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Mejdi Azäıez and Chuanju Xu∗

School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical
Modeling and High Performance Scientific Computing, Xiamen University,

Xiamen 361005, China

Bordeaux INP, Laboratoire I2M UMR 5295
Pessac 33607, France

Abstract. In this paper, we investigate numerical methods for a backward
problem of the time-fractional wave equation in bounded domains. We pro-

pose two fractional filter regularization methods, which can be regarded as an

extension of the classical Landweber iteration for the time-fractional wave back-
ward problem. The idea is first to transform the ill-posed backward problem

into a weighted normal operator equation, then construct the regularization
methods for the operator equation by introducing suitable fractional filters.

Both a priori and a posteriori regularization parameter choice rules are inves-

tigated, together with an estimate for the smallest regularization parameter
according to a discrepancy principle. Furthermore, an error analysis is car-

ried out to derive the convergence rates of the regularized solutions generated

by the proposed methods. The theoretical estimate shows that the proposed
fractional regularizations efficiently overcome the well-known over-smoothing

drawback caused by the classical regularizations. Some numerical examples

are provided to confirm the theoretical results. In particular, our numerical
tests demonstrate that the fractional regularization is actually more efficient

than the classical methods for problems having low regularity.

1. Introduction. The fractional partial differential equations are attracting in-
creasing attention as a modelling tool for the phenomenon related to memory and
spatial heterogeneity. They have applications in a broad range of fields; see, e.g.,
[24, 3, 6, 22, 1, 2, 25, 9, 23] and the references therein. As the basic and core of most
fractional partial differential equations, the time-fractional diffusion-wave equation

∂αt w(x, t) = ∆w(x, t) (1)
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is of importance for the fact that it reflexes the main feature and difficulty of
general fractional equations of its kind. In the above equation, ∂αt is the frac-
tional derivative of order α ∈ (0, 2) [25]. This equation itself has also been used to
model diffusive/propagation processes associated with the so-called anomalous dif-
fusion/propagation, which can be found in control theory, biology, electrochemical
processes, porous media, viscoelastic materials, polymer, finance, and etc.

There has been extensive numerical investigation for the “forward” problem as-
sociated to these equations; see [20, 30, 10, 19, 29, 12] to list a few, covering from
finite difference methods to spectral methods. However, there is also a need to solve
the “backward” problem (also called inverse problem) in practice [11, 27].

For the time-fractional diffusion equation, i.e., eq.(1) with α ∈ (0, 1), the cor-
responding backward problems have been studied intensely in the literature. In
[21], by using eigenfunction expansion of elliptic operator in space, Liu and Ya-
mamoto proposed a quasi-reversibility method for the inverse problem of different
type. Wang and Liu [33] investigated a backward problem for a time-fractional dif-
fusion process in inhomogeneous media. Based on the eigenfunction expansion with
respect to the spatial variable, they proposed a regularization technique with the
number of truncation terms as the regularization parameter. Wang et al. [32] trans-
formed their backward problem into a Fredholm integral equation of the first kind,
then solved the transformed problem by Tikhonov regularization method. Wei and
Wang [34] proposed a modified regularization method for an inverse quasi-boundary
value problem. Wang and Wei [31] proposed an iterative method inspired by the
work [7, 8, 5] to solve a backward problem, and gave convergence estimates under
two kinds of regularization parameter choice rule. In [15], Han et al. obtained a
regularization solution by the fractional Landweber iterative regularization method
for identifying the initial condition of the time-fractional diffusion equation.

As compared to the case α ∈ (0, 1), investigation for α ∈ (1, 2), i.e., fractional
wave equation, is relatively sparse. In [35], Wei and Zhang considered two backward
problems for (1) with α ∈ (1, 2). Based on the series expression of the solution for
the forward problem, the backward problem for determining the initial data was
converted into solving the Fredholm integral equation of the first kind. For the lack
of the uniqueness for backward problems, the authors turned to consider the best-
approximate solution. Then they used the Tikhonov regularization method to deal
with the integral equation. The convergence rate of the regularized solution to the
best-approximate solution were presented under certain regularization parameter
choice rule. More recently, Yang et al. [37] considered the inverse problem of
identifying the initial value problem of a space-time fractional wave equation. Then
classical Landweber iterative regularization method was used to solve this problem.
However, it is known that the classical regularization methods such as Landweber or
Tikhonov method suffer from the over-smoothing approximate solutions. Moreover,
the classical Landweber/Tikhonov method requires too large/small regularization
parameter, this leads to increasing numerical instabilities and cost.

