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Abstract 24 

 25 

Hydraulic tortuosity is commonly used as an input to macroscopic flow models in porous 26 

media, accounting for the sinuosity of the streamlines. It is well known that hydraulic 27 

tortuosity does not depend on the applied pressure gradient for Newtonian creeping flows. 28 

Nevertheless, this is not necessarily the case for yield stress fluids flows, given the directional 29 

nature of both yielding and shear-thinning behaviour. This study aims at a breakthrough on 30 

the relationship between the hydraulic tortuosity and the level of yielding. To do so, the 31 

hydraulic tortuosity of the flow paths is evaluated in 2D porous media by means of direct 32 

numerical simulations and subsequently put in relation with the morphological information of 33 

the medium provided by pore-network modelling. Moreover, the effects of pore dimensions, 34 

spatial disorder and rheological parameters on yielding behaviour are examined. In most 35 

situations, the reported tortuosity values are lower than those obtained for Newtonian fluids. 36 

  37 



1. Introduction 38 

 39 

Along with the rheology of the considered fluid, transport phenomena within the porous 40 

media are fundamentally influenced by structural properties, such as pore size distribution, 41 

mean pore connectivity and average tortuosity (Habisreuther et al., 2009). Among them, 42 

tortuosity is used to describe the sinuosity and interconnectedness of the pore space as it 43 

affects transport processes (Clennel, 1997). This concept was originally introduced by 44 

Kozeny (1927) and Carman (1937), and is commonly defined as the ratio between the 45 

average length of the actual fluid flow path through the porous matrix, Le, and the apparent 46 

length of the porous medium, L. However, a wide range of definitions exist in different fields 47 

of science and engineering (Duda et al., 2011), which have been previously analysed and 48 

compared in several publications (Dullien, 1992; Clennel, 1997; Valdés-Parada et al., 2011; 49 

Ghanbarian et al., 2016; Agnaou et al. 2017). Moreover, Agnaou et al. (2017) focused on the 50 

dependence of the tortuosity of the flow on the pore scale Reynolds number to predict the 51 

onset of different inertial regimes in non-creeping motion. 52 

 53 

When modelling the relationship between pressure drop and flow rate, tortuosity is often 54 

defined as being the average elongation of a streamline in a porous medium, and is referred to 55 

as hydraulic tortuosity (Duda et al., 2011). The hydraulic tortuosity T = Le/L is then used to 56 

account for the fact that the effective length of the fluid flow path within the porous medium 57 

Le is greater than the apparent length L of the porous medium. Consequently, T has been 58 

commonly used as a significant input for predicting the hydraulic conductivity of a porous 59 

medium (Dullien, 1992; Vidal et al., 2009; Valdés-Parada et al., 2011; Ghanbarian et al., 60 

2016). By assuming that the flow rate vs. pressure drop relationship during one-dimensional 61 

horizontal flow through a 2D porous medium sample of length L can be assimilated to that 62 



obtained in a bundle of rectangular channels having the same length L, infinite width, and N 63 

different aperture classes hi (i = 1…N), the total flow rate Q per unit width is written as: 64 

 65 

Q�∆P� � � n	q�∆P, h	�


	��
 

 

(1) 

 66 

where ∆P is the pressure drop between the inlet and the outlet of the bundle, h	 is the 67 

representative pore aperture of the ith class of capillaries and ni is the frequency of the ith 68 

class. In this equation, the (ni,hi) data correspond to the pore size distribution of the 69 

investigated medium, and q�∆P, h	� is the individual flow rate per unit width in a rectangular 70 

channel of aperture h	, under a pressure gradient ∆P. In the case of creeping flow of a 71 

Newtonian fluid of dynamic viscosity μ,	q�∆P, h	� is given by Hele-Shaw’s equation: 72 

 73 

q�∆P, h	� � h	�12μ ∆PTL 
(2) 

 74 

Other expressions of q�∆P, h	� are available for the flow of non-Newtonian fluids, including 75 

yield stress fluids (Skelland, 1967; Chhabra and Richardson, 2008). It is worth noting that the 76 

use of Eq. (1) and Eq. (2) to obtain flow rate vs. pressure drop relationship assumes that all 77 

channels have equal tortuosity value T. Therefore, if the specific hydraulic tortuosity of the 78 

streamlines is known for each pore class, the accuracy of the Q vs ∆P predictions with the 79 

bundle-of-capillaries model is expected to be noticeably improved. 80 

 81 



Another important issue concerns the determination of local pore velocity, shear rate and 82 

viscosity from easily measurable macroscopic Darcy’s velocity u. By taking tortuosity into 83 

account, the average effective flow velocity Vp within a porous medium of porosity ε, 84 

expressed as Vp = (u/ε)×T (Carman, 1937), can be determined. Consequently, assuming T = 1 85 

in a porous medium that is tortuous by nature leads to underestimation of Vp, which is not a 86 

trivial matter when dealing with non-Newtonian fluids with shear-rate-dependent viscosity. 87 

For example, if shear-thinning polymer solutions are considered, underestimation of Vp 88 

results, in turn, in underestimation of local shear rate and overestimation of local shear 89 

viscosity. Moreover, other effects of fluid-medium interactions on the adsorption, mechanical 90 

degradation and retention of macromolecules that are frequently encountered in the flow of 91 

such complex fluids are expected to be more impacted in the case of highly tortuous porous 92 

media, given that the residence time increases with T. 93 

 94 

Different numerical approaches are currently available for determining tortuosity from the 95 

results of different experimental methods. In this respect, 3D images obtained by Nuclear 96 

Magnetic Resonance technique (NMR) were used by Habisreuther et al. (2009) to achieve 97 

numerical determination of structural tortuosity. Also, Laudone et al. (2015) presented an 98 

algorithm allowing the calculation of tortuosity in different types of porous media by using 99 

the mercury intrusion porosimetry results as input data. More recently, Pawlowski et al. 100 

(2018) derived hydraulic tortuosity from numerically simulated fluid pathways in the internal 101 

structure of a monolith reconstructed using 3D X-ray tomography images. In any case, 102 

attention must be paid to the differences between geometrical tortuosity and hydraulic 103 

tortuosity when analysing the results provided by these tortuosity characterization methods 104 

