate dehydrogenase;

Gly3P, glycerol 3-phosphate; LDH, lactate dehydrogenase; PEP, phosphoenolpyruvate; PYK, pyruvate kinase. (B) HK

(left panel) and GK (right panel) activity in total cell extracts (wild-type [WT], RNAiGK.i and RNAiGK.ni) determined in

the presence of glucose (Glc), glycerol (Glyc) or equal amounts of glucose and glycerol (Glc/Glyc). (C) GK and HK

activity in different combinations (indicated in the table below the graph) of total cell extracts from the parental (WT)

and the RNAiGK.i cell lines. The amount of HK remained the same in all samples (see S2 Fig), while the amount of GK

present in the parental samples was diluted with the GK-depleted RNAiGK.i samples. The HK and GK activity were

determined in the presence of both glucose and glycerol, as in the Glc/Glyc condition (see [B]). (D) Expression of HK

activity as a function of GK activity. The values in parentheses indicate the rate of glycerol consumption in the RNAiGK.

ni and RNAiGK.i cells compared to the parental cells (100%) (see Fig 1F and 1G). (E) HK activity in the presence of 10
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preference for glycerol over glucose is the consequence of a competition between HK and GK

for their common substrate (ATP), which we named “metabolic contest.”

The GK/HK activity ratio is optimal for glycerol preference in procyclic

trypanosomes cultured in glycerol-rich medium

As mentioned above, procyclic trypanosomes multiply in medium containing glycerol instead

of glucose; however, all the biochemical experiments presented so far were performed on cells

grown in standard glucose-rich conditions. Transferring the procyclic cells from glucose-rich

to glycerol-rich conditions (without glucose) induced a 2.3-fold reduction of GK activity and a

1.4-fold increase of HK activity, with the GK/HK ratio reduced by 3.3-fold in glycerol-rich

medium (Fig 3A). These changes in GK and HK activity were not observed under glucose/

glycerol-depleted conditions, indicating that the presence of glycerol, but not the absence of

glucose, is responsible for this adaptation. The glycerol-induced down-regulation of GK

expression was confirmed by Western blotting, with a 3.5-fold reduction of the GK protein

level 2 d after cell transfer to glycerol-rich conditions (Fig 3B). Interestingly, this phenomenon

was reverted when replacing glycerol with glucose (Fig 3B), which suggests that a high level of

GK expression is required for the cells to grow under glucose-rich conditions or that reduced

GK expression is optimal for glycerol metabolism. To determine the effect of GK down-regula-

tion on glycerol preference, we monitored by 1H-NMR spectrometry the metabolic fate of

[U-13C]-glycerol alone or in combination with equimolar amounts of unlabeled glucose. As

expected, the rate of end product excretion from glycerol catabolism was not affected by the

reduced expression of GK (Fig 3C). More importantly, the repression exerted by glycerol on

glucose degradation was similar regardless of the growing conditions of the parasite (Fig 3C).

In order to modulate GK expression, a GK gene recoded for resisting RNAi silencing

(GKrec), was introduced in the RNAiGKcst cell line, in which the expression of the endogenous

GK genes is constitutively down-regulated (Fig 3D). Because of the strong constitutive leakage

of the RNAi silencing system, as observed above for the RNAiGK.ni cell line (Fig 1E), the

resulting uninduced RNAiGKcst/OEGKrec.ni cell line expressed GKrec with a GK activity low-

ered by 35% compared to that of the parental EATRO1125.T7T cells (Fig 3D). This reduced

GK activity did not affect the preference for glycerol over glucose, as deduced from 1H-NMR

analysis of excreted end products from glucose and/or glycerol metabolism (Fig 3C). As

expected, the RNAiGKcst/OEGKrec.i cell line showed a 2-fold increase in GK activity upon tetra-

cycline induction (Fig 3D) and maintained a preference for glycerol over glucose (Fig 3C).

Altogether, these data show that a 3.3-fold reduction of the GK/HK activity ratio in the pres-

ence of glycerol does not affect the preference for glycerol over glucose. It is noteworthy that

we also previously reported glycerol-induced down-regulation of GK expression (7-fold) in

the BSF of T. brucei [20].