In this paper we aim at proposing and analyzing an improved algorithm to com-
pute the best-approximate solution of a typical backward problem associated to
the time fractional wave equation. Inspired by some recent work [36, 35, 37], our
proposed algorithm makes use of the modified Landweber iteration method with
a suitably chosen fractional operator. This idea was originally proposed by Klann
et al. [18] in a general framework based on the filter regularization technique for
solving a linear inverse problem. It was then studied and applied in some extent
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by many authors with success, see [16, 13, 4, 36, 15] for examples. Our goal is to
graft this approach to the time-fractional inverse problem considered in this paper.
Precisely, we will present two fractional Landweber regularization methods for the
time-fractional wave backward problem, which are based on the reformulation of
the problem using a weighted normal operator equation. Our analysis and numeri-
cal tests carried out in the paper show that, compared to the classical Landweber
method, the improved algorithm not only requires a smaller regularization param-
eter but also reduces the effect of over-smoothing of the approximate solutions.

The rest of this paper is organized as follows. In section 2, we first present the
direct and associated backward problems, describe basic properties of the problems,
including the well-posedness of the reformulated equation. In Section 3, we con-
struct our fractional regularization methods — explicit and implicit, and analyze
the influence of the fractional parameter on the smoothness of the regularized solu-
tions. The error analysis is carried out in Section 4 to derive error estimates of the
regularized solutions, together with investigation of the regularization parameter
choice rules and estimation of the smallest regularization parameter based on an
a posteriori principle. Some numerical examples are provided in Section 5 to vali-
date the proposed methods. In Section 6 we give a few concluding remarks. Some
preparatory materials are presented in the final appendix section.

2. Inverse problem and well-posedness.

2.1. Statement of the problem. Let Ω be a bounded domain in Rd (d = 1, 2, 3)
with sufficient smooth boundary ∂Ω. We consider the following time-fractional
wave problem with homogeneous Dirichlet boundary condition: Given the initial
conditions f, h ∈ L2(Ω), find w such that:

∂αt w(x, t) = −(Lw)(x, t) +G(x, t), x ∈ Ω, t ∈ (0, T ],
w(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],
w(x, 0) = f(x), x ∈ Ω,
wt(x, 0) = h(x), x ∈ Ω,

(2)

where α ∈ (1, 2), G(x, t) ∈ L2(0, T ;L2(Ω)), ∂αt is defined as

∂αt w(x, t) =
1

Γ(2− α)

∫ t

0

wss
(t− s)α−1

ds (3)

with Γ(·) being the Gamma function. In (2), L is symmetric uniformly elliptic
defined in D(L) = H2(Ω)∩H1

0 (Ω), which can be −∆ or the following more general
operator:

Lw(x) = −
d∑
i=1

∂

∂xi

(
d∑
i=1

aij(x)
∂

∂xj
w(x)

)
+ b(x)w(x)

with the coefficients {aij} and b satisfying

aij = aji, aij ∈ C1(Ω̄), 1 ≤ i, j ≤ d,

a0

d∑
i=1

ξ2
i ≤

d∑
i,j=1

aij(x)ξiξj , ∀x ∈ Ω̄, ∀ξ ∈ Rd, a0 > 0,

b(x) ≥ 0, b ∈ C(Ω̄), ∀x ∈ Ω̄.
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We are interested to the following backward problem: given the noisy final state
wδ(x, T ), find the initial condition f(x), such that the solution w(x, t) of (2) satisfies

‖w(x, T )− wδ(x, T )‖ ≤ δ, (4)

where δ > 0 is a noise level. Hereafter we use ‖ · ‖ to denote the standard L2(Ω)
norm.

It is readily seen that the problem (2) is equivalent to the following two problems:
∂αt v(x, t) = −(Lv)(x, t) +G(x, t), x ∈ Ω, t ∈ (0, T ],
v(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],
v(x, 0) = 0, x ∈ Ω,
vt(x, 0) = h(x), x ∈ Ω,

(5)

and 
∂αt u(x, t) = −(Lu)(x, t), x ∈ Ω, t ∈ (0, T ],
u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],
u(x, 0) = f(x), x ∈ Ω,
ut(x, 0) = 0, x ∈ Ω

(6)

with w(x, t) = u(x, t) + v(x, t). Since (5) is a direct and well-posed problem, we are
led to consider the backward problem associated to (6). That is

Given gδ(x) := uδ(x, T ) = wδ(x, T ) − v(x, T ), determine f(x) ∈ L2(Ω) such that
the solution u(x, t) to (6) satisfies

‖gδ(x)− g(x)‖ ≤ δ, (7)

where g(x) := u(x, T ).