(Ghanbarian et al., 2016). Indeed, as emphasized by Clennel (1997), the paths taken by a 105 

fluid as it flows through the porous medium are not straight lines, or close tangents to the 106 



solid grains, but they are rather smooth curves tending to follow the axes of the flow 107 

channels. Also, as a result of viscous drag, fluid flow is more retarded at the channel walls 108 

than along the mean channel axes, so not all paths are equally intricate. 109 

 110 

Previous works showed that, in the case of creeping Newtonian flow through a porous 111 

medium, the hydraulic tortuosity of the streamlines is independent of injection velocity 112 

(Sivanesapillai et al., 2014; Ghanbarian et al., 2016; Agnaou et al., 2017; Zhang et al., 2019), 113 

and several relationships were proposed to estimate its value, as summarized by Ghanbarian 114 

et al. (2016). Whereas various definitions are only based on the actual length of the 115 

streamlines, others introduce a weighting factor such as the local velocity magnitude or flux 116 

which gives more importance to the streamlines with high velocity. Unlike in the case of 117 

Newtonian fluids, little attention has been paid to the evaluation of hydraulic tortuosity 118 

during flow of non-Newtonian fluids. In particular, the available numerical studies addressing 119 

yield stress fluid flow in porous media are remarkably scarce (Chevalier and Talon, 2015; 120 

Malvault et al., 2017; Bao et al., 2017; Rodríguez de Castro and Agnaou, 2019; Kostenko and 121 

Talon, 2019; Rodríguez de Castro et al., 2020), due partly to the considerable computational 122 

resources required to perform direct numerical simulations of these complex flows (Saramito 123 

and Wachs, 2017). 124 

 125 

Recently, Zhang et al. (2019) carried out 3D numerical simulations of the flow of non-126 

yielding shear-thinning fluids obeying a Cross rheological law that contains an upper and a 127 

lower viscosity plateau through a rough-walled rock fracture, using an input geometry 128 

extracted from a digitalized microtomography image. In this work, the authors determined the 129 

hydraulic tortuosity of the flow from the detailed velocity field provided by the numerical 130 

simulations. They found that the hydraulic tortuosity of such a shear-thinning flow decreases 131 



with increasing flow rate within the creeping flow regime. In their analysis, they attributed 132 

this behaviour to the flow channelling effect observed when the local viscosity of the 133 

considered Cross fluids falls below the upper Newtonian plateau value in only a part of the 134 

fracture, i.e., in the largest pores where larger shear rates are generated. Also, Kostenko and 135 

Talon (2019) analyzed the fractal flow structures exhibited by yield stress fluids with 136 

constant plastic viscosity (Bingham fluids) in the presence of local heterogeneities by 137 

performing 2D Lattice Boltzmann simulations. These authors qualitatively observed that 138 

hydraulic tortuosity was higher in the presence of strong permeability heterogeneities. Such 139 

heterogeneities result in a considerable increase in the value of the local hydraulic tortuosity, 140 

as the flow is diverted towards the high-permeability regions of the medium. 141 

 142 

The relationship between hydraulic tortuosity and injection velocity in the presence of a yield 143 

stress has still not been addressed in the literature, nor have the specific effects of pore body 144 

and throat size distributions and structural disorder been elucidated. In an attempt to fill this 145 

gap, the major objective of the present paper is to investigate the dependency of hydraulic 146 

tortuosity on the yielding degree of yield stress fluids obeying the Herschel-Bulkley law 147 

flowing through a porous medium. Moreover, the proportion of the fluid having yielded at 148 

different values of the Herschel-Bulkley number (which will be defined below) will also be 149 

characterized. In order to achieve these goals, a set of numerical simulations are performed 150 

by using 2D porous media with different microstructural characteristics. In these simulations, 151 

the fraction of the stagnant fluid and the tortuosity of the streamlines are calculated from the 152 

computed shear viscosity and velocity maps for different values of the Herschel-Bulkley 153 

number. To go further, the effects of Herschel-Bulkley parameters (i.e., yield stress, 154 

consistency and fluidity indexes) on the investigated relationships will be assessed by 155 



performing a second set of numerical experiments with different Herschel-Bulkley fluids 156 

through a given porous medium.  157 



2. Numerical experiments 158 

 159 

2.1. Microstructure of porous media under investigation 160 

 161 

A subset of 2D micromodels presented by Mehmani and Tchelepi (2017a) was used in the 162 

current research (Figure 1). This choice will allow us to assess the effect of disorder, grain 163 

sizes and polydispersity on the hydraulic tortuosity of the streamlines for the steady flow of 164 

Newtonian and yield stress fluids. In the particular case of the Berea 2D micromodel, the 165 

geometry was previously extracted by Boek and Venturoly (2010) based on a thin slice of a 166 

3D Berea sandstone rock sample. Table 1 lists the main microstructural features, the 167 

permeability K, the porosity ε and the value of the hydraulic tortuosity of the flow paths 168 

followed by Newtonian fluids, TN, for all the used micromodels. TN was obtained from the 169 

results of direct numerical simulations as those presented in subsection 2.2. The original 170 

names given by Mehmani and Tchelepi, (2017a;b) to the investigated media have been 171 

modified in order to facilitate the current analysis. It is highlighted that the effect of grain size 172 

will be analysed by keeping the positions of the grains centers unchanged in both DML and 173 

DMS. Regarding the level of disorder, high disorder level was generated by randomly 174 

perturbing grain positions in both horizontal and vertical coordinates with respect to the low 175 

disorder level in which the grain centres are aligned. 176 



 177 

Figure 1. 2D micromodels used in the present numerical simulations: (a) Ordered 178 

Monodisperse Large grains: OML, (b) Disordered Monodisperse Large grains: DML, (c) 179 

Disordered Monodisperse Small grains: DMS, (d) Ordered Polydisperse grains: OP, (e) 180 

Disordered Polydisperse grains: DP and (f) Berea sandstone micromodel. Black colour 181 

represents the solid grains and white colour represents the interstices. These geometries were 182 

obtained from Mehmani and Tchelepi (2017a) and are freely available (Mehmani and 183 

Tchelepi, 2017b). 184 

 185 



Table 1. Main features of the investigated micromodels. The original names given by 186 

Mehmani and Tchelepi (2017a;b) to these micromodels are listed in the second column. 187 

