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SUMMARY

Chronic social defeat stress (CSDS) is a clinically
relevant model of mood disorders. The relationship
between the CSDS model and a physiologically
pertinent paradigm of synaptic plasticity is not
known. Here, we found that cluster analysis of the
emotional behavior states of mice exposed to
CSDS allowed their segregation into anxious and
non-anxious groups. Endocannabinoid-mediated
spike-timing dependent plasticity (STDP) in the
nucleus accumbens was attenuated in non-anxious
mice and abolished in anxious mice. Anxiety-like
behavior in stressed animals was specifically corre-
lated with their ability to produce STDP. Pharmaco-
logical enhancement of 2-arachidonoyl glycerol
(2-AG) signaling in the nucleus accumbens normal-
ized the anxious phenotype and STDP in anxious
mice. These data reveal that endocannabinoid
modulation of synaptic efficacy in response to a
naturalistic activity pattern is both a molecular corre-
late of behavioral adaptability and a crucial factor in
the adaptive response to chronic stress.

INTRODUCTION

The neural and molecular mechanisms responsible for individual

vulnerability and resilience to neuropsychiatric illnesses such as

depression and anxiety disorders are poorly understood. Endo-

cannabinoids have been linked to psychiatric illness, in particular

the pathophysiology of depressive- and anxiety-like behaviors

(Lafourcade et al., 2011; Hill and Gorzalka, 2009; Hillard et al.,

2012; Mangieri and Piomelli, 2007; Mechoulam and Parker,

2013; Vinod and Hungund, 2006). In depressed patients, blood

levels of endocannabinoids (eCBs) are decreased (Hill et al.,

2009), while in animal models of depression, altered brain levels

of eCBs and functionality of the cannabinoid type 1 receptor
Cell
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(CB1R) are reported (Bluett et al., 2014; Hill et al., 2005; Qin

et al., 2015). In addition, pharmacological and genetic disruption

of CB1R or eCB production results in enhanced anxiety, stress,

and fear response (Hill and Patel, 2013; Jenniches et al., 2016;

Marsicano et al., 2002; Qin et al., 2015; Shonesy et al., 2014;

Steiner et al., 2008), reinforcing the idea that this system may

play a significant role in the pathogenesis of neuropsychiatric

diseases.

Endocannabinoids are lipid mediators with essential modula-

tory functions in the brain (Katona and Freund, 2012). Produced

in the postsynapse, the two major eCBs, anandamide and

2-arachidonoyl glycerol (2-AG), signal in a retrograde direction

to modulate synaptic strength via presynaptic CB1R (Castillo

et al., 2012). By integrating and translating environmental

changes into synaptic changes, eCBs regulate a range of brain

functions (for review, see Morena et al., 2016). Activation of

CB1R leads to acute depression of synaptic transmission, which

with extended eCB signaling engages an endocannabinoid-

mediated long-term depression (LTD) originally discovered in

the nucleus accumbens (Robbe et al., 2002), a key structure to

stress resiliency (Duval et al., 2015; Francis et al., 2015; Levita

et al., 2012;McLaughlin et al., 2014; Vialou et al., 2010). However,

it is not known whether eCBs produced in response to a natural-

istic pattern of synaptic activity participate in stress resiliency.

Here, we focused on eCB spike-timing dependent plasticity

(STDP) at excitatory synapses in the accumbens in a clinically

relevant model of anxiety- and depressive-like behaviors:

chronic social defeat stress (CSDS) (Berton et al., 2006; Krishnan

et al., 2007; Larrieu et al., 2014). CSDS induces individual differ-

ences across behavioral endpoints (Krishnan et al., 2007). We

automated classification of behavioral endpoints to segregate

defeated mice based on their anxiety-like behaviors. Our find-

ings demonstrate that impairment of eCB STDP in the accum-

bens is a synaptic signature of anxiety-like behavior after social

defeat stress. The restoration of eCB signaling in the accumbens

through the enhancement of 2-AG signaling protects against

CSDS-induced anxiety-like behavior. Altogether, these data

establish eCB STDP in the accumbens as a central regulator

of adaptive capacity in animals exposed to CSDS, offering a
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Figure 1. Behavioral Clustering in Socially

Defeated Mice

(A–D) Behavioral portraits of undefeated mice

(white) and defeated mice (red) show increased

anxiety in defeated mice. *p < 0.05, unpaired t test.

