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Abstract: The effect of surface chemical heterogeneity and hydrodynamics on particle transport and 

deposition in porous media was investigated by microscale simulations using a colloidal particle 

tracking model, called 3D-PTPO (Three-dimensional particle tracking model by Python® and 

OpenFOAM®) code. This work is aimed as a step toward modeling of transport and deposition in 

porous media idealized as a bundle of straight capillary tubes. Therefore, our focus is put upon a 

three-dimensional capillary with periodically repeating chemically heterogeneous surfaces namely 

crosswise strips patterned and chess board patterned. The main feature of this recent model is to 

renew the flow field by reconstructing the pore structure, to take the pore surface modification 

induced by the volume of the deposited particles into account. The dependency of the deposition 

probability and the dimensionless surface coverage (Γ/ΓRSA) on the frequency of the pitches (λ), the 

Péclet number (Pe) and the favorable area fraction (θ), as well as the distribution of the spatial 

density of deposited particles along the capillary tube were studied. The results indicate that particles 

tend to deposit at the leading and trailing edges of the favorable strips, and the deposition is more 

uniform along the patterned capillary compared to the homogeneous one. In addition, for the 

chemically heterogeneous capillary, in a similar manner as for the homogeneous one, a definite 

plateau exists for the Γ/ΓRSA at low Péclet values. For high Pe values, the declining trend for Γ/ΓRSA 

versus Pe is in good agreement with the derived power law dependence already observed in the 

literature for fully adsorbing surfaces. Moreover, for fixed θ the deposition probability is linearly 

correlated with λ and for given λ, such a deposition probability is also a linear function of θ. 

 

Keywords: Microscale simulation; Capillary tube; Particle deposition; Chemical heterogeneity; 

Crosswise strips pattern; Chess board pattern. 

1. Introduction 

Colloidal particle transport and deposition (irreversible adsorption) processes in porous media are 

of great environmental and industrial interest since they are critical to numerous applications ranging 

from drug delivery to drinking water treatment [1-5]. Accordingly, particle deposition on 

homogeneous porous media has been extensively studied both experimentally and a rich literature 

thereupon is available [6-11] and theoretically [12-16].  

To model such a particles transport, the first approach was to consider spatial and temporal 

variations of colloid concentration C incoming at a concentration C0 in a representative elementary 

volume (REV). This black box Eulerian formulation results in a convection-diffusion partial 

differential equation that contains terms that account for short range hydrodynamic and 

physicochemical interaction forces between particles and the porous medium skeleton. Usually 

hydrodynamic interactions are introduced through the hydrodynamic correction factors and 

non-hydrodynamic interactions are introduced through a DLVO potential that encompasses at least 

Van der Walls and electrostatic interactions. When solved for the outgoing concentration in a 1D 

situation, it mimics common column experiments. This allows interpretation of experimental 

breakthrough curves and evaluation of the pertinence of modeling refinements.  
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At the pore scale level usually starting from the Happel cell model, the focus is put on the 

determination of collector efficiency or the Sherwood number and on how they depend on 

hydrodynamic and physico-chemical conditions. Moreover, in most of considered systems, colloids 

and substrate are chemically homogeneous with smooth surfaces and the reader may refer to the 

review proposed by Molnar et al. for an up-to-date analysis [17]. 

It is however well known that natural porous media are by nature of non-uniform chemical 

composition at the nanoscale or even at the microscale with only a fraction of their surface favorable 

for colloid deposition. Such heterogeneities consist in general in chemical patches that are actually 

randomly distributed over the medium and whose macroscopic impact depends mainly on the 

fraction of the adsorbing surface and the particle to patch size ratio. When the patch dimensions are 

much larger than the particle size, the spatial averaging in patch models gives accurate results in 

accordance with colloid transport experiments [18]. Typical experiments are performed on columns 

packed with chemically heterogeneous sand grains at various degrees of patch-wise charge 

heterogeneity and several spatial distributions of heterogeneity. Indeed in this case the colloid 

deposition rate was found to be directly proportional to the degree of porous medium chemical 

heterogeneity and largely insensitive to the spatial distribution of patch-wise chemical heterogeneity  

[19]. However, when the patch size is comparable to that of the particle, both the fraction of 

adsorbing surface and the particle to patch size ratio become relevant parameters.  