Medium 

Original 

name 

Level of 

disorder 

Grain size Grain shape ε (%) K (m2) TN 

OML GL – D1 Low Monodisperse - Large Circular 36.40 5.51 × 10-12 1.012 

DML GL – D4 High Monodisperse - Large Circular 38.97 3.31 × 10-10 1.456 

DMS GS – D4 High Monodisperse - Small Circular 61.97 5.42 × 10-9 1.160 

OP P – D1 Low Polydisperse Circular 47.78 9.97 × 10-10 1.309 

DP P – D4 High Polydisperse Circular 48.91 1.60 × 10-9 1.348 

Berea Berea 

From 

rock 

sample 

From rock sample 

From rock 

sample 

33.61 3.87 × 10-12 1.300 

 188 

In order to carry out further investigations on the microstructures, an equivalent pore network 189 

model representing each 2D porous medium was extracted. Pore network models are 190 

idealized representations of the real porous geometry that reduce the complexity involved in 191 

solving transport problems at the pore scale. Moreover, essential features for permeability 192 

and pressure loss prediction, such as pore-body to pore-throat aspect ratio and pore 193 

connectivity, can be well characterized by the pore network models in typical cases (Paul et 194 

al., 2019). A review of the advances in pore network modelling of porous media was 195 

presented by Xiong et al. (2016), who described the different current applications ranging 196 

from dissolution phenomena to biomass growth. The pore network extraction operations 197 

carried out in the current work were performed using the subnetwork of the oversegmented 198 



watershed (SNOW) algorithm (Gostick, 2017) implemented within the open-source toolkit 199 

for quantitative analysis of porous media images, PoreSpy (Gostick et al., 2019; Khan et al., 200 

2019). The algorithm proceeds through different steps. It first extracts the distance map of the 201 

void spaces, filters it and eliminates peaks on saddles and plateaus and then merges peaks that 202 

are close to each other. Finally, it assigns void voxels (or pixels for a 2D medium) to pores. 203 

The SNOW algorithm was used for the extraction of the pore networks from the 2D media 204 

shown on Figure 1. It is highlighted that the position of the centers of the grains remains 205 

unchanged for a given level of disorder in the investigated porous media. Therefore, the 206 

different combinations of grain size, grain shape, level of disorder and polydispersity produce 207 

changes in the compacity of the investigated media, and consequently in their porosity. The 208 

individual effects of such a porosity variation on yielding behavior and tortuosity are not 209 

specifically addressed in the current study. Also, it is noted that the average grain size of the 210 

polydisperse media is identical to the grain size of the monodisperse media with large grains. 211 

 212 

The Body Size Distributions (BSD) and the Throat Size Distributions (TSD) of the pore-213 

network models extracted from the six porous media are represented in Figure 2. 214 

Furthermore, in order to facilitate the analysis, the average throat size, mthroats, the standard 215 

deviation of the TSD, σthroats, the average body size, mbodies, and the standard deviation of the 216 

BSD, σbodies, were determined and are listed in Table 2. A noteworthy feature is the single 217 

probability peak obtained in both BSD and TSD of OML. Also, the pore dimensions of the 218 

Berea micromodel are significantly smaller than those of the other samples. It can be 219 

observed that the standard deviations of the BSDs and TSDs of the polydisperse media OP 220 

and DP are higher than those of the monodisperse media OML and DML, as expected from 221 

the diversity of grain sizes present in polydisperse media. Moreover, both mbodies and mthroats 222 

are higher in the polydisperse media for a given level of disorder. The effect of grain size on 223 



pore characteristics can be evaluated by comparing the BSD and TSD obtained for DMS and 224 

DML. By doing so, it was observed that despite similar standard deviations, the values of 225 

mthroats and mbodies were smaller for the porous medium with larger grain sizes. Another key 226 

aspect is the effect of disorder. Indeed, while partial overlap between TSD and BSD is 227 

obtained for the disordered media DML and DP, this effect is much less significant for the 228 

ordered ones. 229 

 230 

 231 

Figure 2. Body Size Distributions and Throat Size Distributions of the six porous media 232 

investigated in the present work: (a) OML, (b) DML, (c) DMS, (d) OP, (e) DP and (f) Berea. 233 



 234 

Table 2. Average values and standard deviations of the BSDs and TSDs of the pore-networks 235 

extracted from the different porous media 236 

Medium mthroats (μm) σthroats (μm) σthroats (%) mbodies (μm) σbodies (μm) σbodies (%) 

OML 96 19 20 627 167 27 

DML 222 141 64 474 258 54 

DMS 322 149 46 618 342 55 

OP 217 120 55 685 208 30 

DP 274 164 60 540 282 52 

Berea 17 13 76 86 40 47 

 237 

2.2. Numerical experiments procedure 238 

 239 

The procedure previously presented by Rodríguez de Castro and Agnaou (2019) was adopted 240 

in the present numerical simulations. In this procedure, the flow problems were numerically 241 

solved using the finite-element-method-based simulation package Comsol Multiphysics 242 

version 5.3. (2017). The porous media displayed in Figure 1 were discretized using 243 

unstructured triangle dominated meshes. The simulations were carried out using the Creeping 244 

Flow module, developed for solving Stokes flow problems. The boundary conditions 245 

associated with the flow problem consist of the Dirichlet uniform pressure at the left and right 246 

boundaries of the porous structures. In addition, a no-slip velocity condition was imposed at 247 



the grain-fluid interface as well as at the top and the bottom boundaries of the considered 248 

porous media. It was observed that, given the small ratio between the average grain size and 249 

the dimensions of the computational domain, the choice of boundary conditions at the top and 250 

bottom walls had not significant influence on the results. Also, it must be noted that since 251 

flow is induced thanks to the enforced pressure difference, backflow may appear at the inlet 252 

and result in numerical instabilities. For this reason, the backflow at the entrance (left 253 

boundary) was systematically eliminated. This constraint can be compared to the situation 254 

where one uses a pump to inject the fluid through the porous medium and where the pump 255 

does not allow the fluid to go back. The average skewness of the generated meshes ranged 256 

from 0.798 to 0.828. Regarding the resolution of the boundary layers along the walls of the 257 

pore channels, a minimum mesh element size of 20 µm was used for all porous media apart 258 

from Berea sandstone, for which 3 µm was imposed. This led to an average of 240 grid nodes 259 

per pore. 260 

 261 

The fundamental character of yield stress fluids is that they flow only if they are submitted to 262 

a shear stress exceeding some critical value τ� (Coussot, 2014). Otherwise, they deform in a 263 

finite way like elastic solids. The rheological behavior under shear of such fluids is mostly 264 

described by the empirical Herschel-Bulkley law (Herschel and Bulkley, 1926). This law 265 

combines yield stress with a shear-dependent viscosity and, for simple shear, can be written 266 

as: 267 

�τ � τ� + kγ��		for		τ ≥ τ�	γ� � 0		for		τ ≤ τ�
 

(3) 