It is well known that this inverse problem can be reformulated into an integral
equation by using spectral decomposition in the spatial variable. Let

Lϕn = λnϕn, ϕn
∣∣
∂Ω

= 0,

where λn are the eigenvalues of L, and ϕn ∈ H2(Ω)∩H1
0 (Ω) are the corresponding

orthonormal eigenfunctions. The eigenvalues λn satisfy

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , lim
n→∞

λn = +∞. (8)

It was proved in [28] that if f ∈ L2(Ω), then there is a unique solution u ∈
C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩H1

0 (Ω)) to (6), and

u(x, t) =

∞∑
n=1

fnEα,1(−λntα)ϕn(x), (9)

where fn = (f, ϕn), Eα,1 is the Mittage-Leffler function; see also Definition 7.1 in
the appendix.

Therefore the initial condition f can be determined by taking t = T in (9)
∞∑
n=1

(f, ϕn)Eα,1(−λnTα)ϕn(x) = u(x, T ) =: g(x), ∀x ∈ Ω,

which is nothing than the first kind integral equation:

(Kf)(x) = g(x), ∀x ∈ Ω, (10)

where the integral operator K is defined by

(Kf)(x) =

∫
Ω

k(x, ξ)f(ξ)dξ, ∀x ∈ Ω (11)
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with the kernel function k(x, ξ) being

k(x, ξ) =

∞∑
n=1

Eα,1(−λnTα)ϕn(x)ϕn(ξ). (12)

Obviously K is a self-adjoint operator. Furthermore it follows from (9) that if f ∈
L2(Ω), then g ∈ H2(Ω). As a consequence the operator K is compact from L2(Ω)
to L2(Ω) since H2(Ω) is compactly imbedded into L2(Ω). Therefore, according to
a classical theory; see, e.g., [17], the integral equation (10) is ill-posed.

2.2. Existence, uniqueness, and stability. We begin with studying the singular
values, denoted by σn, of the integral operator K.

First, by the orthogonality of {ϕn}∞n=1, it is easy to see that

σn = |Eα,1(−λnTα)|, n = 1, 2, · · · . (13)

On the other side we deduce from (8) and Lemma 7.2 in the appendix that, for
large enough n, it holds

Eα,1(−λnTα) ≤ 1

2Γ(1− α)λnTα
< 0,

and σn → 0 as n→∞. Then we define

φn(x) =

{
ϕn(x), Eα,1(−λnTα) ≥ 0,
−ϕn(x), Eα,1(−λnTα) < 0,

n = 1, 2, · · · .

It is seen that {φn}∞n=1 are orthonormal in L2(Ω) and

Kϕn(ξ) = Eα,1(−λnTα)ϕn(x) = σnφn(x),

K∗φn(x) = Eα,1(−λnTα)φn(ξ) = σnϕn(ξ),

where K∗ is the adjoint of K. Thus {(σn;ϕn, φn); σn > 0} is the singular system
of K.

Then we define the index set

I =
{
n ∈ N+; σn = 0

}
.

It was proved in [35] that the set I is finite (possibly empty). Hence the integral
kernel defined in (12) can be rewritten as

k(x, ξ) =

∞∑
n=1,n/∈I

Eα,1(−λnTα)ϕn(x)ϕn(ξ).

Observe that the kernel space and the range space of operator K are respectively

N(K) = span{ϕn; n ∈ I},

R(K) =
{
g ∈ L2(Ω); (g, φn) = 0 for n ∈ I, and

∞∑
n=1,n/∈I

1

σ2
n

|(g, φn)|2 < +∞
}
.

Clearly the integral equation (10) has a solution if and only if g ∈ R(K). For

g /∈ R(K), we turn to look for a least-squares solution to (10): find f̂ ∈ L2(Ω) such
that

‖Kf̂ − g‖ = inf
f∈L2(Ω)

‖Kf − g‖.

An obvious fact is, if g ∈ R(K), then every solution of (10) is a least-squares
solution.
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For a given g ∈ L2(Ω), we denote by Sg the set of all least-squares solutions of
(10), i.e.,

Sg :=
{
f̂ ∈ L2(Ω); ‖Kf̂ − g‖ = inf

f∈L2(Ω)
‖Kf − g‖

}
.