Under diffusion-controlled conditions, Adamczyk and co-workers have studied the deposition of 

colloid particles on heterogeneous surfaces by means of numerical simulations of the Monte Carlo 

type. They considered adsorption sites as having the shape of circular disks with a finite size 

comparable with the size of adsorbing spheres [20]. They showed that on one hand when the 

particle/site size ratio is increased both adsorption kinetics and the maximum surface coverage 

increased for a fixed site density and as long as the particle/site size ratio is greater than 10, the 

available Random Sequential Adsorption theory extended to Random Site Surface RSA-RSS still 

works. This was experimentally confirmed through investigation of latex particles deposition on 

heterogeneous surfaces [21]. However when adsorption sites are attractive spheres that are deposited 

in advance on a flat surface, the problem is more complicated since it is of 3D nature [22]. However 

and as in natural substrates the charge heterogeneity is random and of arbitrary shape, systematic 

evaluation of deposition characteristics on such substrates is not straightforward thus heterogeneous 

surfaces are considered as patterned and are usually modeled by alternating adsorbing and 

non-adsorbing strips of given widths and densities.  

To simulate colloid surface deposition one can adopt a Lagrangian or an Eulerian approach. As 

usual in the Lagrangian approach, individual particles are followed until they adsorb on the pore wall 

by solving the Langevin equation with the incorporation of retardation functions to account for 

hydrodynamic and non-hydrodynamic particle/collector interactions through a DLVO potential 

[23-28].When this approach is applied to porous media represented as a packed bed of spherical 

collectors, calculations become difficult to tract if reasonable porosity is targeted [29]. As we will see 

below, in this paper the accent is put upon taking into account the effect of the already adsorbed 

particles on flow and therefore further deposition rendering the incorporation of short range 

interactions still less tractable.  

The most used simulation method is the Eulerian one which consists in solving a 

diffusion-convection-migration partial differential equation where colloid/collector hydrodynamic 

coupling is obtained by introducing the hydrodynamic correction factors while non-hydrodynamic 
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colloid/collector interaction is locally calculated knowing the nature of surfaces facing each other 

[30]. This approach was used for modelling colloid deposition on janus spherical collectors [31], 

impinging jet flow of dilute suspension on a flat heterogeneous surface [32] and colloid deposition in 

patterned cylindrical microchannels [33]. All these works demonstrate that deposition concentration 

profile closely mimics the spatial distribution of the heterogeneity. Moreover, for strip-patterned 

heterogeneity, a sharp deposit concentration peak is observed at the leading edge of each favorable 

strip before it decays rapidly and attains a plateau over the rest of the strip but it still remains above 

the concentration profile for a homogeneous surface. In case of a micro-patterned channel, colloids 

deposition is predicted to be more regular along the channel than in the homogeneous case where 

particles will mainly deposit within a short distance from the inlet. From the concentration profile, 

the local and average Sherwood number (or collector efficiency) may be calculated. It is then 

demonstrated that the relative favorable surface is not the only relevant parameter but the spatial 

distribution of favorable patches is also important. Hence for a given fraction of favorable surface 

area, a larger number of favorable patches results in better deposition efficiency. 

In all these models, the perfect skin condition was always considered and consequently they 

ignore any modification of flow pattern that would result from finite size particle deposition. This is 

however believed to play an important role in the strength of hydrodynamic shadowing effect 

especially when particle size to pore size ratio is not negligible and well after the beginning of 

deposition when surface coverage becomes significant. This was shown to be relevant for colloid 

deposition on homogenous surfaces of pores of various shapes. In constricted geometries, deposition 

was shown to occur mainly in pore bodies rather than in pore throats where the hydrodynamic 

shadowing effect was more efficient [34, 35]. In case of geochemically heterogeneous porous media, 

this is expected to have even more impact on deposit structure with a determinant influence of the 

ratio of colloid size to characteristic size of heterogeneity besides the pore geometry and the flow 

rate. Therefore, the aim of the present paper is to take into account the finite size of adsorbed 

particles when investigating colloids deposition in three-dimensional axisymmetric pores whose 

surface consists in a periodic repetition of adsorbing and non-adsorbing surfaces with a specified 

topology. Here, we focus on the dependence of deposition probability and the surface coverage on 

parameters such as the fraction of surface heterogeneity, the spatial distribution and topology of the 

heterogeneous surface elements as well as the flow strength. For that purpose, we use a home-made 