 268 



where	τ� is the yield stress, k is the consistency index and n is the fluidity index. To 269 

overcome the expected singularities when using such a relationship in numerical 270 

computations, the shear viscosity of the fluid was described as follows: 271 

 272 

μ � �min (μ)*+	, ,	kγ��-� + τ�γ� ./ 											for														γ� > 0	
μ)*+														for															γ� � 0  

 

(4) 

 273 

in which μ)*+ is a pre-defined maximum viscosity. A value μ)*+ = 10000 Pa s was used in 274 

this study. It should be highlighted, however, that this maximum limit was adopted as a 275 

compromise between accuracy and numerical stability. On the one hand, using extremely 276 

high μ)*+ values yields important viscosity gradients within the computational domain and 277 

therefore numerical instabilities. On the other hand, low μ)*+ values fail to accurately 278 

reproduce the expected rheological behaviour. The resulting system of non-linear equations 279 

was solved using the Comsol Stationary Solver and the solution was sought using the 280 

Newton-Raphson algorithm, taking as initial guesses the initial conditions (fluid at rest, zero 281 

pressure and velocity fields). The system of linearized equations within each Newton-282 

Raphson iteration, was solved using the direct solver PARDISO (Schenk, 2004). The 283 

numerical solution is then judged converged upon reaching a residual below a relative 284 

tolerance of 10-� both in terms of velocity and pressure. A computer equipped with an 285 

Intel(R) Core(TM) i7-4500U CPU node at 2.40GHz with 4 cores was used to perform the 286 

current numerical simulations. The simulation times were close to 20 min in all cases, with a 287 

memory usage of 4 GHz. 288 

 289 



A first set of experiments was performed by using a yield stress fluid with shear-rheology 290 

parameters τ� = 10 Pa, k = 1 Pa sn and n = 0.5. In these experiments, the yield index Y of the 291 

fluid was defined as the complement of the ratio between the computed surface-averaged 292 

shear viscosity μ1 and μ)*+ at each value of the imposed pressure gradient: 293 

 294 

Y � 1 − μ1μ)*+ 
(5) 

 295 

Y was used to quantify the size of the unyielded region. The value of Y is zero when the fluid 296 

is “stagnant” within the whole porous medium, and it approaches unity when the fluid flows 297 

with low viscosity in all pores. The numerical simulations were also used to obtain sets of 298 

average velocity vs. pressure gradient data points. For each imposed pressure gradient ∇P5, 299 

the resulting average velocity u5 was computed as the line integration over the inlet of the 300 

velocity component in the main flow direction divided by the width of the medium. Then, by 301 

using the computed (uj,∇P5) data, the apparent viscosity of the yield stress fluid in the porous 302 

medium μ*77 was calculated from Darcy’s law (Darcy, 1856): 303 

 304 

μ*77 � K ∇P5u5  
(6) 

 305 

The apparent shear rate γ� *77 was subsequently calculated by using μ*77 as an input to 306 

Herschel-Bulkley’s empirical law (Herschel and Bulkley, 1926), which can be rewritten as 307 

follows: 308 

 309 



μ*77 	� τ�γ� *77 + kγ� *77�-� (7) 

 310 

In each experiment, the Herschel-Bulkley number H, also known as generalized Bingham 311 

number, was used to quantify the relative importance of yield stress τ� as compared to the 312 

excess shear stress kγ� *77� produced in the power-law-viscosity regime (Magnin and Piau, 313 

2004; Kandasamy and Nadiminti, 2015; Moreno et al., 2016): 314 

 315 

H � τ�kγ� *77� 
(8) 

 316 

Furthermore, the hydraulic tortuosity values of the flow paths followed by Newtonian and 317 

yield stress fluids were also obtained from the post processing of the direct numerical 318 

simulation results. This was achieved by dividing the surface average of the velocity 319 

magnitude field |;|1111 by the surface average of the horizontal component of velocity u+111 (since 320 

the imposed pressure gradient was oriented along the inverted x axis) over the pore space 321 

(Duda et al., 2011; Zhao et al., 2018; Zhang et al., 2019), with u being the velocity vector: 322 

 323 

T � |;|1111
u+111  

(9) 

 324 

The same procedure was used in order to conduct a second set of in silico experiments, in 325 

which the injection of seven yield stress fluids with different Herschel-Bulkley parameters 326 

through the micromodel DP was simulated. Table 3 lists the Herschel-Bulkley parameters of 327 



the considered yield stress fluids. The results of this second set of experiments are presented 328 

in subsection 3.1.4. 329 

 330 

The definition of the tortuosity given by Eq. (9) is more rigorous and simpler than the more 331 

common definition T = Le/L. In fact, this definition does not require the computation of the 332 

flow streamlines. It was shown (Duda et al., 2011) that T given by Eq. (9) is equivalent, for 333 

an incompressible flow without recirculation zones, to the surface (for a 3D configuration) 334 

average of Le/L weighted by the local flux over a reference surface perpendicular to the main 335 

flow direction. This implies that if one uniformly discretizes the reference surface, the flux 336 

can be replaced by the velocity component normal to the reference surface. On the other 337 

hand, in the presence of recirculation zones, T given by Eq. (9) becomes an upper limit of the 338 

surface (over a reference surface) average of Le/L weighted by the local flux. 339 

 340 

Table 3. Herschel-Bulkley parameters of the fluids used in the present numerical simulations 341 