GK and HK compete for glycosomal ATP

To further understand the mechanisms underlying the metabolic contest, we determined the

ATP concentrations required to prevent HK activity in an excess of GK. The HK activity of

trypanosome extracts was monitored over a period of incubation in the presence of glycerol

and different amounts of ATP. In the presence of GK activity, HK activity was maintained

until ATP concentrations reached the millimolar range (1.1 to 1.5 mM depending on the initial

mM acetate and increasing amounts of acetate kinase. Data supporting the results described in this figure can be found

at https://zenodo.org/record/5075637#.YORd2B069yA.

https://doi.org/10.1371/journal.pbio.3001359.g002
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amounts of ATP, i.e., 1.2 to 3 mM, respectively) (Fig 4A, top panel). However, in the presence

of lower amounts of ATP such as 0.6 mM, no HK activity was detected, while GK was active

for 1.5 min, until all ATP was consumed (Fig 4A, bottom panel). These data demonstrate that

HK activity is inhibited by an excess of GK in the presence of physiological amounts of ATP

(0.6 mM in glycosomes [19]); however, at higher ATP concentrations, HK is active until ATP

levels drop below 1.5 mM. It is noteworthy that T. brucei HK and GK have the same affinity

for ATP (Km = 0.28 mM and 0.24 mM, respectively [21,22]), suggesting that the preference

for GK over HK at ATP concentrations below 0.6 mM is primarily due to the large excess of

GK activity. This competition between HK and GK for glycosomal ATP was previously antici-

pated based on a kinetic model of trypanosome glycolysis [23].

Fig 3. Glycerol down-regulates GK expression but does not affect preference for glycerol over glucose. (A)

Glycerol kinase (GK), hexokinase (HK), and malic enzyme (ME) activity determined in total cell extracts of

EATRO1125.T7T procyclic trypanosomes grown in glucose-rich (Glc/−), glycerol-rich (−/Glyc) or glucose/glycerol-

depleted (−/−) conditions. (B) Western blot analysis of procyclic cells grown in glucose-rich medium (lane 0), then in

glycerol-rich medium (in the absence of glucose and in the presence of N-acetyl-D-glucosamine) for 48 h, before

reintroducing glucose (without glycerol and N-acetyl-D-glucosamine) for 48 h. The immune sera used against GK

(αGK), pyruvate phosphate dikinase (αPPDK), and glyceraldehyde-3-phosphate dehydrogenase (αGAPDH) are

indicated on the left margin. The bottom panel is a quantitative analysis of the GK signal indicated by an arrow (n = 4).

(C) Metabolic end products of PCF trypanosomes from metabolism of [U-13C]-glycerol (13C-Glyc) and/or glucose

(Glc) measured by proton nuclear magnetic resonance spectrometry (the values are calculated from the data presented

in S2 Table). (D) Expression of the recoded (GKrec) and native GK in the wild-type (WT), RNAiGKcst, and

tetracycline-induced (.i) and uninduced (.ni) RNAiGKcst/OEGKrec cell lines monitored by Western blotting on total cell

extracts using immune sera against GK (αGK) and paraflagellar rod (αPFR) as control (top panel), and GK activity

assay normalized with malic enzyme activity and expressed as a percentage of activity in the WT cells (bottom panel,

n = 2). Data supporting the results described in this figure can be found at https://zenodo.org/record/5075637#.

YORd2B069yA.

https://doi.org/10.1371/journal.pbio.3001359.g003
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Fig 4. Analysis of intracellular ATP and metabolites. (A) The top panel shows hexokinase (HK) activity determined at 350 nm (NADPH production) over

the incubation time of trypanosome extracts in the presence of 10 mM glucose and 10 mM glycerol and 0.2 to 3.0 mM ATP. The dashed lane corresponds to

background HK activity measured without ATP. The arrows indicate the calculated ATP amounts (mM) remaining in the assay at the time of HK activity

inhibition, taking into account glycerol kinase (GK) and HK activity. The asterisk indicates the time when 0.6 mM ATP is consumed by GK (deduced from

the bottom panel). The bottom panel shows NADH consumption (GK activity) and NADPH production (HK activity) in the presence of 0.6 mM ATP (GK

activity) or 0.2 to 3.0 mM ATP (HK activity). The dashed lane corresponds to HK activity measured without ATP. (B) Schematic drawing of the ATeam probe

from [24]. Variants of cyan fluorescent protein (CFP; mseCFP) and yellow fluorescent protein (YFP; cp173-mVenus) were connected by the ε subunit of

Bacillus subtilis FoF1-ATP synthase. In the ATP-free form (top), extended and flexible conformations of the ε subunit separate the 2 fluorescent proteins,

resulting in a low fluorescence resonance energy transfer (FRET) efficiency. In the ATP-bound form, the ε subunit retracts to draw the 2 fluorescent proteins

close to each other, which increases FRET efficiency. (C) The expression of ATeam-Myc-GPDH was controlled by Western blotting on total cell extracts of

tetracycline-induced (.i) and uninduced (.ni) OEATeam-Myc-GPDH cells using anti-GPDH (αGPDH) and anti-Myc (αMyc) immune sera, and as control

anti-enolase (αENO) immune serum. (D) The subcellular localization of ATeam-Myc-GPDH was confirmed by immunofluorescence assays on the
OEATeam-Myc-GPDH.i cell line using an anti-aldolase immune serum as a glycosomal marker (top panel; the yellow YFP signal was converted to green to