Lagrangian code that is basically a three-dimensional particle tracking model using Python® and 

OpenFOAM® which is presented in the next part. In the third part, simulation results are presented 

and discussed in the light of up to date published literature dealing with colloids deposition on 

heterogeneous surfaces and particularly emphasizing the effect of flow change induced by adsorbed 

particles on the structure of the deposit. The paper ends with some concluding remarks. 

 

2. Simulation cases, tools and procedure 

The present work is restricted to the modeling of the process of transport and deposition of 

positively charged particles in a chemically heterogeneous capillary, as an element of many idealized 

porous medium models such as bundle of capillaries or more complex pore network models. 

Equivalently, we consider a single cylindrical capillary with periodically repeating heterogeneity 

under the form of patterned or square patch-wise adsorbing surfaces (see Figure 1). In case of 

transverse strips, the leading one is always positively charged and therefore non-adsorbing. The 

frequency of the pitches (λ) is calculated as the ratio of the length of the capillary L to the total width 
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p of a pitch; p being the sum of widths of adsorbing element wa and non-adsorbing one wna. The 

fraction of favorable area is θ = Af/At, with Af the area of the surface wall favorable for particles 

deposition and At the total surface of the capillary wall. Here we take L = 15 μm and a capillary 

radius R = 4 μm and the considered colloids are spherical with a radius, ap = 0.2 µm giving a ratio 

R/ap=20 that is not high enough to neglect the change of the flow structure due to particles deposition 

but it is sufficient to consider a particle approaching a flat solid surface. A sensitivity analysis was 

undertaken beforehand to explore the effect of mesh numbers on the accuracy of our results by 

varying the number of grid blocks used for the numerical simulations. The deposition probability and 

distribution of deposited particles are compared for various mesh numbers going from 30,000 to 

960,000. The results indicate that 120,000 grid blocks (40 x 40 x 75) are sufficient for our 

computations.  

  
Figure 1 : Surface heterogeneity is modeled as alternate attractive and repulsive bands: (a): Crosswise strips 

patterned; (b): Chess board patterned. White and blue colors represent positively and negatively charged regions 

respectively. Particles are positively charged. 

2.1 General hypothesis 

In the present work the following assumptions are adopted [36, 37]: 

(1) The fluid is Newtonian and incompressible. 

(2) The particle Reynolds number defined as Re = /puaρ µ  (where ρ and μ are the fluid density 

and dynamic viscosity and  is the fluid’s mean velocity under clean bed conditions) is so small that 

the flow may be considered as laminar and non-inertial. 

(3) Deposition is irreversible and both hydrodynamic and physico-chemical removal of deposited 

particles are prohibited. 

(4) The scale of the variation of the flow velocity over ap is small compared to the maximum 

velocity. We can reasonably assume that the particle transported by the flow is a mass point. 

(5) The non-hydrodynamic particle-particle interaction is purely repulsive; therefore particles 

deposit is a monolayer. 

2.2 Governing equations and boundary conditions 

The governing equations for the creeping flow of an incompressible Newtonian fluid are the 

Stokes equations given by [38] : 
20 = - p+µ∇ ∇ v                                                                   (1) 

= 0∇ ⋅ v                                                                        (2) 

where p is the pressure and v stands for the fluid velocity. 
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A no-slip boundary condition is applied on the pore wall and on the interface between the fluid 

and deposited particles. At the inlet, the pressure is set to a predefined value, while at the outlet it is 

set to zero. In order to fulfill the requirement of creeping flow and to investigate a large range of 

Péclet numbers, the pressure at the inlet will be varied between 10-5 and 10 Pa. The Péclet number is 

defined as: 

a
p

u
Pe

D
=                                                                        (3) 

where D is the bulk diffusion coefficient of the particles in the fluid,  is the average value of 

velocity along the tube axis. 