Data are presented as mean ± SEM. (A) Time in the

interaction zone. Undefeated: 127 ± 11 s, n = 19;

defeated: 96 ± 8 s, n = 34. t51 = 2.336, *p = 0.0235.

(B) Time in the center of the open field. Unde-

feated: 11.3% ± 1.2%, n = 19; defeated: 9.0% ±

0.8%, n = 36. t53 = 1.570, p = 0.1223. (C) Time in the

light compartment. Undefeated: 260 ± 16 s, n = 19;

defeated: 198 ± 12 s, n = 37. t54 = 3.048, *p = 0.036.

(D) Time in open arms of the elevated plus maze.

Undefeated: 17.5% ± 1.4%, n = 19; defeated:

13.2% ± 1.1%, n = 37. t54 = 2.385, *p = 0.0208.

(E) Clustering analysis of socially defeated mice’s

behavior reveals a dendrogram with two clusters

corresponding to anxious animals ( red) and non-

anxious animals (black).

(F) Normalized average values for all behavioral

parameters of the cluster analysis in anxious

and non-anxious groups. Data are presented as

mean ± SEM. From left to right, non-anxious

(n = 18) versus anxious (n = 18), respectively: SA,

social avoidance test, 0.60 ± 0.05 versus 0.54 ±

0.06; OF, open field test, 0.28 ± 0.05 versus 0.19 ±

0.04; L/D, light/dark box test, 0.72 ± 0.04 versus

0.44 ± 0.04; EPM, elevated plus maze test, 0.56 ±

0.04 versus 0.21 ± 0.03. *p < 0.05, two-way

ANOVA with Bonferroni post-test, with cluster

(F(1,105) = 42.96, p < 0.0001) and behavioral

parameter (F(3,105) = 29.99, p < 0.0001) as factors.

Interaction: F(3,105) = 5.39, p = 0.0017.
pharmacologically amenable mechanism to promote resiliency

to stressful events.

RESULTS

Segregation of Defeated Animals into Anxious and
Non-anxious Populations Using Cluster Analysis
Naive C57BL/6J mice were subjected to ten daily bouts of social

defeat by an aggressive CD1 male mouse. CSDS is known to

induce individual differences to stress responses, and defeated

animals can be separated into susceptible and resilient based on

the measure of their social interaction (Figure S1) (Golden et al.,

2011; Krishnan et al., 2007). In the present study, we used an

alternative method to segregate defeated mice based on their

emotional behaviors in open field, social avoidance, light/dark

box, and elevated plus maze tests (Figures 1A–1D; Figure S2).

This unbiased cluster analysis approach revealed that defeated

mice can be segregated in two populations based on their

emotional behaviors (Figure 1E): 52% of defeated mice showed

severe anxiety-like behaviors and were hereafter labeled

anxious, while the remaining 48% that display anxiety-like

behaviors similar to those of undefeated mice were labeled

non-anxious. By comparison with the classical segregation of

susceptible and resilient mice, we found that 50% of resilient

and 55% of susceptible mice were anxious (Figure S1). Conse-

quently, both anxious and non-anxious mice displayed an in-

crease in social avoidance following CSDS, but only anxious
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mice exhibited elevated anxiety-like behaviors, as revealed by

an aversion to the open arms of an elevated plus maze and the

light compartment of a light/dark box (Figure 1F; Figure S2).

Anxious and non-anxious mice displayed a similar increase in

plasma corticosterone levels, adrenal weight, and body weight

(Figure S2), suggesting that the two populations of defeated

mice do not differ in their metabolic stress response.