Fluid name Standard Low τo High τo Low k High k Low n High n 

τo 10 Pa 1 Pa 100 Pa 10 Pa 10 Pa 10 Pa 10 Pa 

k 1 Pa sn 1 Pa sn 1 Pa sn 0.1 Pa sn 10 Pa sn 1 Pa sn 1 Pa sn 

n 0.5 0.5 0.5 0.5 0.5 0.33 1 

 342 

3. Results 343 

 344 

This section presents the results provided by the numerical simulations presented above. 345 

Subsections 3.1.1, 3.1.2 and 3.1.3 deal with the injection of the investigated standard yield 346 

stress fluid through the different porous media, in order to assess the effects of microstructure 347 

on the hydraulic tortuosity and yielding behaviour. The second set of experiments in which a 348 



set of different yield stress fluids were injected in the same porous medium are presented in 349 

subsection 3.1.4, aiming to evaluate the effects of varying Hershel-Bulkley parameters on Y 350 

and T. 351 

 352 

3.1.1. Computed u (<=) data points and examples of the obtained shear viscosity and 353 

velocity maps 354 

 355 

The computed u (∇P) data obtained for the injection of the standard fluid (τ� = 10 Pa, k = 1 356 

Pa sn and n = 0.5) through the set of porous media investigated in the current work are 357 

represented in Figure 3(a). The unexpected trend observed at the lowest ∇P values for OML 358 

and OP, where u is roughly proportional to ∇P, is due to the existence of an important 359 

residual Newtonian flow produced below yielding in these ordered media, with viscosity 360 

μ)*+		 (Eq. 2). Apart from this aspect, the u (∇P) behaviour is the usual one for a yield stress 361 

fluid flowing through a porous medium (Rodríguez de Castro et al., 2016). Besides, it is 362 

reminded that, as mentioned in subsection 2.2., Y can be used to quantify the size of the 363 

unyielded region. In order to facilitate the understanding of the relationship between the 364 

controllable macroscopic quantity ∇P and the measured dimensionless number Y, the Y vs. 365 

∇P results obtained for all numerical experiments are represented in Figure 3(b). As expected, 366 

higher values of Y are obtained as ∇P is increased, and once Y ~ 0.8 is attained, a 367 

considerable increase in ∇P is required to achieve the flow of the yield stress fluid within the 368 

whole porous medium (Y = 1). In Figure 4, examples of shear viscosity maps at intermediate 369 

values of Y are displayed over the three considered porous structures showing the existence 370 

of an important channelling effect through the largest pores. Furthermore, illustrative 371 

examples of the computed velocity maps are provided in Figure 5 for different values of the 372 

Herschel-Bulkley number H, confirming that significant velocity magnitudes are obtained 373 



only in those pores in which the fluid has yielded. Also, as H decreases (∇P increases), the 374 

unswept area becomes smaller. 375 

 376 

 377 

Figure 3. (a) Simulated (u,∇P) data points and (b) Y vs. ∇P relationship obtained for the 378 

injection of the standard fluid (τ� = 10 Pa, k = 1 Pa sn and n = 0.5) through the different 379 

porous media investigated in the current work. 380 

 381 



 382 

Figure 4. Examples of shear viscosity maps as provided by the numerical simulations for 383 

different values of Y during the injection of the standard fluid (τ� = 10 Pa, k = 1 Pa sn and n 384 

= 0.5): (a – d) correspond to the porous medium OML and (e – h) to the porous medium OP. 385 

 386 



 387 

Figure 5. Examples of simulated velocity maps obtained for different values of H during the 388 

injection of the standard fluid (τ� = 10 Pa, k = 1 Pa sn and n = 0.5). (a – d) correspond to 389 

Berea sandstone and (e – h) to the porous medium DMS. The colour scale represents the 390 

magnitude of velocity at each position. The values in the colorbars are expressed in m s-1. 391 

 392 

 393 



3.1.2. Effects of the pore structure on the yielding behaviour of the fluid 394 

 395 

The viscosity maps provided by the numerical simulations presented in subsection 3.1.1. for 396 

the flow of the standard Herschel-Bulkley fluid (Table 3) were used to calculate Y and H 397 

under different pressure gradients using Eqs. (5) and (8). From these results, the relationship 398 

between Y and H was determined and is represented in Figure 6. It is noted that, in all cases, 399 

Y decreases when H is increased. This was expected due to the higher influence of yield 400 

stress at the high values of H (corresponding to small pressure gradients), leading to larger 401 

sizes of the unyielded regions (Prashant and Derksen, 2011). More importantly, the main 402 

conclusion is that the relationship between Y and H depends on the type of structure. 403 

Moreover, in all cases, Y is lower than 0.2 when H is higher than 100, which means that a 404 

very small portion of the fluid is flowing at a significant velocity. 405 

 406 

From Figure 6(b), it can be deduced that the range of H over which progressive yielding is 407 

produced is shorter for the porous medium with small grains (and larger pores). This can be 408 

explained by the fact that, although the maximum throat sizes of DMS (small grains) and 409 

DML (large grains) are very close (Figure 2), the TSD of DML presents higher probabilities 410 

for small pore sizes. Indeed, the fluid is mobilized in these small pores only at high pressure 411 

gradients, corresponding to lower values of H. Also, the considerably higher porosity of DMS 412 

is expected to facilitate yielding of the fluid at lower pressure gradients (higher values of H) 413 

as compared to DML. Moreover, it can be observed in Figures 6(c) and 6(d) that the effect of 414 

polydispersity on the Y – H relationship is stronger for the ordered media, probably as a 415 

consequence of the marked differences in terms of TSD and BSD between the monodisperse 416 

and polydisperse ordered media. Figure 6(f) shows that the influence of disorder on the Y – H 417 

relationship is negligible for the polydisperse media, while it is significant for the 418 



monodisperse media. This behaviour can be explained by the exceptional straightness of the 419 

flow paths obtained in OML, which results in a more abrupt yielding transition, as will be 420 

discussed in section 4. 421 

 422 

 423 

Figure 6. Relationships between yield index, Y, and Herschel-Bulkley number, H, for the 424 

different porous media during the injection of the standard fluid (τ� = 10 Pa, k = 1 Pa sn and 425 

n = 0.5). (a) Berea sandstone. (b) Effect of grain size by comparing DMS (small grain size) 426 



and DML (large grain size). (c) Effect of polydispersity in ordered porous media by 427 

comparing OML (monodisperse) and OP (polydisperse). (d) Effect of polydispersity in 428 

disordered porous media by comparing DML (monodisperse) and DP (polydisperse). (e) 429 