2.3 Methodology and tools 

Since the incoming suspension is considered to be dilute, particles are injected individually, 

randomly and sequentially at the inlet of the geometry [5]. A Lagrangian method is then used to track 

the trajectories of the colloidal particles and once the injected particle is deposited onto the capillary 

wall or leaves the domain, another particle is injected. This process is then repeated until the 

pre-defined cut-off value of deposition probability (2%) is reached. The deposition probability is 

defined as the ratio of the number of deposited particles over the number of injected particles. 

Simulations are carried out using the 3D-PTPO code that combine OpenFOAM® (Open Field 

Operation and Manipulation) and Python® softwares. The detailed steps of the 3D-PTPO code are as 

follows: firstly, the flow field is computed using OpenFOAM® software by solving the equation of 

motion and obtained flow field data are recorded. Then a particle, that is reduced to its center of mass, 

is injected at the entrance plane (z = 0) with the initial coordinates (x,y) generated by two 

independent pseudo-random series [39]. Secondly, the injected particle is tracked using a code 

developed in Python®. To track the movement of the particle in the flow domain the particle velocity 

vector V at every position within the domain is calculated by summing its advection velocity Vadv 

and the Brownian diffusion velocity Vdiff. Vadv is obtained from the recorded flow field by 

interpolating the velocity of the nearest eight mesh-nodes surrounding the actual particle position. 

Vdiff represents the random velocity of the particle due to Brownian motion at every time-step and is 

calculated as: 

( )

2 2 2 2 2 2 2 2 2

r p r

= = =

=
t 6πμa t

a b c

a b c a b c a b c

D kT

α β γ

α β γ

= + +

+ + + + + +

=

diff diff

diff

V V i j k

V

； ；                                   (4) 

where a, b and c are random numbers drawn from a uniform distribution between -1 and 1; α, β and γ 

are determined by the normalization of the three random numbers, thus giving a unit vector with a 

random direction α β γ+ +i j k , k is the Boltzmann constant and T is the absolute temperature. The 

values of the parameters used in the simulation are summarized in Table 1. Here we neglect the 

particle mobility reduction near the wall that alters its diffusivity tensor. Indeed, the explicit 

evaluation of this reduction is of no means in this work since we do not calculate hydrodynamic 

forces acting on a physical particle moving near the wall albeit one could have advocated a 
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phenomenological correction of the diffusivity coefficient as particles approach the wall. The 

reference time tr that appears in Eq. 4 is chosen as [37]: 

tr=ζ/(2 umax)                                                                     (5) 

where ζ stands for the characteristic mesh size and umax is the maximum value of the advection 

velocity along the z axis in the absence of any deposited particles. This implies that at most the 

particle can travel over a distance of one half a block sizes during the reference time. Previous 

studies [34, 37] have shown the relevance of this choice of the reference time for particle tracking. 

The position of a moving particle is obtained by summing the old position vector Xold and the 

updated velocity multiplied by the reference time tr: 

Xnew=Xold+ tr V                                                                                                   (6) 

Table 1 Parameters used for simulations 

Parameters Values 

Particle radius, ap (m) 2×10-7 

Length of the capillary, L (m) 1.5×10-5 

Boltzmann constant, k (J/°K) 1.38×10-23 

Temperature, T (°K) 293.15 

Dynamic viscosity, µ (Pa·s) 10-3 

 

During the particle tracking process, four situations may occur: (1) the particle leaves the 

domain without deposition (Figure 2a); (2) the center-to-center distance between the moving particle 

and any other particle already deposited is less than a predefined value, the transported particle will 

bounce back to the bulk flow, and the tracking process will continue (Figure 2b); (3) the distance 

between the particle center and the pore wall is less than a certain value (0.5 ap), and the local surface 

wall is repulsive (positively charged), the transported particle will also bounce back to the bulk flow, 

and the tracking process will continue (Figure 2c); (4) the distance between the particle center to the 

pore wall is less than 0.5 ap and the local surface wall is attractive (negatively charged), the particle 

will be deposited if enough free surface is available for deposition (Figure 2d). In that case, the 

meshes containing the deposited particle are considered as solid to take into account the finite 

particle volume, and the flow field is then recalculated and stored flow data are updated. As soon as 

the loop for one particle finishes, another particle is injected. The injection process is repeated until 