Endocannabinoid Spike-Timing Dependent Depression
Covariates with Anxiety-like Behavior
We next analyzed the consequences of CSDS on synaptic

Hebbian learning in the accumbens, a key structure that contrib-

utes to the etiology of mood and anxiety disorders (Bagot et al.,

2015; Calhoon and Tye, 2015; Shin et al., 2015; Vialou et al.,

2010). We first established that CB1R mediates Hebbian STDP

(Abbott and Nelson, 2000; Fino et al., 2010) in the accumbens.

In undefeated mice, presynaptic stimulation of 100 pairings

at 1 Hz coupled to a single postsynaptic spike delayed by

�15 ms induced significant LTD (51% of baseline) of excitatory

postsynaptic currents (EPSCs) (Figures 2A–2C). As expected

for eCB-mediated plasticity, the CB1R antagonists AM251 and

SR141716A both blocked STDP-LTD (Figure S3). In anxious

mice, STDP-LTD was abolished (111% of baseline) (Figure 2A).

Non-anxious mice displayed an intermediary phenotype:

STDP-LTD was attenuated but still present (83% of baseline)

(Figures 2A–2C). In the bed nucleus of the stria terminalis, stress

transforms CB1R-dependent LTD to long-term potentiation



Figure 2. Spike-Timing-Dependent LTD Is a

Synaptic Marker in Anxious Mice

(A) Time course of STDP-LTD in undefeated (white),

non-anxious (black), and anxious (red) mice. EPSC

normalized amplitude 45 min after STDP. Unde-

feated: 51.28% ± 4.36%, n = 16; non-anxious:

82.13% ± 4.32%, n = 18; anxious: 110.80% ±

8.71%, n = 18. *p < 0.05, two-way ANOVA with

Bonferroni post-test, with group (F(2,512) = 104.99,

p < 0.0001) and time (F(10,512) = 5.11, p < 0.0001) as

factors. Interaction: F(20,512) = 2.90, p < 0.0001.

Data are presented as mean ± SEM. Illustration

traces: example of ten averaged EPSCs during

baseline (left) and 45 min after STDP (right). Upper

(gray), undefeated; middle (black), non-anxious;

bottom (red), anxious. Scale bar, 50 pA, 10 ms.

(B) Cumulative probability distribution of normal-

ized EPSCs after STDP protocol. Same color code

as (A).

(C) EPSCs before and after STDP-LTD induction

for undefeated (white), non-anxious (black), and

anxious (red) mice. No defeat: before, �177 ±

21 pA, versus after, �88 ± 14 pA; n = 16,

p < 0.0001. Non-anxious: before, �181 ± 22 pA,

versus after, �150 ± 22 pA; n = 18, p = 0.0025.

Anxious: before, �175 ± 19 pA, versus after,

�190 ± 26 pA; n = 18, p = 0.3365. Each line

represents one neuron, *p < 0.05, paired t test.

(D) The anxiety score positively correlates with

the expression of LTD (r2 = 0.1222, p = 0.0339,

Pearson test). Each dot represents one mouse.
(LTP) (Glangetas et al., 2013). Our data support this idea that the

STDP protocol triggered LTD in all and 55% of the neurons from

undefeated and non-anxious mice, respectively, in contrast to

anxious mice, among which only 11% of the neurons expressed

LTD and up to 33% exhibited LTP (LTD threshold, 85% of base-

line EPSC; LTP threshold, 115%) (Figure 2B). To strengthen the

association between eCB-mediated plasticity and anxiety, we

computed an anxiety score and found that this behavioral index

positively correlatedwith eCB-LTD in theaccumbens (Figure 2D).