Effects of disorder in monodisperse porous media by comparing OML (ordered) and DML 430 

(disordered). (f) Effects of disorder in polydisperse porous media by comparing OP (ordered) 431 

and DP (disordered). 432 

 433 

3.1.3. Influence of the pore structure on the tortuosity of the streamlines 434 

 435 

The hydraulic tortuosity of the streamlines was calculated for the flow of the considered 436 

standard Herschel-Bulkley fluid as well as for a Newtonian fluid by using Eq. (9), and its 437 

dependence on Y was investigated. Figure 7 shows that the hydraulic tortuosity of the flow of 438 

the Herschel-Bulkley fluid is lower than that of a Newtonian fluid for all the tested porous 439 

media, except for the ordered monodisperse medium OML for which they coincide (Figure 440 

7c and 7e). This is true even when Y approaches unity, i.e., when H becomes very low and 441 

the effect of yield stress is well mitigated. Such low tortuosity stems from the directional 442 

nature of shear-thinning behaviour and yielding. Indeed, the shear viscosity decreases as the 443 

applied pressure gradient increases. Consequently, low viscosity regions are oriented along 444 

the main direction of the flow, where the pressure gradients are higher than in transverse 445 

directions, as clearly illustrated in Figure 4. In the particular case of OML, in which all grains 446 

are perfectly aligned, the flow paths offering the lowest resistance to flow correspond to the 447 

shortest ones, i.e., straight lines going from the inlet to the outlet of the medium traveling 448 

over the identical pore constrictions with a hydraulic tortuosity approaching unity both for the 449 

Newtonian and the yield stress fluid flows. For the other considered porous media, including 450 

the Berea sandstone micromodel, hydraulic tortuosity is observed to increase with decreasing 451 



Y within the low Y-regime. This is expected to be related to the Newtonian viscosity limit 452 

μ)*+ imposed during the flow simulations. Indeed, the residual Newtonian flow with 453 

viscosity μ)*+ becomes more significant as Y approaches zero, and therefore the higher 454 

tortuosity of the residual Newtonian flow (TN) in some regions of the micromodel contribute 455 

to increase the average value of T throughout the medium. The preceding finding is in good 456 

agreement with the results of Zhang et al. (2019) for Cross fluids. It should be emphasized 457 

that, although ideal Herschel-Bulkley fluids do not exhibit any viscosity plateau at very low 458 

shear rates, the use of μ)*+ is quite realistic in the case of most commonly encountered 459 

pseudo-yield stress fluids, as previously shown and discussed by several researchers (Spelt et 460 

al., 2005; Lavrov, 2013; Rodríguez de Castro et al., 2018). Besides this, the main flow 461 

features are as follows: 462 

- The hydraulic tortuosity dependence on Y is weaker for the porous media with the 463 

narrowest TSDs (Table 2), i.e., OML and DMS. This is because of the number of 464 

preferential flow paths is smaller and the increase of Y (at higher ∇P) occurs under 465 

the same flow configuration, leading to an almost constant T. 466 

- The polydispersity of the grain size distribution leads to an overall increase in 467 

hydraulic tortuosity in the ordered media (Figure 7c). As described by Kostenko and 468 

Talon (2019), this is due to the diversion of the flow produced by the considerable 469 

increase in the magnitude of the permeability of local highly permeable zones. 470 

- The tortuosity of the disordered polydisperse medium DP is lower than the one of the 471 

disordered monodisperse medium DML (Figure 7d). This is possibly due to the 472 

similar range of sizes covered by the TSDs and the BDSs of both disordered media 473 

and the significant overlap between their TSD and BDS (Figure 2). As a result, the 474 

maximum local permeability is not necessarily higher for the polydisperse medium. 475 



- T increases with Y at moderate and high values of Y, which is explained by the 476 

decreasing intensity of channelling displayed in Figures 4 and 5, and the greater 477 

number of paths opening to the flow as the pressure gradient is increased. It is noted 478 

that no significant differences in such a behaviour were observed between media with 479 

different grain sizes.  480 

It should be kept in mind that, while the present conclusions are valid for the considered 481 

configurations, further works are required in order to generalize these findings. 482 

 483 



 484 

Figure 7. Relationships between Hydraulic tortuosity and yield index for the different porous 485 

media during the injection of the standard fluid (τ� = 10 Pa, k = 1 Pa sn and n = 0.5). The 486 

continuous lines represent the constant hydraulic tortuosity TN for Newtonian flow in each 487 

case, while dashed lines correspond to the flow of the yield stress fluids. (a) Berea sandstone. 488 

(b) Effects of grain size by comparing DMS (small) and DML (large). (c) Effects of 489 

polydispersity in ordered porous media by comparing OML (monodisperse) and OP 490 

(polydisperse). (d) Effects of polydispersity in disordered porous media by comparing DML 491 



(monodisperse) and DP (polydisperse). (e) Effects of disorder in monodisperse porous media 492 

by comparing OML (ordered) and DML (disordered). (f) Effects of disorder in polydisperse 493 

porous media by comparing OP (ordered) and DP (disordered). 494 

 495 

3.1.4. Effect of Herschel-Bulkley parameters on the yielding behaviour and the 496 

tortuosity of the streamlines 497 

 498 

 499 



Figure 8. Relationships between H and ∇P for the different Herschel-Bulkley fluids (Table 3) 500 

injected through DP. (a) represents the dependence on τ�, (b) the dependence on k and (c) 501 

dependence on n. 502 

 503 

In an effort to elucidate the individual effects of τ�, k and n on the investigated relationships, 504 

the results of the set of flow simulations using different fluids (Table 3) are represented in 505 

Figures 8 and 9. All fluids were injected through the same porous medium, DP. As reported 506 

in Figure 8, H monotonically decreases with ∇P in all cases, as expected from Eqs. (6–8). 507 

More precisely, one can note that higher values of τ� consistently lead to higher values of H 508 

for a given pressure gradient. On the contrary, the effect of k is significant only for the lowest 509 

pressure gradients. This is because higher values of k lead to higher values of μ*77 under a 510 

given pressure gradient, leading, in turn, to smaller values of γ� *77. Consequently, the 511 

denominator of Eq.(8) remains roughly constant and the value of H is almost unaffected. 512 