the particle deposition probability defined as the ratio of the number of deposited particles over the 

number of injected particles, reaches a minimum value of 2%. This approach was successfully used 

to describe colloids deposition in narrow pores of various shapes and is extended here to reconsider 

those phenomena in case of heterogeneous surfaces as presented in Figure 1 [34, 35, 37]. 
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Figure 2 : Sketches of possible particle trajectories: (a) flowing through the capillary without deposition; (b) 

particle approaching a deposited particle (in grey line) and bouncing back to the bulk flow (in orange line); (c) 

particle approaching a repulsive zone and bouncing back to the bulk flow (in green line); (d) particle approaching 

an attractive zone and deposited when enough surface is available. 

 

3. Results and discussion  

3.1 crosswise strips case 

Numerical simulations of particle transport and deposit have been performed in a capillary with a 

chemically heterogeneous surface patterned with crosswise strips. Here, for limiting lengthy 

numerical simulations, the analysis is restricted to one single value of favorable surface ratio, θ = 0.5 

and varying values of the strip frequency, λ.  

3.1.1 Local deposition behavior 

To assess tools and procedure capability, we first investigate the local structure of the deposit 

along the capillary. For that purpose, the geometry is divided into 10 slices along the z axis (the mean 

flow direction) and spatial distribution of deposited particles is calculated as the number of particles 

per unit area. It is worth noting that since gravity is ignored such a distribution is uniform in each 

cross section. As an illustration, on Figure 3a, we plotted the density profile along the capillary after 

injection of 2,000 particles at Pe = 1.5×10-3 taking θ = 0.5 and λ = 5 for which the width of an 

adsorbing strip is four times the particle diameter. As it can be observed, the spatial distribution 

closely emulates the periodic nature of the heterogeneous pattern. Regarding the density trend in 

each adsorbing slice, peaks are seen to form at the leading and trailing edges as it was observed by 

others using Eulerian methods [32, 41]. Nazemifard and coworkers (2006) have proposed a 

phenomenological explanation of such phenomena that relies on coupled effects of hydrodynamic 

and colloidal interactions. When the particles are relatively far from the wall, they tend to accumulate 

over the unfavorable strips since they cannot get closer to the surface due to the energy barrier 

thereby locally depleting the immediate neighborhood of the wall. Consequently, with the presence 

of advection and diffusion, the particles can be transferred toward the nearest favorable strips, 

causing an enhanced density at the leading edges. Similarly, sharp concentration peaks are also 

observed at the trailing edges in the present work. It should be noted here that this phenomenon is 
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only dependent on the topology of the adsorbing/non-adsorbing zones, and should still hold for 

higher Pe, although it will be less spectacular since deposition density will be much lower (see 

hereafter). Another remarkable feature of these results are clearly seen when the actual density is 

compared to that obtained for homogeneous surfaces under the same conditions. It shows that 

deposition along the capillary is much more uniform than density corresponding to the homogeneous 

case. Similar behavior has also been reported by Chatterjee et al. [33] and Nazemifard et al. [32, 41] 

showing that in case of homogeneous surfaces most of particles will deposit within a very short 

distance from the inlet while heterogeneity make the deposit more uniform along the capillary. This 

means that particles tend to travel further along the heterogeneous capillary compared to 

homogeneous capillary. This is schematized in Figure 3c and Figure 3d that give 3D sectional views 

of deposit structure corresponding to each case. 

 
Figure 3 (a) Spatial density distribution of the deposited particles versus the z coordinate at N=2000, Pe = 1.5×10-3 

for both heterogeneous (λ = 5 and θ = 0.5) and homogeneous capillary; (b) schematic representation of particle 

behavior near the boundaries between the favorable and unfavorable strips (after Nazemifard et al. 2006). 3D 

sectional view of the heterogeneous (c) and homogeneous (d) capillary. The red objects represent the deposited 

particles; the flow occurs from left to right. 