Specifically, eCB-LTD was significantly correlated with anxiety

measured in open field, light/dark box, and elevated plus maze

tests (Table S1). In contrast, we did not observed a correlation

between eCB-LTD and corticosterone levels in defeated mice

(Figure S3). These data suggest that both groups experienced

similar levels of neuroendocrine stress response and dissociate

general hypothalamic-pituitary-adrenal axis reactivity to stress

from social defeat stress-induced eCB-plasticity deficits. Basic

intrinsic and synaptic properties of accumbens output neurons

were similar in anxious and non-anxious mice (Figure S3),

suggesting that modification of neuronal excitability or network

activity is a minor contributor to the lack of eCB-mediated

plasticity.

Pharmacological Enhancement of eCB Signaling
Normalizes Both Anxiety-related Behavior and Synaptic
Plasticity within the Accumbens
We next investigated whether upregulation of 2-AG signaling

could normalize anxiety-like behavior and eCB-LTD in defeated

mice. We used JZL184, a monoacylglycerol lipase (MAGL) inhib-

itor, to prevent 2-AG degradation and increase its accumulation
at the synapse (Jung et al., 2012). Mice treated with JZL184

(16 mg/kg, intraperitoneal [i.p.]) 1 day after the last session of

CSDS showed anxiety-like behavior that was undistinguishable

from that of undefeated mice (Figure 3A). To discern the contri-

bution of 2-AG elevation within the accumbens in the systemic

effects of JZL184, we repeated experiments directly infusing

theMAGL inhibitor into the accumbens (1 mg, 0.5 ml/side). Similar

to the systemic protocol, local infusion of JZL184 prevented anx-

iety-like behaviors in defeated mice (Figure 3C). We also found

that JZL184 (1 mM) restored eCB-LTD in defeated mice (Figures

3B–3D; Figure S3), reinforcing the link between eCB-mediated

STDP-LTD in the accumbens and behavioral anxiety following

CSDS. As a control, the effect of JZL184 on STDP-LTD was

blocked by the CB1R antagonist SR141716A (Figure S3). Alto-

gether, these data favor the idea that elevation of 2-AG in the ac-

cumbens can normalize anxiety behavior in defeated mice.

DISCUSSION

There is a considerable interest in understanding neurobiological

correlates of adaptive response and resiliency to chronic

social stress. In the current study, we provide clear evidence

that eCB-mediated Hebbian learning at medium spiny neuron

excitatory synapses in the nucleus accumbens contributes to

behavioral adaptations to social stress. Furthermore, our results

indicate that this synaptic plasticity is a pharmacologically

targetable neurobiological mechanism that may promote resis-

tance to anxiety following chronic stress.

A unique feature of CSDS, distinguishing it from other environ-

mental stressors, is that CSDS induces a range of individual
Cell Reports 16, 1237–1242, August 2, 2016 1239



Figure 3. Enhancement of Circulating 2-AG Normalizes Anxious

Behavior and Synaptic Depression in Defeated Mice
(A) A single injection of JZL184 (16 mg/kg) is sufficient to restore a normal

anxiety-like behavior. Elevated plus maze (EPM) score is the average of

normalized measures for number of head dippings, percentage of time in the

open arms, and number of entries in the open arms. Undefeated: 0.94 ± 0.13,

n = 6; defeated: 0.38 ± 0.09, n = 6; undefeated + JZL184: 0.64 ± 0.04, n = 4;

defeated + JZL184: 0.67 ± 0.01, n = 3. Two-way ANOVA with Bonferroni post-

test, with JZL184 (F(1,15) = 0.0005, p = 0.9821) and CSDS (F(1,15) = 5.983),

p = 0.0273) as factors. Interaction: F(1,15) = 7.713, p = 0.0141. *p < 0.05.

(B) Infusion of JZL184 bilaterally in the nucleus accumbens also restores

anxiety behavior of defeated mice. EPM score. Defeated: 0.39 ± 0.08, n = 7;

defeated + JZL184NAc: 0.70 ± 0.06, n = 7. t13 = 3.158, *p = 0.0076, unpaired

t test.