Let K+ denote the Moore-Penrose pseudo-inverse of K and D(K+) stands for the
domain of K+. Then it is known from [11] that D(K+) = R(K) + R(K)⊥, and

Sg 6= ∅ if and only if g ∈ D(K+). Moreover, f̂ ∈ Sg if and only if f̂ is a solution of
the normal equation

K∗Kf̂ = K∗g. (14)

Note that when I 6= ∅, K is not injective. In this case a unique least-squares solution
from Sg can be identified by imposing certain additional restrictions. For example
the unique best-approximate solution f+ ∈ N(K)⊥ is determined such that

‖f+‖ = inf
f̂∈Sg

‖f̂‖. (15)

The following theorem gives the existence and uniqueness result of the solutions for
the integral equation (10), which can be directly proved by applying the classical
Picard criterion (see [11], Theorem 2.8).

Theorem 2.1. Given g ∈ D(K+). If I = ∅, there exists a unique least squares
solution in L2(Ω) to (10), which is given by

f+(x) =

∞∑
n=1

1

σn
(g, φn)ϕn(x).

If I 6= ∅, there exist infinitely many least squares solutions to (10). However only
one best-approximate solution is allowed in L2(Ω), given by

f+(x) =

∞∑
n=1,n/∈I

1

σn
(g, φn)ϕn(x). (16)

Define the space

D(Lγ) =

{
ψ ∈ L2(Ω);

∞∑
n=1

λ2γ
n |(ψ,ϕn)|2 <∞

}
, γ ≥ 0, (17)

equipped with the norm

‖ψ‖D(Lγ) =

( ∞∑
n=1

λ2γ
n |(ψ,ϕn)|2

) 1
2

.

Then D(Lγ) is a Hilbert space. In particular, we have D(L0) = L2(Ω), D(Lγ) ⊂
H2γ(Ω), and D(L

1
2 ) = H1

0 (Ω).
Finally the following conditional stability result is very useful in the error analysis

of the numerical methods to be proposed in the next section.

Theorem 2.2. (See [35]) For any p > 0, E > 0, it holds

‖f‖ ≤ cE
2
p+2 ‖Kf‖

p
p+2 , (18)

if f(x) ∈ D(L
p
2 ) ∩ N(K)⊥ and ‖f‖D(L

p
2 )
≤ E, where c is a positive constant

depending on α, T and p.
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3. Fractional Landweber regularization. The classical Landweber iterative
methods for approximating the best-approximate solution of (10) consists in first
transforming the original problem (10) into the normal equation (14), then approx-
imating the solutions by solving an equivalent fixed point equation.

Here we propose a generalized Landweber method for finding the best-approximate
solution of (10). The main idea of the generalization is: instead of solving standard
normal equation (14), we propose to solve a weighted normal equation as follows:

(K∗K)
ν−1
2 K∗Kf = (K∗K)

ν−1
2 K∗g, (19)

where 0 ≤ ν ≤ 1, (K∗K)
ν−1
2 is defined with the aid of the Moore-Penrose pseudo-

inverse of K∗K. Then the explicit Landweber iteration for solving (19) reads:
• Explicit fractional Landweber regularization (ExFLR)

Set f0 : initial guess,

Compute fm : = fm−1 + a (K∗K)
ν−1
2 K∗(g −Kfm−1)

= (I − a (K∗K)
ν+1
2 )fm−1 + a (K∗K)

ν−1
2 K∗g, m = 1, 2, · · · .

In the above iteration, the iteration number m plays the role of regularization
parameter, and a is an acceleration parameter satisfying

0 < a <
1

‖K‖ν+1
. (20)

Next we are going to analyze the convergence of the sequence {fm} and the error
with respect to the noise level δ. Without loss of generality, we assume f0 = 0.
Observe that

fm = a

m−1∑
j=0

(I − a (K∗K)
ν+1
2 )j (K∗K)

ν−1
2 K∗g =: Rmg, m = 1, 2, · · · .

The sequence corresponding to the noisy data gδ is denoted by fmδ , i.e.,

fmδ = Rmg
δ, m = 1, 2, · · · .

By singular value decomposition for compact self-adjoint operator (see, e.g., [14]),
we can also derive an alternative expression for fmδ :

fmδ =

∞∑
n=1,n/∈I

1−
(
1− aσν+1

n

)m
σn

(gδ, φn)ϕn, m = 1, 2, · · · . (21)

Remark 1. (a) The method (21) can be regarded as a filter regularization method;
see, e.g., [11, 17, 36].