3.1.2 Deposition probability versus pitches frequency 

Here we investigate the evolution of the deposition probability as a function of the number of 

injected particles (N) at θ = 0.5 and a low Péclet number, Pe=1.5×10-3. The particles deposition 
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probability is defined as the ratio of the number of deposited particles over the number of injected 

particles and is calculated over groups of 200 particles for each simulation run [3]. From one run to 

the other, λ was varied while keeping wa=wna. All the data are gathered in Figure 4 where the 

reference case of a homogeneous capillary is also shown for comparison purposes. For all λ values, 

we observe a behaviour that is usual in the diffusion-dominant regime with a plateau at the early 

stage of the injection process. As the number of injected particles increases, the deposition 

probability reaches a critical value; or a jamming probability; before it drops rather sharply to 

relatively low values, indicating that any newly injected particles will almost travel along the 

capillary without deposition [5]. This is similar to the well documented RSA process [42]. More 

importantly, deposition probability obviously increases with λ although θ is constant. This is because, 

large λ and consequently large number of favourable strips lead to an increase of the relative number 

of successful attempts of particles to adsorb and that is why adsorption kinetics and the jamming 

coverage increase significantly, at a fixed site density, when the ratio ap/wa increases [20]. As long as 

the strip width is greater than the mesh size, the behavior approaches that of a homogeneous 

adsorbing capillary for high λ values. The other interesting limit is for λ = 1 for which the first half 

of the capillary is non-adsorbing and the second half is adsorbing. In such a situation, there is a 

greater probability for a particle to be transported over the favorable section without deposition [33]. 

This demonstrates that for a given θ, the deposition probability is highly dependent on the 

distribution of the surface charge. 
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Figure 4 Variation of deposition probability versus the number of injected particles (N) for heterogeneous (with 

different λ) and homogeneous capillaries. (Pe = 1.5×10-3, θ = 0.5) 

Moreover and as for a homogeneous adsorbing surface, the simulation results are represented in 

terms of the surface coverage (Γ) by dividing the total area of projection of deposited particles by the 

capillary surface. For the chemically heterogeneous surfaces, instead of the total capillary surface, 

only the adsorbing surface is used. Obtained results are commonly presented in dimensionless form 

Γ/ΓRSA with ΓRSA being the upper limit of surface coverage. Using the Random Sequential 

Adsorption (RSA) method, ΓRSA equals 0.546 for non-interacting hard spheres adsorbing on a 

homogeneous flat surface under diffusion regime [42]. On Figure 5, the variation of Γ/ΓRSA versus 

the number of injected particles is plotted, where the dependence on λ for θ = 0.5 under 

diffusion-dominant regime can be examined. It should be noted that as long as λ is low, adsorption 

efficiency is small and the asymptotic value of Γ/ΓRSA is significantly below unity due to low 

deposition probability. For high λ, however, the adsorbing efficiency is clearly promoted by the 

thinness of adsorbing slices and Γ is significantly higher than ΓRSA as a consequence of the fact that 

the projection of adsorbed particles often go beyond the border of adsorbing slices. 
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Figure 5 Variation of the dimensionless surface coverage versus N for a heterogeneous capillary with different λ 

(Pe=1.5×10-3, θ=0.5). 

3.1.3 Influence of the Péclet number  

To go further, the dependence of Γ/ΓRSA on Pe was considered in order to investigate the 

influence of the flow strength and its induced changes on the structure of the deposit. For that 

purpose, seven simulation runs were carried out over 6 decades with Pe ranging from 1.5×10-3 to 

1.5×103, while keeping both θ and λ constant (θ=0.5 and λ=5). The raw data corresponding to each 

Pe value was first plotted in terms of Γ/ΓRSA versus the number of injected particles. The latter was 

increased until the deposition probability reached 2%. Finally, the asymptotic values of Γ/ΓRSA were 

plotted against Pe. Obtained results are displayed on Figure 6 showing the existence of two distinct 

regimes: a diffusion-dominant regime for low Péclet numbers and a advection-dominant regime at 

high Péclet numbers that are connected through a transition regime. In the diffusion-dominant regime, 

the surface coverage is almost independent of Pe while in the advection-dominant one, the surface 

coverage is a decreasing function of Pe. At low Pe, deposition is a RSA-like Process and features a 

plateau while when particles transport is mainly governed by advection, the hydrodynamic 

shadowing effect comes into play. This well documented phenomenon [43, 44] is named so since, in 

this regime, there is an exclusion area behind already adsorbed particles that is prohibited for newly 

injected ones. By increasing Pe, such a surface is consequently increased resulting in a decrease of 

the surface coverage [5, 45]. This behavior is in all respects similar to the case of a homogeneous 

capillary as one could expect. It is to be noted that the value of ΓRSA used for scaling the data in 

Figure 6 is dependent on λ (asymptotic values in Figure 5) and is of 0.546 for homogeneous case. 