merge it with the red fluorescence corresponding to aldolase) or by observing the fluorescence activity of CFP and YFP (FRET) (bottom panel). (E) The ratio

of YFP emission (FRET) and CFP emission after excitation at 435 nm in the OEATeam-Myc-GPDH.i cell line incubated in the presence of glucose (Glc) or

glycerol (Glyc) (mean ± SD, n = 2 independent experiments, ����p< 0.0001). (F) The CFP fluorescence lifetime of the same cell line incubated in the same

conditions (mean ± SD, n = 3 independent experiments, ����p< 0.0001). (G) Intracellular concentrations of metabolites in procyclic form trypanosomes

grown in the presence of 10 mM glucose or glycerol (letters in parentheses refer to Fig 1A). The concentrations of the 2 last metabolites (asterisk) cannot be

calculated, and the ratio between the 12C (sample metabolite) and 13C (standard) area was considered. G6P, glucose 6-phosphate; G1P, glucose 1-phosphate;

6PG, 6-phosphogluconate; Pentose5P, pentose 5-phosphate (ribose 5-phosphate, xylulose 5-phosphate, and xylose 5-phosphate are not distinguished by ion

chromatography high-resolution mass spectrometry); S7P, sedoheptulose 7-phosphate;M6P, mannose 6-phosphate; F6P, fructose 6-phosphate; F1,6BP,

fructose 1,6-bisphosphate; Gly3P, glycerol 3-phosphate; 2/3PG, 2- or 3-phosphoglycerate; PEP, phosphoenolpyruvate. (H) Enzymatic determination of

intracellular Gly3P concentration in the parental (wild-type [WT]), RNAiGK.ni and RNAiGK.i cell lines grown in 10 mM glucose (blue), 10 mM glycerol (black)

or both (grey). The absence of detectable amounts of Gly3P in cellular extracts from the RNAiGK.i mutants maintained in glycerol (last column) is probably

due to cell quiescence caused by the impossibility of this mutant to metabolize glycerol. The intracellular concentrations of metabolites are calculated with the

assumption that the total cellular volume of 108 cells is equal to 5.8 μL [27]. (I) Effect of increasing amounts of Gly3P and F1,6BP on HK activity determined in

total extracts of procyclic form T. brucei. Data supporting the results described in this figure can be found at https://zenodo.org/record/5075637#.

YORd2B069yA.

https://doi.org/10.1371/journal.pbio.3001359.g004
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To estimate the impact of glycerol metabolism on glycosomal ATP levels, we used an ATP-

specific fluorescence resonance energy transfer (FRET)-based indicator, named ATeam, that is

composed of a bacterial FoF1-ATP synthase ε subunit sandwiched between cyan fluorescent

protein (CFP) and yellow fluorescent protein (YFP) [24]. In the ATP-bound form, the ε sub-

unit retracts to bring the 2 fluorescent proteins close to each other, which increases FRET effi-

ciency and allows detection of changes in ATP level upon fluorescence quantification (Fig 4B).

To focus on the glycosomal ATP levels, the ATeam cassette was fused to the N-terminal

extremity of a Myc-tagged glycosomal protein containing a C-terminal peroxisomal targeting

motif (PTS1), i.e., glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8; Tb927.8.3530),

which was recently used to target a cytosolic protein exclusively inside this organelle [25].

Upon tetracycline induction, the anti-GPDH and anti-Myc immune sera recognized a

111-kDa protein corresponding to the expected size of the ATeam-Myc-GPDH recombinant

protein (Fig 4C). Immunofluorescence analyses showed that the ATeam-Myc-GPDH recom-

binant protein was located in glycosomes, as confirmed by the colocalization of the ATeam-

Myc-GPDH detected signal (YFP) and the aldolase glycosomal marker (Fig 4D, top panel), as

well as the colocalization of CFP and YFP FRET signals, forming glycosomal-like images (Fig

4D, bottom panel). FRET efficiency was significantly decreased in the OEATeam-Myc-GPDH.i

cells incubated in the presence of glycerol compared to glucose conditions, which indicates

that glycerol metabolism induced a reduction of the intraglycosomal ATP level compared to

the standard glucose conditions (Fig 4E). This was confirmed by an increase in CFP fluores-

cence lifetime corresponding to a FRET decrease (Fig 4F). We concluded that this glycerol-

induced reduced glycosomal ATP level favors glycerol preference.