(b) In the case ν = 1, (21) is indeed the standard filter regularization method
based on the classical Landweber iteration; see also [11] for details. This is the
reason we also term the proposed method as fractional Landweber regularization.
It is worth to emphasize that the new method can be implemented at essentially no
additional computational cost in comparison to the classical method (ν = 1).

(c) A similar method has been used in [36] for minimizing a weighted least squares
functional model for ill-posed operator equations. The difference here is, although
no essential, (21) is directly derived from the weighted normal equation (19).

• Implicit fractional Landweber regularization (ImFLR)
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We also propose the implicit Landweber iteration as follows:

Set f0 : = 0,

Compute fm : = fm−1 + a (K∗K)
ν−1
2 K∗(g −Kfm), m = 1, 2, · · · ,

where a > 0, which is less restrictive as compared to (20) for the explicit formula.
A simple reformulation gives

(I + a (K∗K)
ν+1
2 )fm = fm−1 + a (K∗K)

ν−1
2 K∗g, m = 1, 2, · · · .

Further observation yields

fm = R̄mg, m = 1, 2, · · · ,
where the operator R̄m is defined by

R̄m =

m∑
j=1

a(I + a (K∗K)
ν+1
2 )−j (K∗K)

ν−1
2 K∗.

Let

fmδ = R̄mg
δ, m = 1, 2, · · · .

Again, using singular value decomposition, we obtain

fmδ =

∞∑
n=1,n/∈I

1−
(
1 + aσν+1

n

)−m
σn

(gδ, φn)ϕn, m = 1, 2, · · · . (22)

Notice that the implicit regularization removes the upper bound restriction on the
acceleration parameter a, thus is more flexible than the explicit algorithm.

Next we show the regularization effect of the proposed fractional Landweber
methods.

Theorem 3.1. Let fmδ be the sequence generated by the explicit fractional Landwe-
ber regularization (21) with 0 < a < 1

‖K‖ν+1 or implicit version (22) with a > 0.

Then for any m = 1, 2, · · · , fmδ belongs to D(Lν) for 0 ≤ ν ≤ 1 and gδ ∈ L2(Ω).

Proof of Theorem 3.1. We only give the proof for the explicit fractional Landweber
regularization. The implicit version can be proved in a similar way. First it follows
from (17) and (21), for any γ ≥ 0,

‖fmδ ‖2D(Lγ) =

∞∑
n=1

λ2γ
n |(fmδ , ϕn)|2 =

∞∑
n=1,n/∈I

λ2γ
n

[1− (1− aσν+1
n )m]2

σ2
n

|(gδ, φn)|2. (23)

To study the convergence of this series, we use the following known result [35]:

|Eα,1(−λnTα)| = O(λ−1
n ), n /∈ I. (24)

Thus, by definition (13), σn = |Eα,1(−λnTα)| → 0 as n → ∞. As a consequence,

we have for ν ≥ 0 and m ≥ 1,
1− (1− aσν+1

n )m

σn
∼ maσνn as n → ∞. Combining

this with (24) gives

[1− (1− aσν+1
n )m]2

σ2
n

= O(σ2ν
n ) = O(λ−2ν

n ) as n→∞.

Therefore the series (23) converges if and only if the series
∞∑

n=1,n/∈I
λ

2(γ−ν)
n |(gδ, φn)|2

converges. The latter is true for any gδ ∈ L2(Ω) and 0 ≤ γ ≤ ν. This ends the
proof.
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Remark 2. It has been well known that the classical regularization methods such
as Landweber and Tikhonov methods suffer from the over-smoothing problem. We
see from the above theorem that for the noisy final solution data gδ ∈ L2(Ω), the
approximations fmδ to the initial condition f ∈ L2(Ω) by the fractional Landwe-
ber iterations belong to the space D(Lν) ⊂ H2ν . This means that the fractional
Landweber iteration has also regularization effect on the original solutions. However
we would like to point out that compared to the classical Landweber method (ν = 1)
for which fmδ ∈ H2, the new method reduces the smoothness of the approximative
solutions, particularly for smaller ν, thus efficiently overcomes the over-smoothing
drawback caused by the classical regularization methods.

4. Error estimation under two parameter choice rules. In this section, we
carry out the convergence analysis for the proposed fractional Landweber regular-
ization methods under both a priori and a posteriori regularization parameter choice
rules. Hereafter we use c or C, with or without subscripts, bars, to mean generic
positive constants, which may not be the same at different occurrences.