(C) Time course of STDP-LTD in defeated mice without JZL184 (red) and with

JZL184 (purple). EPSC normalized amplitude 45 min after STDP. Defeated:

96.88% ± 5.36%, n = 36; defeated + JZL184: 55.13% ± 4.96%, n = 22.

*p < 0.05, two-way ANOVA with Bonferroni post-test, with JZL184 (F(1,572) =

140.07, p < 0.0001) and time (F(10,572) = 8.08, p < 0.0001) as factors. Interaction:

F(10,572) = 4.02, p < 0.0001. Illustration traces: example of ten averaged EPSCs

during baseline (left) and 45 min after STDP (right). Scale bar, 100 pA, 10 ms.

(A–C) Data are presented as mean ± SEM.
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responses (Golden et al., 2011; Krishnan et al., 2007) similar to

those observed after traumatic stress in humans. This particular-

itymakes CSDS in rodents a useful model for studying themech-

anisms that underlie anxiety and depression onset. Here, we

used several measures of emotional behavior to classify a pop-

ulation of CSDS-exposed mice into anxious and non-anxious

groups using cluster analysis. Using this approach, we identified

a non-anxious set of CSDS animals corresponding to approxi-

mately half of the entire population that failed to develop

anxiety-related behavior and exhibited a behavioral phenotype

comparable to that of undefeated mice. Both anxious and non-

anxious mice showed strong generalized social avoidance.

This study therefore reports individual differences in anxiety-

like behaviors in mice exposed to CSDS. In the nucleus accum-

bens, CB1R is expressed at both excitatory and inhibitory

synapses (Pickel et al., 2004). However, STDP protocol requires

activation of pre- and post-synaptic elements of the stimulated

synapses, which rules out the contribution of interneurons’ plas-

ticity in the observed STDP-LTD.

It has been previously reported that anxiety-like behavior may

be correlated to levels of eCBs in the brain (Hill and Patel, 2013;

Qin et al., 2015), but the effects on the eCB synaptic plasticity

remained unexplored. In our study, we demonstrated that anxi-

ety behavior induced by CSDS covariates with eCB-dependent

plasticity. Here, we used a STDP protocol to reveal the function-

ality of the eCB system. Hebbian synaptic plasticity induced by

STDP has been described in intact brains in the human cortex

and in sensory systems and is thought to be a neurobiological

basis for associative learning (Letzkus et al., 2007). However,

the significance of STDP in non-sensory or motor systems re-

mains to be clarified. We demonstrated that non-anxious mice

display an attenuation in eCBSTDP but that this form of plasticity

is abolished in anxious mice. This suggests that eCB Hebbian

plasticity constitutes a system for adaptive synaptic plasticity

in the accumbens that allows behavioral adaptability and thus

avoids the development of strong anxiety-like behavior following

CSDS.

The role of the eCB system in stress and anxiety disorders

may rely on its reciprocal interactions with the hypothalamic-

pituitary-adrenal axis, which is responsible for stress response

in the body (Gorzalka and Hill, 2009; Hill and Tasker, 2012;

McEwen et al., 2015). It has been previously shown that

stress-induced modulation of corticosterone affects the eCB

system in the amygdala and the hypothalamus (Gray et al.,

2015; Qin et al., 2015; Wamsteeker et al., 2010). In the current

study, basal corticosterone levels were increased in both

anxious and non-anxious defeated groups, without apparent

correlation to the level of eCB-LTD. Whether hypothalamic-pitu-

itary-adrenal axis reactivity due to acute stressmight be different

between groups has yet to be determined, but this is a focus of

future research for our group. Recent findings report preexisting

individual differences in the peripheral immune system that
(D) EPSC amplitude before and after STDP protocol for defeated mice with

JZL184 bath application. Before, �233 ± 32 pA, versus after, �131 ± 25 pA;

n = 22, *p < 0.0001, paired t test. Each line represents one neuron.

(E) Cumulative probability distribution of normalized EPSCs after STDP pro-

tocol. Same color code as (C).



predict and promote stress susceptibility (Hodes et al., 2014).