To investigate whether parasite metabolic profiles were dependent on carbon source avail-

ability, we determined the absolute intracellular concentrations of metabolites by IC-HRMS

by adding an internal standard ([U-13C]-labeled Escherichia coli extract) to the T. brucei cell

extracts, as described before [26]. Among the glycolytic intermediates analyzed, F1,6BP and

Gly3P accumulated approximately 5-fold and 49-fold more, respectively, in parental cells

grown on glycerol as compared to those grown on glucose (Fig 4G). This significant Gly3P

accumulation was confirmed by using an enzymatic determination (Fig 4H). It is noteworthy

that this Gly3P accumulation persisted in the parental cells incubated with equal amounts of

glycerol and glucose, while it was abolished for the RNAiGK.ni mutant (Fig 4H). This huge

accumulation of Gly3P, due to the large excess of glycosomal GK activity that consumes ATP

to produce Gly3P, is probably responsible for the observed reduction of glycosomal ATP level

(Fig 4E and 4F).

It may also be considered that the accumulation of intracellular amounts of Gly3P could

inhibit HK and prevent G6P production from glucose. To test this hypothesis, HK activity was

measured in the presence of Gly3P in RNAiGK.i mutant extracts, rather than parental cells, in

order to prevent any interference of glycerol metabolism in the assay. Addition of up to 40

mM Gly3P did not significantly affect in vitro HK activity (Fig 4I), which is consistent with

previously published data [22]. It is also noteworthy that HK activity was not inhibited by

adding up to 5 mM F1,6BP (Fig 4I). This shows that the accumulation of Gly3P per se or

F1,6BP is not responsible for the preference for glycerol over glucose.

Correlation between high GK/HK activity ratio and glycerol-induced

metabolic contest

Glycerol metabolism was also investigated in the PCF of T. congolense, a trypanosome species

closely related to T. brucei that expresses HK and GK in glycosomes and bears a single GK
copy, instead of 5 copies as in the T. brucei genome. GK activity was 5.5-fold lower in T.
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congolense PCF compared to T. brucei PCF, with a GK/HK activity ratio approximately 20-fold

lower in T. congolense (Fig 5A). Glycerol metabolism did not impair glucose consumption in

T. congolense PCF as shown by (i) the persistence of high HK activity in the presence of glyc-

erol (Fig 5A) and (ii) the simultaneous consumption of glucose and glycerol (Fig 5B), as

observed for the T. brucei RNAiGK.ni (Fig 1G) cell line. In addition, we previously reported that

the BSF of T. brucei showed no preference for glycerol or glucose [20]. This is consistent with

the unaffected HK activity in the presence of glycerol and with the 28-fold increase of HK

activity in the BSF compared to the PCF, while GK activity was equivalent in the 2 forms of the

parasite (Fig 5C). Overall, our hypothesis is confirmed by these last data showing a strong

Fig 5. Glycerol metabolism in other trypanosomatids. (A) Glycerol kinase (GK) and hexokinase (HK) activity in total cell

extracts of the procyclic form (PCF) of T. congolense in the presence of glucose (Glc), glycerol (Glyc) or equal amounts of glucose

and glycerol (Glc/Glyc). (B) Consumption of glucose (left) and glycerol (right) by the T. congolense PCF incubated in glucose-rich

(2 mM), glycerol-rich (2 mM) and glucose/glycerol (2 mM each) conditions. (C) Correlation between high GK/HK activity ratio

and preference for glycerol over glucose. BSF, bloodstream form. aHK activity in the presence of equimolar amounts of glucose

and glycerol. bRatio between GK and HK activity. cRate of glucose (Glc) or glycerol (Glyc) consumption. dCulture in the presence

of 2 mM glucose (+Glc), 2 mM glycerol (+Glyc) or both (+Glc, +Glyc). eData from Fig 1. fND, not detectable. gData from (B).
hData from [20]. Data supporting the results described in this figure can be found at https://zenodo.org/record/5075637#.

YORd2B069yA.

https://doi.org/10.1371/journal.pbio.3001359.g005
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correlation between the preference for glycerol over glucose and the large excess of GK activity

compared to HK activity.

In conclusion, we describe here a new mechanism for the regulation of nutrient utilization

based on the competition between 2 enzymes (kinases) for a common substrate (ATP). The

sequestration of the 2 kinases in the glycosomes is key to this mechanism since these peroxi-

some-related organelles show limited or no nucleotide exchange with the cytosol on a meta-

bolic timescale [12,28]. Hence, the ATP pool available to glycosomal kinases is limited,

offering a situation where significant excess of one kinase (here GK) can abolish almost

completely the flux through the other one (HK). The competing kinases (HK and GK) catalyze

the first step of their respective pathways and therefore control the utilization of their substrate

(glucose and glycerol, respectively). The competition of certain enzymes for a common sub-

strate, in particular at branching metabolic points, is a well-known process used to finely tune

metabolic fluxes [29]. However, as far as we know, this is the first example of an almost com-

plete repression of one enzymatic activity (HK) by the large excess of another one (GK) com-

peting for the same substrate, as a mechanism to control nutrient utilization. The consequence

of this competition for one substrate, named “metabolic contest,” resembles the catabolic

repression observed in prokaryotes and yeasts, albeit based on a completely different molecular

mechanism, since no nutrient sensing and signaling are required. The advantage of the meta-

bolic contest mechanism over the catabolic repression mechanism is mainly an immediate

switch to the less preferred carbon source when the preferred one is exhausted, and with a

minimal energy cost since no regulation of gene expression (here HK or GK) is required.