Analogously, the fluidity index n has a growing influence on H as the pressure gradient 513 

decreases, which can be explained by employing a similar reasoning. 514 

 515 

It is observed in Figure 9a that the effect of the value of >? on the dependence of Y on H is 516 

only significant for H > 1, e.g., at the lowest pressure gradients for which the fluid has still 517 

not yielded in many pores. Moreover, the onset of yielding (taken as Y = 0.2) occurs at 518 

higher values of H when τ� is increased, and the intermediate values of Y span over a wider 519 

range of H. Indeed, in the presence of a yield stress, progressive yielding occurs between a 520 

minimum pressure gradient ∇P)	� = 2τ�/hmax and a maximum pressure gradient ∇P)*+ = 521 

2τ�/hmin, with hmax and hmin being characteristic sizes of the largest and the smallest 522 

constrictions in the medium. Therefore, the range between ∇P)	� and ∇P)*+ is proportional to 523 

the value of τ�. This results in wider ranges of H as the value of τ� increases, in qualitative 524 



agreement with the results displayed in Figure 9a. Also, it can be deduced from Figure 9b that 525 

the value of H corresponding to a given value of Y becomes lower as k increases, with the 526 

intermediate stages of yielding spanning over a narrower range of H. In this regard, it can be 527 

noted that despite ∇P)	� and ∇P)*+ being unaffected by k, the value of the average shear 528 

viscosity μ1 (Eq. 3) under a given pressure gradient is higher as k increases, resulting in lower 529 

values of Y. In contrast, lower values of n increase the shear-thinning behaviour of the fluid, 530 

leading to lower values of μ1 and higher values of Y for a given H, as depicted in Figure 9c. 531 

 532 



 533 

Figure 9. Relationships between Y and H (a, b,c) and between T and Y (d, e, f) for the 534 

different Herschel-Bulkley fluids (Table 3) injected through DP. (a,d) represent the 535 

dependence on τ�, (b,e) the dependence on k and (c,f) dependence on n. The continuous 536 

black lines in figures (d), (e) and (f) represent the constant hydraulic tortuosity TN for 537 

Newtonian flow. The onset of yielding according to the criterium Y = 0.2 is represented by a 538 

continuous red line in figures (a), (b) and (c). 539 

 540 



The relationships between T and Y for the different combinations of Heschel-Bulkley 541 

parameters are also displayed in Figure 9. A remarkable feature that can be deduced from 542 

these results is the lower hydraulic tortuosity of Herschel-Bulkley flow as compared to 543 

Newtonian flows, whatever the values of τ�, k and n. Moreover, n is shown to be the only 544 

Herschel-Bulkley parameter that significantly affects the T vs. Y relationship, which stems 545 

from the stronger channelling effect exhibited by shear-thinning fluids of low fluidity index. 546 

Also, the increase in hydraulic tortuosity at the lowest values of Y is very similar for all the 547 

considered fluids. 548 

 549 

4. Discussion 550 

 551 

In their investigation using non-yielding shear-thinning fluids, Zhang et al. (2019) reported an 552 

increase in T with increasing ∇P at the highest values of the pressure gradient. This effect 553 

was attributed to the value of the high shear plateau viscosity μ@ exhibited by the fluids 554 

investigated in that work (Cross power-law fluids) and also to the important inertial pressure 555 

drops. Based on this work, and since neither μ@ nor the inertial pressure drops are considered 556 

in the present numerical experiments, one may expect no increase in T at the highest values 557 

of ∇P (associated to the highest values of Y). However, the opposite effect was proven in the 558 

present study, showing that T does increase at the highest values of Y (as shown in figures 7 559 

and 9). As mentioned above, this is a direct implication of the decreasing intensity of 560 

channelling effect as a greater number of paths open to the flow of the yield stress fluid when 561 

the pressure gradient is increased. 562 

 563 

It must be mentioned that, in the case of Direct Numerical Simulations (DNS), the governing 564 

equations are solved on the actual pore space geometry obtained through an imaging 565 



technique, such as X-ray microtomography. In contrast, only a simplified representation of 566 

the complex geometry of the pore space is used in Pore Network Modeling (PNM), usually 567 

consisting of a network of spherical pore bodies connected by cylindrical pore throats in 568 

which most pressure loss is generated. This important simplification makes PNM highly 569 

efficient from a computational point of view, especially when compared to more fundamental 570 

DNS, which are computationally expensive. Nevertheless, this geometric simplification also 571 

leads to secondary simplifications in the flow and transport physics, which result in a loss of 572 

predictive accuracy (Mehmani and Tchelepi, 2016; Xiong et al., 2016). Several authors 573 

studied the flow of shear-thinning fluid with and without yield stress in the past using 574 

mechanistic PNM (Sahimi, 1993; Tsakiroglou, 2002, Perrin et al., 2006; Sochi and Blunt, 575 

2008; Balhoff et al., 2012), achieving a significant reduction in the computation times as 576 

compared to DNS. However, experimental validation of PNM results is still a challenge, 577 

particularly in the case of yield stress fluids (Sochi and Blunt, 2008). The discrepancies 578 

existing between PNM predictions and experimental datasets may be explained by the 579 

physical effects that have still not been modelled, such as precipitation and adsorption. 580 

 581 

The Representative Elementary Volume (REV) of the analyzed porous media for the 582 

macroscopic quantities Y and T investigated in the present work was assumed to be smaller 583 

than the size of the computational domains used in the numerical simulations. In order to 584 

assess the validity of this assumption, the values of T and Y were computed for the same 585 

pressure gradient in 4 subregions of the DML and DP media having, respectively, 50%, 66%, 586 

75% and 85% of the original size, and situated in the central part of the micromodels. From 587 

this analysis, it was concluded that only slight variation in the values of T and Y (~ 10% for 588 