In our study, innate differences in the functionality of the eCB

system could be responsible for vulnerability to social defeat-

induced emotional alteration.

The lack of eCB plasticity in anxious mice may arise from

reduced eCB levels. Reduction in circulating levels of the eCB

2-AG has been found in individuals exposed to traumatic stress,

as well as in rodents exposed to chronic stress (Hill et al., 2009),

while enhancement of 2-AG levels increases behavioral resil-

iency to chronic stress in mice (Zhang et al., 2015; Zhong

et al., 2014). Thus, we tested whether increased anxiety-related

behavior could be overcome by enhancing 2-AG signaling, the

main endocannabinoid involved in LTD in the accumbens (Cas-

tillo et al., 2012). We found that pharmacological blockade of

intracellular 2-AG hydrolysis in mice subjected to CSDS allevi-

ated the anxiety-related behavior and restored eCB-dependent

plasticity in a CB1R-dependent manner. This suggests that

CSDS-induced anxiety alters the bioavailability of eCB.

In conclusion, we found that impairment of eCB plasticity in

the accumbens is a synaptic signature for behavioral adaptability

following social stress. The restoration of eCB signaling through

the improvement of 2-AG signaling protects against CSDS-

induced anxiety-like behavior. Finally, exploring emotional pro-

cesses at the synaptic level would lead to a better understanding

of how chronic stress affects our brain and offer a pharmacolog-

ically amenable mechanism to promote resiliency to stressful

events.

EXPERIMENTAL PROCEDURES

CSDS and Behavioral Testing

All experiments were performed according to criteria of the European Commu-

nities Council Directive (50120103-A) on C57BL/6J adult male mice. The social

defeat protocol was performed as previously described (Larrieu et al., 2014).

Behavioral tests were performed 24–48 hr after the last session of social defeat

using a social avoidance test, open field test, light/dark box test, and elevated

plus maze test (see supplemental Information for details).

The anxiety score was calculated as the algebraic sum of standardized

scores ((x � min value) / (max value � min value)) of each of the six analyzed

parameters of the three anxiety-related behavior tests. When more than one

parameter was used for one test, normalized values of parameters were aver-

aged so that the power of each of the three anxiety tests was equal to 1. This

procedure yields scores that are distributed along a scale from 0 to 3, with 3

reflecting high anxiety.

Electrophysiology

Brain slices were prepared 24 hr after the last behavioral test for each animal.

Signals were amplified and recorded with Multiclamp 700B, controlled with

pClamp 10.3 software via a Digidata 1440A interface (Molecular Devices).

STDP protocol consists of pairing pre- and postsynaptic stimulations 100

times at 1 Hz, with a delay of �15 ms and the neuron held at �70 mV in the

current clamp configuration. Medium spiny neurons were recorded for

10 min of stable baseline (0.1 Hz) and for at least 35 min after the STDP proto-

col. Chemicals used were AM251 (4 mM), SR141716A (1 mM), and JZL184

(1 mM).

In Vivo Pharmacological Experiments

For JZL184 i.p. injections, mice were given i.p. injections of vehicle (22.5:100

HBC:H2O) or JZL184 (16 mg/kg) 6 hr before the elevated plus maze test. For

JZL injections in the nucleus accumbens, animals were implanted 1 week

before CSDS started with bilateral guide cannulas (PlasticsOne) 1 mm above

the nucleus accumbens. JZL184 (1 mg/0.5 ml DMSO 10% in saline/hemisphere)
or vehicle was injected into the nucleus accumbens 1 hr before the elevated

plus maze test.

Statistical Analyses

Statistical tests were performedwith Prism (GraphPad) using a critical probabil-

ity of p < 0.05. All values are given as mean ± SEM. The dendrogram was ob-

tainedwith XLStat (Addinsoft) using centroid hierarchical cluster analysis (Eucli-

dienne distance and Ward method) to separate the defeated mice into anxious

and non-anxious phenotypes. See Supplemental Information for details.
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