4.1. Under a priori parameter choice rule.

Theorem 4.1. Let f+ be the best-approximate solution defined in (15), fmδ is the
solution of the fractional Landweber regularization (21) or (22). Assume the noisy
data satisfies (7) and the solution satisfies the a priori condition ‖f+‖D(L

p
2 )
≤ E

for some p > 0. Then we have

‖fmδ − f+‖ ≤ cE
2
p+2 δ

p
p+2 (25)

under the choices for the a priori regularization parameter m and acceleration factor
a:

m =
⌈(E

δ

) 2(ν+1)
p+2

⌉
+ 1, 0 < a ≤ 1

‖K‖ν+1
(26)

for the explicit fractional Landweber regularization (21); or

m =
⌈(E

δ

) 2(ν+1)
p+2

+
p

2(ν + 1)

⌉
+ 1, a > 0 (27)

for the implicit fractional Landweber regularization (22). Where c is a positive
constant, which may depend on a, ν, and p. dre stands for the largest integer less
than or equal to r.

Proof of Theorem 4.1. Using the triangle inequality

‖fmδ − f+‖ ≤ ‖fmδ − fm‖+ ‖fm − f+‖, (28)

we are led to estimate the two terms on the right hand side.

(i) We start with the explicit fractional Landweber regularization (21). First, for
the first term, we deduce from (21) and (7)

‖fmδ − fm‖2 =

∞∑
n=1,n/∈I

(1− (1− aσν+1
n )m

σn

)2(
(gδ, φn)− (g, φn)

)2 ≤ ( sup
n/∈I

An

)2

δ2,

where

An :=
1−

(
1− aσν+1

n

)m
σn

, n /∈ I.
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By the Bernoulli inequality, we have

An ≤
ν+1

√
1−

(
1− aσν+1

n

)m
σn

≤
ν+1

√
1−

(
1−maσν+1

n

)
σn

= ν+1
√
ma.

Therefore

‖fmδ − fm‖ ≤ ν+1
√
maδ ≤

ν+1

√
a
((E

δ

) 2(ν+1)
p+2

+ 1
)
δ ≤ ν+1

√
2aE

2
p+2 δ

p
p+2 . (29)

Then, for the second term in (28), we derive from (16)

fm − f+ =

∞∑
n=1,n/∈I

(1−
(
1− aσν+1

n

)m
σn

− 1

σn

)
(g, φn)ϕn

=

∞∑
n=1,n/∈I

−
(
1− aσν+1

n

)m 1

σn
(g, φn)ϕn

=

∞∑
n=1,n/∈I

−
(
1− aσν+1

n

)m
(f+, ϕn)ϕn.

Under the a priori bound condition, we have

‖fm − f+‖2 =

∞∑
n=1,n/∈I

|(f+, ϕn)|2λpn
(
1− aσν+1

n

)2m
λ−pn ≤

(
sup
n/∈I

Bn

)2

E2, (30)

where Bn :=
(
1− aσν+1

n

)m
λ
− p2
n , n /∈ I. It follows from (24) and Lemma 7.3 in the

appendix, for n /∈ I,

Bn ≤ c
(
1− aσν+1

n

)m
σ
p
2
n

≤ c
( p

a(2m(ν + 1) + p)

) p
2(ν+1)

(2m(ν + 1)

2m+ p

)m
≤ c
( 2m(ν + 1)

2m(ν + 1) + p

)m+ p
2(ν+1) (

2m(ν + 1)
)− p

2(ν+1)

≤ cm−
p

2(ν+1) ,

where c may depend on a, ν, and p. Inserting this estimate into (30), then using
(26) gives

‖fm − f+‖ ≤ cm−
p

2(ν+1)E ≤ cE
2
p+2 δ

p
p+2 . (31)

We then obtain (25) by bringing (29) and (31) into (28).

(ii) We now turn to the case of the implicit Landweber regularization (21). Similar
to the explicit formula, we use (22) and (7) to get

‖fmδ − fm‖2 =

∞∑
n=1,n/∈I

(1− (1− aσν+1
n )−m

σn

)2(
(gδ, φn)− (g, φn)

)2 ≤ ( sup
n/∈I

Ān

)2

δ2,

where

Ān :=
1− (1− aσν+1

n )−m

σn
, n /∈ I.
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Using the Bernoulli inequality(
1− aσν+1

n

1 + aσν+1
n

)m
≥ 1− maσν+1

n

1 + aσν+1
n

, m ∈ N

leads to

Ān ≤
1

σn

ν+1

√
1− (1 + aσν+1

n )−m

=
1

σn

ν+1

√
1−

(
1− aσν+1

n

1 + aσν+1
n

)m

≤ 1

σn

ν+1

√
maσν+1

n

1 + aσν+1
n

≤ ν+1
√
ma.