Materials and Methods

Trypanosomes and cell cultures

The PCF of T. brucei EATRO1125.T7T (TetR-HYG T7RNAPOL-NEO) was cultivated in glucose

conditions at 27˚C in the presence of 5% CO2 in SDM79 medium containing 10% (v/v) heat-inac-

tivated fetal calf serum and 5 μg/mL hemin [30]. The glycerol-rich/glucose-depleted condition

was obtained by replacing glucose with glycerol in SDM79 and adding 50 mM N-acetyl-D-glucos-

amine, which is a non-metabolized glucose analog inhibiting glucose import [31], in order to pre-

vent the consumption of the residual serum-derived glucose (final concentration in the medium:

0.5 mM) [32]. The PCF of T. congolense TREU was cultivated at 27˚C in the presence of 5% CO2

in TcPCF-3 medium composed of Eagle’s Minimum Essential Medium (Sigma-Aldrich) supple-

mented with 2.2 g/L NaHCO3, 25 mM HEPES, 0.1 mM hypoxanthine, 2 mM glutamine, 10 mM

proline, 20% (v/v) heat-inactivated fetal calf serum and 5 μg/mL hemin [33].

Production of mutant cell lines

RNAi-mediated inhibition of gene expression of the GK genes (Tb927.9.12550–

Tb927.9.12630) was performed in the EATRO1125.T7T PCF by expression of stem-loop

“sense–antisense” RNA molecules of the targeted sequences [34,35] using the pLew100 expres-

sion vector, which contains the phleomycin resistance gene (kindly provided by E. Wirtz and

G. Cross) [36]. The sense and antisense version of a 617-bp fragment of the GK gene (from

position 460 to 1,077) was introduced into the pLew100 vector to produce the pLew-GK-SAS

plasmid, as previously described [37]. The EATRO1125.T7T parental cell line was transfected

with the NotI-linearized pLew-GK-SAS plasmid in 4-mm electroporation cuvettes with

the Gene Pulser Xcell apparatus (Bio-Rad) using the parameters 1,500 V, 25 μF, infinite resis-

tance and 2-pulse mode. Selection of the RNAiGK mutant was performed in glucose-rich

SDM79 medium containing hygromycin (25 μg/mL), neomycin (10 μg/mL) and phleomycin
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(5 μg/mL). Aliquots were frozen in liquid nitrogen to provide stocks of each line that was not

cultivated long term in medium. Induction of RNAi cell lines was performed by addition of

1 μg/mL tetracycline.

To generate the constitutive RNAiGK cell line (RNAiGKcst), the HindIII/BamHI restriction

fragment of the pLew-GK-SAS plasmid was inserted into the pLew100 vector missing the

tetracycline operator (TetO) sequences required for conditional expression of the downstream

cassette. The resulting NotI-linearized pLew-GKcst-SAS plasmid was introduced by electropora-

tion into the EATRO1125.T7T parental cell line before selection with phleomycin (5 μg/mL).

The recoded GK gene (GKrec) was introduced into the HindIII and BamHI restriction sites of

the pHD1336 expression vector (kindly provided by C. Clayton, ZMBH, Heidelberg, Germany)

to produce the pHD1336-GKrec plasmid (GeneCust), which was in turn introduced into the
RNAiGKcst cell line. The resulting RNAiGKcst/OEGKrec cell line was selected with blasticidin

(10 μg/mL), in addition to hygromycin, neomycin, and phleomycin.

To express in glycosomes the ATeam cassette, composed of the ε subunit of the FoF1-ATP

synthase sandwiched by CFP and YFP [24], the full-length GPDH gene (Tb927.8.3530), encod-

ing the PTS1-containing glycosomal GPDH, was inserted downstream of the ATeam cassette

to generate a gene encoding the glycosomal ATeam-Myc-GPDH recombinant protein. Briefly,

a PCR-amplified 1,833-bp fragment containing the ATeam sequence flanked by the HindIII

and NdeI restriction sites was inserted into the HindIII and NdeI restriction sites of the

pLew100 vector containing the GPDH gene preceded by 3 Myc tag sequences. The resulting

pLew-ATeam-Myc-GPDH plasmid was introduced in the EATRO1125.T7T parental cell line,

and clones were selected with phleomycin (5 μg/mL), in addition to hygromycin and

neomycin.