Y and ~ 1% for T) occurred above 75% of the original size. Moreover, it should be noted that 589 

other authors (Lasseux et al., 2011) performed numerical simulations using 2D porous media 590 



of similar characteristics, reporting that a matrix of more than 10 × 10 solid elements was 591 

representative for the calculation the macroscopic quantities (20 × 10 solid elements were 592 

used here). Also, the concept of REV and its determination from X-ray microtomography 593 

images were analyzed by Al-Raoush and Papadopoulos (2010). 594 

 595 

Proper characterization of the Pore Size Distribution (PSD) of porous media is crucial in 596 

many industrial applications, e.g. separation processes, food industry, in situ remediation of 597 

contaminated soils, transport of landfill leachates, oil and gas industry, CO2 sequestration, 598 

transport of seawater through underground aquifers or geothermal energy generation. 599 

Nowadays, the “gold standard” technique to characterize the PSD of porous materials is 600 

Mercury Intrusion Porosimetry (MIP), which presents well-known shortcomings, especially 601 

the environmental problems and health concerns arising from the use of toxic mercury as well 602 

as the severe restrictions on its use. As a safe alternative, the Yield Stress fluids Method 603 

(YSM) consists in computing the PSD of a given material from the pressure drop vs. flow 604 

rate measurements during injection of a given yield stress fluid. When defining the pore size 605 

class h� that opens to the flow of the yield stress fluid under a pressure drop ∆P�, the 606 

algorithm of YSM technique (Rodríguez de Castro et al., 2014; 2016; 2018) assumes that the 607 

pores are straight and horizontal, with a length L equal to the length of the bundle. In 608 

contrast, the length of a real streamline with hydraulic tortuosity T is Le = T × L, and the 609 

depth of the tortuous channel opening to the flow under the same pressure drop ∆P� is h�∗ �610 

h�T. Therefore, including the dependence of T on flow rate is expected to improve the 611 

accuracy of the PSDs provided by Yield Stress fluids porosimetry Method (YSM). In order to 612 

illustrate the preceding aspect, the intricateness of the streamlines obtained in the case of the 613 

present simulations is shown in Figure 10, confirming the existence of stagnant zones and 614 



questioning the assumption of straight streamlines used in YSM for all tested media apart 615 

from OML. 616 

 617 

Given that the investigated media were 2D sections of 3D structures, comparison against 618 

experiments was not possible. However, microfluidic experiments in which a transparent 619 

yield stress fluid is displaced by a dyed one, similar to those performed by Auradou et al. 620 

(2008) in a rough fracture, may be an appropriate means to obtain experimental 621 

measurements of T which can be compared to the present numerical results 622 

 623 



 624 

Figure 10. Examples of streamlines for the flow a Newtonian fluid (a–d) and the yield stress 625 

fluid (e – h) through different porous media. The corresponding values of Y are: (e) Y = 0.48, 626 

(f) Y = 0.57, (g) Y = 0.63, (h) Y = 0.65. 627 

  628 



5. Conclusions and prospects 629 

 630 

A key finding of the current work is the lower hydraulic tortuosity of yield stress fluid flow 631 

as compared to Newtonian fluid flow in porous media, due to the directional nature of 632 

yielding. Only the ordered porous medium is an exception to such a conclusion, which is 633 

explained by the straightness of the streamlines for all the tested fluids. Moreover, tortuosity 634 

has been shown to increase with increasing Y once the size of the stagnant region is reduced 635 

(Y > 0.4 in the present experiments) and the impact of channelling is mitigated. Also, an 636 

increase in tortuosity is observed at the lowest pressure gradients in the presence of the 637 

viscosity limit μ)*+ imposed during the numerical simulations. Attention must be drawn to 638 

the strong effect of the size distribution of pore throats on the variation of tortuosity at 639 

different yielding stages, which is a consequence of the influence of this microscopic 640 

characteristic on the diversity of preferential flow paths. Among the Herschel-Bulkley 641 

parameters, only the fluidity index has been observed to affect the tortuosity of the flow for a 642 

given level of yielding. 643 

 644 

The dependence of the level of yielding has also been assessed as a function of the value of 645 

Herschel-Bulkley number H for the different micromodel-fluid combinations, and the 646 

following conclusions have been drawn: 647 

- The level of yielding achieved at a given value of H depends on the structure of the porous 648 

medium. 649 

- Yielding occurs over a wider range of H in the micromodel with smaller pores. 650 

- Disorder plays a significant role in the relationship between yielding level and H only in the 651 

cases in which the size distribution of the solid grains is monodisperse. 652 

- The influence of polydispersity on yielding behaviour is stronger in ordered media. 653 



- The value of the yield stress strongly affects the range and values of H over which yielding 654 

occurs. Besides, high consistency and low fluidity indexes result in a decrease in the values 655 

of H covering such transition. 656 

 657 

The conclusions of the present work can be used to significantly improve the accuracy of the 658 

models used for predicting pressure drops, local pore velocities and stagnant region size in 659 

yield stress fluid flows through porous media., by considering hydraulic tortuosity 660 

dependence on injection flow rate. Such detailed modelling is most valuable in a great 661 

number of industrial applications, e.g., in situ remediation of contaminated groundwater, 662 

filtration of polymeric liquids or liquid food engineering. The present study was carried out 663 

considering two-dimensional (2D) ordered and disordered model porous structures (Figure 664 

1), with different grain sizes and shapes. Since the objective was to examine the relationships 665 

between H, T and the rheological parameters, 2D configurations extracted from a 3D 666 

structure were used. This was further motivated by the fact that accurate numerical 667 

simulations are more tractable, and their results can be more easily and more clearly 668 

interpreted in the 2D case. Moreover, a thorough analysis of 2D and three-dimensional (3D) 669 

flows of yield stress fluids in porous media (Talon and Bauer, 2013; Bauer et al.; 2019) 670 

showed that the same flow regimes are observed in both cases. 671 

 672 

Nevertheless, additional research and experiments are required in order to extend these 673 

results to the flow of yield stress fluids through 3D porous media. The main stumbling block 674 

to achieve this goal is the considerable computational power required to compute the pressure 675 

and velocity maps in the 3D case. In this regard, recent developments in pore-network 676 

modelling are expected to provide an effective alternative to direct numerical simulations in 677 

future studies. Also, given that the investigated media were 2D sections of 3D structures, 678 



comparison against experiments was not possible. However, microfluidic experiments in 679 

which a transparent yield stress fluid is displaced by a dyed one, similar to those performed 680 

by Auradou et al. (2008) in a rough fracture, may be an appropriate means to obtain 681 

experimental measurements of T which can be compared to the present numerical results 682 

 683 
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