Consequently,

‖fmδ − fm‖ ≤
√
maδ ≤ ν+1

√
p+ 2(ν + 1)

2(ν + 1)
aE

2
p+2 δ

p
p+2 . (32)

On the other side, we have from (16)

fm − f+ =

∞∑
n=1,n/∈I

(1−
(
1 + aσν+1

n

)−m
σn

− 1

σn

)
(g, φn)ϕn

=

∞∑
n=1,n/∈I

−
(
1 + aσν+1

n

)−m 1

σn
(g, φn)ϕn

=

∞∑
n=1,n/∈I

−
(
1 + aσν+1

n

)−m 1

σn
(f+, ϕn)ϕn.

Under the a priori bound condition, we obtain

‖fm − f+‖2 =

∞∑
n=1,n/∈I

|(f+, ϕn)|2λpn
(
1 + aσν+1

n

)−2m
λ−pn ≤

(
sup
n/∈I

B̄n

)2

E2,

where

B̄n :=
(
1 + aσν+1

n

)−m
λ
− p2
n , n /∈ I.

To bound B̄n, we use (24), Lemma 7.4, and (27) to get

B̄n ≤ c
(
1 + aσν+1

n

)−m
σ
p
2
n

≤ c
( p

a(2m(ν + 1)− p)

) p
2(ν+1)

(2m(ν + 1)− p
2m(ν + 1)

)m
≤ c
(2m(ν + 1)− p

2m(ν + 1)

)m− p
2(ν+1)

(2m(ν + 1))
− p

2(ν+1)

≤ cm−
p

2(ν+1) , n /∈ I.
Thus

‖fm − f+‖ ≤ cm−
p

2(ν+1)E ≤ cE
2
p+2 δ

p
p+2 . (33)

Finally we conclude by combining (32), (33), and the triangle inequality.
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Remark 3. The formula for the regularization parameter for the implicit frac-
tional Landweber regularization, i.e., (27), was chosen so that m > p

2(ν+1) , which

was used in establishing the error estimate in Theorem 4.1. However it should be
emphasized that this is only a technical choice because usually the noise level δ is

small, thus
(
E
δ

) 2(ν+1)
p+2 is much larger than p

2(ν+1) . In practice it suffices to choose

m = O
((
E
δ

) 2(ν+1)
p+2

)
as for the explicit method.

4.2. Under a posteriori parameter choice rule. As a priori bound condition
is unknown in practice, there is a need to consider an a posterior parameter choice
rule to determine necessary regularization parameter m.

Here we consider the so-called Morozov discrepancy principle [11]. The idea is
to estimate the smallest iteration number m = m(δ) such that

‖Kfmδ −Πgδ‖ ≤ τδ, (34)

where τ > 1 is a fixed number, Π is the L2-orthogonal projector from L2(Ω) to

R(K). In order for the discrepancy principle (34) to be meaningful, it is common
to assume ‖Πgδ‖ > τδ, otherwise (34) admits a trivial solution fmδ = 0.

The following lemma shows that the Morozov discrepancy principle (34) for the
fractional Landweber regularization is meaningful and realizable.

Lemma 4.2. Let fmδ be generated by the fractional Landweber regularization (21)
with 0 < a < 1

‖K‖ν+1 or (22) with a > 0. Define ρ(m) = ‖Kfmδ − Πgδ‖,m > 0.

Then the following results hold
(1) ρ(m) is continuous with respect to the integer variable m;
(2) lim

m→+∞
ρ(m) = 0;

(3) lim
m→0

ρ(m) = ‖Πgδ‖;
(4) ρ(m) is a strictly decreasing function with respect to m.

Proof of Lemma 4.2. The proof is straightforward by using the following expres-
sions:

ρ(m) =

√√√√ ∞∑
n=1,n/∈I

(
1− aσν+1

n

)2m |(gδ, φn)|2, 0 < a <
1

‖K‖ν+1

for the explicit formula (21); or

ρ(m) =

√√√√ ∞∑
n=1,n/∈I

(
1 + aσν+1

n

)−2m |(gδ, φn)|2, a > 0

for the implicit formula (22).