Western blot analyses

Total protein extracts of T. brucei PCF (5 × 106 cells) were separated by SDS-PAGE (10%) and

immunoblotted on Trans-Blot Turbo Midi PVDF membranes (Bio-Rad) [38]. Immunodetec-

tion was performed as previously described [38,39] using as primary antibodies rabbit anti-GK

(αGK; 1:2,000; gift from P. A. M. Michels, Edinburgh, UK), rabbit anti-enolase (αENO;

1:100,000; gift from P. A. M. Michels, Edinburgh, UK), rabbit anti-GPDH (αGPDH, 1:100)

[40], rabbit anti-PPDK (αPPDK, 1:1,000) [41], rabbit anti-PFR (αPFR; 1:10,000), and mouse

anti-Myc 9E10 (αMyc; 1:100; gift from K. Ersfeld, Hull, UK). Anti-rabbit IgG or anti-mouse

conjugated to horseradish peroxidase (Bio-Rad, 1:5,000) was used as secondary antibody. Rev-

elation was performed using the Clarity Western ECL Substrate as described by the manufac-

turer (Bio-Rad). Images were acquired and analyzed with the ImageQuant LAS 4000

luminescent image analyzer.

Immunofluorescence analyses

Cells were washed twice with PBS and fixed with 4% paraformaldehyde (PFA) for 10 min at

room temperature, spread on slides, and permeabilized with 0.05% Triton X-100. After incu-

bation in PBS containing 4% BSA overnight, cells were incubated for 45 min with anti-aldolase

rabbit serum (Aldo; 1:1,000; gift from P. Michels, Edinburgh, UK). After washing with PBS,

samples were incubated for 45 min with a secondary anti-rabbit IgG antibody conjugated to

Alexa Fluor 594 (Thermo Fisher Scientific, Waltham, MA, US). Slides were washed and

mounted with SlowFade Gold (Molecular Probes). Images were acquired with MetaMorph

software (Molecular Devices, Sunnyvale, CA, US) on a Zeiss Imager Z1 or an Axioplan 2

microscope as previously described [42].
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Fluorescence intensity ratio measurements

The video-microscopy experiments were performed at the Bordeaux Imaging Center (BIC) on

an inverted Leica DMI 6000 microscope (Leica Microsystems, Wetzlar, Germany) equipped

with a resolutive HQ2 camera (Photometrics, Tucson, AZ, US). The illumination system used

was a Lumencor Spectra 7 (Lumencor, Beaverton, OR, US). The objective used was a HCX PL

APO CS 63× oil 1.32 NA. This system was controlled by MetaMorph software. Cells were

observed in differential interference contrast (DIC) mode by both transmission and fluores-

cence microscopy (CFP excitation/CFP emission for donor acquisition, CFP excitation/YFP

emission for FRET acquisition). We quantified YFP (FRET) and CFP emission using ImageJ

software (US National Institutes of Health, Bethesda, MD, US).

Fluorescence Lifetime Imaging Microscopy (FLIM)

The FLIM measurements were performed at the Bordeaux Imaging Center with the Lambert

Instrument FLIM Attachment (LIFA, Lambert Instrument, Roden, Netherlands), which allows

the generation of lifetime images using the frequency domain method. This system consists of

a modulated intensified CCD camera (Li2 CAM MD), a modulated light excitation light

source, and a modulated GenIII image intensifier. For widefield epi-illumination, a modulated

LED (light-emitting diode) was used at 451 nm (3 W) for CFP excitation. Both the LED and

the intensifier were modulated at frequency up to 100 MHz. A series of 12 images was

recorded for each sample. By varying the phase shifts (12 times) between the illuminator and

the intensifier modulation, we calculated the phase and modulation for each pixel of the

image. Then we determined the sample fluorescence lifetime image using the manufacturer’s

LI-FLIM software. Lifetimes were referenced to a solution of erythrosin B (1 mg/mL) set at

0.086 ns [43].

1H-NMR spectroscopy experiments

T. brucei PCF cells (3 × 107 cells/sample) were centrifuged at 1,400g for 10 min; then, the pellet

was washed twice with PBS, and the cells were incubated for 6 h at 27˚C in 1.5 mL of incuba-

tion buffer (PBS supplemented with 5 g/L NaHCO3 [pH 7.4]) with 4 mM [U-13C]-glycerol

and/or 4 mM glucose. This quantitative 1H-NMR approach was previously developed to dis-

tinguish between [13C]-enriched and non-enriched excreted molecules produced from [13C]-

enriched and non-enriched carbon sources, respectively [14–16]. The viability of the cells

during the incubation was checked by microscopic observation. At the end of the incubation,

500 μL of supernatant was collected, and 20 mM maleate was added in this aliquot as internal

reference. 1H-NMR spectra were performed at 125.77 MHz on a Bruker DPX500 spectrometer

equipped with a 5-mm broadband probe head. Measurements were recorded at 25˚C with an

ERETIC method. This method provides an electronically synthesized reference signal [44].