This Péclet dependent surface coverage was evidenced in column experiments when latex particle 

suspensions are let to flow at increasing velocity in adsorbing sandpack porous media [9]. Although 

obtained surface coverage data were plotted as a function of fluid velocity rather than Péclet number, 

their results are very similar to those shown on figure 6. Similar results were also found in case of 

experiments performed on columns packed with silicone carbide [45]. It was also numerically 

evidenced by studying colloid deposition in adsorbing pores of various shapes [34, 37]. Marijn and 

co-workers [46] have investigated latex particles deposition on a flat adsorbing surface under 

unidirectional laminar flow conditions. They showed experimentally that, in advection dominant 

regime, the characteristic length of the exclusion area along the flow direction should increase with 

Pe as Pen, with n =0.87. However other investigations based on theoretical considerations predict that 

the Sherwood number; Sh, that represents the non-dimensional flux of particles toward collecting 

surface should scale as Pe1/3 [32, 41, 47]. Because the density of adsorbing particles and hence the 

surface coverage is proportional to the colliding flux multiplied by the collection efficiency,  η, and 

as η is predicted to depend on Pe as Pe-2/3 [48], Γ is expected to decrease as Pe-1/3 in the advection 
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dominant regime. This power law is displayed on figure 6 showing a reasonable agreement with our 

results. It must be noted, however, that in previous works on homogeneous adsorbing surfaces [34, 

37, 45] a closer fit was found with this power law. 
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Figure 6 Variation of dimensionless surface coverage Γ/ΓRSA for the chemically heterogeneous capillary, λ = 5 and 

θ = 0.5 (a) Γ/ΓRSA versus N at different Pe; (b) Γfinal/ΓRSA as a function of Pe. 

3.2 Chess board patterned case 

In this section, the focus is laid upon heterogeneity consisting of chess board patterns. Moreover 

to compare deposition in the present case with the former one, the test case is restricted to one 

surface ratio value, θ = 0.5, and to diffusion-dominant regime where the deposit probability is 

significant. 

3.2.1 Surface coverage  

For the case of chess board patterned capillaries, as for alternating adsorbing non-adsorbing 

strips, first square patches of equal size of 3 μm were considered, so that λ = 5 along any generating 

line and an adsorbing surface fraction of θ = 0.5 (see Figure 1). The runs were performed in the 

diffusive regime taking Pe =1.5×10-3 and particles deposition was followed by varying the number of 

injected particles until adsorption was over. A sectional view of the deposit is shown on figure 7a for 

both kinds of spatial distribution of chemical heterogeneity. However, since it is difficult to draw any 

conclusions from this view of deposit, again the variation of Γ/ΓRSA as a function of the number of 

injected particles, N, is displayed on figure 7b. Then we may note that at low N values, the surface 

coverage is a linear function of N for both heterogeneity patterns. Since such a situation corresponds 

to clean bed conditions, the effective collection efficiency; ηeff ; or the slope of these curves, is the 

same in both cases suggesting that this property is insensitive to the pattern form and only depends 

on θ and λ. For large N however, it could be seen that Γ/ΓRSA corresponding to the chess board 

pattern is higher than in case of transverse strips. Indeed, as we emphasized in section 3.1, the 

average density of deposited particles at the leading and trailing edges of a favorable zone is often 

greater than its mean value over the whole zone. Thereby the observed results are direct 

consequences of higher deposition probability and the increase of total contour length of the 

heterogeneity area when a chess board pattern is adopted. Pham et al. [49] have reported similar 

behavior by numerically investigating nano-particles deposition in packed beds with four different 

patterns of surface charge heterogeneity and the same fraction of favorable surface. In their work 

spherical collectors that are favorable for nano-particles attachment are placed at different locations. 
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They show that when heterogeneity is randomly or uniformly distributed, nano-particles capture is 

more efficient compared to the case of transverse strip pattern. Indeed, for the chess board patterned 

capillary or more generally a random mixture pattern, the particles have more time and higher 

opportunity to move towards and collide with the favorable surfaces as they propagate through the 

domain. 
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Figure 7 (a) 3D sectional view (left: crosswise strips patterned), (right: chess board patterned) of the heterogeneous 

capillary with deposited particles; (b) variation of dimensionless surface coverage Γ/ΓRSA versus the number of 

injected particles, N, for crosswise strips patterned and chess board patterned capillaries. For both cases, θ = 0.5, 

pitch length = 3 μm and Pe = 1.5×10-3. 