Acquisition conditions were as follows: 90˚ flip angle, 5,000 Hz spectral width, 32 K memory

size, and 9.3 s total recycle time. Measurements were performed with 256 scans, for a total

time close to 40 min. Before each experiment, phase of ERETIC peak was precisely adjusted.

Resonances of obtained spectra were integrated, and results were expressed relative to ERETIC

peak integration.

Mass spectrometry analyses of 13C incorporation into cellular metabolites

For analysis of 13C incorporation into intracellular metabolites, EATRO1125.T7T parental and

mutant cell lines grown in SDM79 medium were washed twice with PBS and resuspended in

an incubation solution (PBS containing either 2 mM [U-13C]-glycerol or 2 mM [U-13C]-
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glucose with or without the same amount of unlabeled glucose or glycerol). The cells were

incubated for 2 h at 27˚C before being collected on filters by fast filtration and prepared for

MS analysis as described before [26]. Total sampling time was below 8 s, and the extraction of

intracellular metabolites was carried out by transferring the filters containing the pellets into 5

mL of boiling water for 30 s. The extracts were briefly vortexed (approximately 2 s), immedi-

ately filtered (0.2 μm), and chilled with liquid nitrogen. After freeze-drying, the dried extracts

were resuspended in 200 μL Milli-Q water prior to analysis. Three replicates were taken from

each culture, sampled and analyzed separately. The analyses of metabolites were carried out on

a liquid anion exchange chromatography system, the Dionex ICS-5000+ Reagent-Free HPIC

System (Thermo Fisher Scientific), coupled to an Q Exactive Plus high-resolution mass spec-

trometer (Thermo Fisher Scientific), as previously described [45]. Central metabolites were

separated within 48 min, using linear gradient elution of KOH applied to an IonPac AS11 col-

umn (250 × 2 mm, Dionex) equipped with an AG11 guard column (50 × 2 mm, Dionex) at a

flow rate of 0.35 mL/min. The column and autosampler temperature were 30˚C and 4˚C,

respectively. Injected sample volume was 15 μL. Mass detection was carried out in negative

electrospray ionization (ESI) mode. The settings of the mass spectrometer were as follows:

spray voltage 2.75 kV, capillary temperature 325˚C, desolvation temperature 380˚C, and maxi-

mum injection time 0.1 s. Nitrogen was used as sheath gas (pressure 50 units) and auxiliary gas

(pressure 5 units). The automatic gain control (AGC) was set at 1e6 for full scan mode with a

mass resolution of 70,000. Identification of 13C carbon isotopolog distribution relied on

matching accurate masses from Fourier transform mass spectrometry (mass tolerance of

5 ppm) and retention time using TraceFinder 3.2 software. To obtain 13C labeling patterns

(13C isotopologs), isotopic clusters were corrected for the natural abundance of isotopes of all

elements and for isotopic purity of the tracer, using the in-house software IsoCor, freely avail-

able at https://github.com/MetaSys-LISBP/IsoCor, with documentation at https://isocor.

readthedocs.io.

Determination of intracellular metabolite concentrations by IC-HRMS and

enzymatic assays

For the quantification of intracellular metabolites, the T. brucei PCF EATRO1125.T7T cell line

grown in glucose or glycerol conditions was sampled by fast filtration and analyzed as

described above. As internal quantification standard, 200 μL of a uniformly [13C]-labeled E.

coli cell extract was added before performing the extraction of intracellular metabolites [46].

The measured concentrations of metabolites were expressed as total cellular concentrations

assuming a volume of 108 cells being equal to 5.8 μL [27].

For the enzymatic determination of Gly3P, T. brucei PCF cells (5 × 107 cells per sample)

were washed in PBS and lysed in 100 μL of fresh 0.9 M perchloric acid. After centrifugation at

16,000g at 4˚C, 150 μL of H2O and 75 μL of the KOH (2 M)/MOPS (0.5 M) mix were added to

the cellular pellet and incubated for 5 min on ice. After centrifugation at 16,000g at 4˚C, the

amount of Gly3P contained in the supernatant was determined with the Amplite Fluorimetric

G3P Assay Kit, as described by the manufacturer (AAT Bioquest, Euromedex 13837 AAT).