3.2.2 Effect of the favorable surface ratio 

In order to investigate the influence of a favorable surface ratio, θ, on particles deposition, nine 

simulation runs were carried out at the same Pe = 1.5×10-3 for θ ranging from 0.2 to 1. In these 

simulations, the pattern was unchanged keeping λ = 5 but the size of adsorbing patches was modified 

to give different values of θ. Again, the obtained results are first presented in terms of the number of 

deposited particles versus the number of incoming particles and all the data are gathered in figure 8. 

For a chemically heterogeneous porous medium consisting in a random distribution of favorable and 

unfavorable zones, the deposition efficiency also named the effective efficiency ηeffective is generally 

given simply as a weighted average of favorable and unfavorable deposition efficiencies: 

ηeffective = θηf + (1-θ)ηu                                                  (9) 

where ηf and ηu stand respectively for favorable and unfavorable deposition efficiencies. Since the 

particle can only adsorb if the projection of its center lies within the favorable zone, and no particles 

can deposit on an unfavorable one (ηu = 0), equation (9) simplifies to: 
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(10) 

 

For comparison, the value of ηeffective/ηf predicted Eq. 10 (the dashed line), and those obtained 

from our simulations (the solid squares) are plotted in Figure 8c. ηeffective is the slope of 8(b) at the 

early stages of deposition process corresponding to clean bed conditions for each θ value and ηf is the 

deposition efficiency for a completely favorable surface. Eq. 10 provides a remarkably accurate 

prediction of the deposition efficiency for surfaces with macroscopic charge heterogeneity, even 

when the dimension of the heterogeneous zones is comparable to the particle dimensions. 

 

Figure 8 (a) 3D sectional view of the heterogeneous capillary with deposited particles, λ = 5, Pe = 1.5×10-3, θ is 

ranging from 0.2 to 1; (b) variation of the number of deposited particles versus the number of injected particles (N) 

with different θ; (c) the dependence of the effective collector efficiency (ηeffective/ηf) on θ (λ = 5, Pe = 1.5×10-3). 

4. Conclusions 

In this work, the proposed 3D-PTPO code is shown to be a useful and flexible tool for the 

microscale simulation of colloidal particle transport and deposition in a 3D chemically 

heterogeneous capillary. The main conclusions that can be drawn are as follows:  

(i) The coupled effect of the charge heterogeneity and the three-dimensional velocity field can 

bring out a complex concentration distribution of deposited particles on the wall, leading to a higher 

density of deposited particles at the leading and trailing edges of each favorable strip, and the 

deposition is more uniform along the patterned capillary compared to the homogeneous one.  

effective

f

η θ
η

=
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(ii) The deposition probability is in line with the frequency of the pitches. Under the same 

favorable surface ratio, θ, a smaller pitch length will result in a higher deposition probability and 

accordingly a higher dimensionless surface coverage. Moreover, for the diffusion-dominant regime at 

low Pe, the surface coverage is close to the ΓRSA and features a relatively stable plateau. For the 

advection-dominant regime at high Pe, the declining trend of Γ/ΓRSA versus Pe is in good agreement 

with the derived power law dependence of surface coverage versus Pe for the considered ratios ap/wa.  

(iii) The deposition efficiency increases linearly with the favorable area fraction. Although the 

simulations performed are not exhaustive and have been limited to special choices of Péclet number 

and/or favorable surface ratio, this study provides insight in designing artificially heterogeneous 

porous media for particle capture in various engineering and biomedical applications.  Furthermore, 

the model can be further improved by incorporating other heterogeneous patterns and more 

importantly by decreasing the capillary size to particle size. 
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