Determination of glucose and glycerol consumption

To determine the rate of glucose and glycerol consumption, T. brucei PCF EATRO1125.T7T

(inoculated at 107 cells/mL) or T. congolense TREU (inoculated at 5 × 106 cells/mL) was grown

in 10 mL of SDM79 or TcPCF-3 medium, respectively, containing 2.5 mM glucose, 2.5 mM

glycerol, or both [30,33]. Aliquots of growth medium (500 μL) were collected periodically dur-

ing the 10 h of incubation at 27˚C. The quantity of glucose and glycerol present in the medium
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was determined using the Glucose GOD-PAP kit (Biolabo, Maizy, France) and the Glycerol

Assay Kit (Sigma-Aldrich), respectively. The amount of carbon source consumed at a given

time of incubation (Tx) was calculated by subtracting the remaining amounts in the spent

medium at Tx from the initial amounts at T0. Then, the rate of glucose and glycerol consumed

per h and per mg of protein was calculated from the equation of the linear curve deduced from

plotting carbon source consumption as a function of time of incubation. Importantly, we con-

trolled that 100% of the cells remained alive and motile at the end of the 10 h of incubation.

Enzymatic activities

For enzymatic activities, PCF cells were washed in PBS (10 min, room temperature, 900g),
resuspended in assay buffer, and after addition of Complete EDTA-free Protease Inhibitor

Cocktail (Roche), lysed by sonication (Bioruptor, Diagenode; high intensity, 5–10 cycles,

30 s/30 s on/off). Debris was spun down (15 min, room temperature, 16,000g), and the super-

natants were used for protein determination with the Pierce BCA Protein Assay Kit in a

FLUOstar Omega Plate Reader at 660 nm. For higher throughput and smaller assay volumes,

all activity measurements were performed in a 96-well format with a FLUOstar Optima includ-

ing an automated injection system. Malic enzyme activity was determined as quality control

of the cellular extracts, as described before [47]. The baseline reactions were measured for

2 min, and the reactions were started by injection of the specific substrate or a combination of

2 (glucose, glycerol, malate, acetate) for each enzyme. The decrease/increase in absorbance at

350 nm was followed for 3–5 min. The rate was determined from the linear part of the progress

curve, and from this the specific activity was calculated. GK activities were determined in

100 mM triethanolamine (pH 7.6), 2.5 mM MgSO4, 10 mM KCl, 0.6 mM ATP, 2 mM phos-

phoenolpyruvate, 0.6 mM NADH, approximately 1 U lactate dehydrogenase, approximately

1 U pyruvate kinase, and 10 mM glucose and/or glycerol (injected substrate). The buffer for

HK measurements contained 100 mM triethanolamine (pH 7.6), 10 mM MgCl2, 0.6 mM ATP,

0.6 mM NADP+, approximately 1 U glucose-6-phosphate dehydrogenase, and 10 mM glucose

and/or glycerol (injected substrate) [21]. The same conditions were used for the determination

of HK activity in the presence of acetate kinase, except for the addition of 10 mM acetate and

recombinant acetate kinase from E. coli. For the determination of HK activity, 60 μg of cellular

protein was used per well, whereas for GK activity 6 μg per well was used.

Supporting information

S1 Fig. Growth curves of the parental (WT) and the tetracycline-induced RNAiGK.i cell

lines maintained in the presence of 10 mM glucose and glycerol (+Glc, +Glyc), 10 mM glu-

cose (+Glc, −Glyc), 10 mM glycerol (−Glc, +Glyc) or none of them (−Glc, −Glyc). Cells

were maintained in the exponential growth phase (between 106 and 107 cells/mL) and cumula-

tive cell numbers reflect normalization for dilution during cultivation.

(DOCX)

S2 Fig. HK activity in different combinations (indicated in the table below the graph) of

total cell extracts from the parental (WT) and the RNAiGK.i cell lines. The amount of HK

remains the same in all samples, while the amount of GK present in the parental sample is

diluted with the GK-depleted RNAiGK.i sample. The HK and GK activity were determined in

the presence of both glucose and glycerol, as performed in the Glc/Glyc conditions (see

Fig 2B).

(DOCX)
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S1 Table. Excreted end products from metabolism of [U-13C]-glycerol and/or glucose by

the parental (EATRO1125.T7T), RNAiGK.ni and RNAiGK.i procyclic T. brucei cell lines. The

extracellular PBS medium of trypanosomes incubated in the presence of 4 mM of 1 or 2 carbon

sources was analyzed by 1H-NMR spectroscopy to detect and quantify excreted end products.

Data supporting the results described in this table can be found at https://zenodo.org/record/

5075637#.YORd2B069yA.

(DOCX)

S2 Table. Excreted end products from metabolism of [U-13C]-glycerol and/or glucose by

the parental (EATRO1125.T7T), RNAiGKcst, RNAiGKcst/OEGKrec.ni and RNAiGKcst/OEGK-

rec.i cell lines, grown in the presence of glucose or glycerol (Glyc). The extracellular PBS

medium of trypanosomes incubated in the presence of 4 mM of 1 or 2 carbon sources was ana-

lyzed by 1H-NMR spectroscopy to detect and quantify excreted end products. Data supporting

the results described in this table can be found at https://zenodo.org/record/5075637#.

YORd2B069yA.

(DOCX)
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