The next lemma provides an upper-bound for the regularization parameter m
following the discrepancy principle (34).

Lemma 4.3. Let f+ be the best-approximate solution defined in (15). Under the
a priori condition ‖f+‖D(L

p
2 )
≤ E and the noise assumption (7). If m is the

smallest iteration number such that (34) holds, then we have the following upper
bound estimator for m:

m ≤ c
( E

δ(τ − 1)

) 2(ν+1)
p+2

. (35)
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Proof of Lemma 4.3. (i) For the explicit formula (21), we have

fm = Rmg =

∞∑
n=1,n/∈I

1−
(
1− aσν+1

n

)m
σn

(g, φn)ϕn

from which we deduce

‖KRmg −Πg‖2 =

∞∑
n=1,n/∈I

(
1− aσν+1

n

)2m |(g, φn)|2.

Since the acceleration factor a is chosen such that |1− aσν+1
n | < 1, we get

‖KRmg −Πg‖ ≤ ‖g‖, ∀m ≥ 0.

This means ‖KRm−Π‖ ≤ 1, ∀m ≥ 0. Suppose now m is the smallest number such
that (34) holds, then ‖KRm−1g

δ −Πgδ‖ > τδ, and hence

‖KRm−1g −Πg‖ ≥ ‖KRm−1g
δ −Πgδ‖ − ‖(KRm−1 −Π)(g − gδ)‖

≥ τδ − ‖KRm−1 −Π‖δ
≥ (τ − 1)δ. (36)

Using (24) and the a priori assumption on f+, we get

‖KRm−1g −Πg‖2 =

∞∑
n=1,n/∈I

(
1− aσν+1

n

)2m−2 |(g, φn)|2

=

∞∑
n=1,n/∈I

(
1− aσν+1

n

)2m−2
σ2
n|(f+, ϕn)|2

=

∞∑
n=1,n/∈I

(
1− aσν+1

n

)2m−2
σ2
nλ
−p
n λpn|(f+, ϕn)|2

≤ sup
n/∈I

Ã2
nE

2, (37)

where Ãn :=
(
1− aσν+1

n

)m−1
σnλ

− p2
n , n /∈ I. From (24) and Lemma 7.5, we know

Ãn ≤ c
(
1− aσν+1

n

)m−1
σ
p
2 +1
n

≤ c
( p+ 2

a(2(m− 1)(ν + 1) + p+ 2

) p+2
2(ν+1)

( 2(m− 1)(ν + 1)

2(m− 1)(ν + 1) + p+ 2

)m−1

= c
(2a(ν + 1)

p+ 2

)− p+2
2(ν+1)

( 2(m− 1)(ν + 1)

2(m− 1)(ν + 1) + p+ 2

) 2(m−1)(ν+1)+p+2
2(ν+1)

(m− 1)−
p+2

2(ν+1)

≤ c(m− 1)−
p+2

2(ν+1) , n /∈ I. (38)

Combining (36), (37), and (38), we obtain (35).
(ii) In the case of the implicit formula (22), we have

fmδ = R̄mg =

∞∑
n=1,n/∈I

1−
(
1 + aσν+1

n

)−m
σn

(gδ, φn)ϕn.

By following the same lines as in the explicit case, we can obtain

‖KR̄m−1g −Πg‖ ≥ (τ − 1)δ. (39)
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Then we deduce from (24) and the a priori condition

‖KRm−1g −Πg‖2 =

∞∑
n=1,n/∈I

(
1 + aσν+1

n

)−(2m−2)|(g, φn)|2

=

∞∑
n=1,n/∈I

(
1 + aσν+1

n

)−(2m−2)
σ2
n|(f+, ϕn)|2

=

∞∑
n=1,n/∈I

(
1 + aσν+1

n

)−(2m−2)
σ2
nλ
−p
n λpn|(f+, ϕn)|2

≤ sup
n/∈I

B̃2
nE

2, (40)

where B̃n := (1 + aσν+1
n )−(m−1)σnλ

− p2
n , n /∈ I. Let’s suppose m > p+2+2(ν+1)

2(ν+1) ,

otherwise we obtain a trivial upper bound which is independent of E and δ. Then
it follows from (24) and Lemma 7.6

B̃n ≤ c
(
1 + aσν+1

n

)−(m−1)
σ
p
2 +1
n

≤ c
( p+ 2

a(2(m− 1)(ν + 1)− p− 2)

) p+2
2(ν+1)

(2(m− 1)(ν + 1)− p− 2

2(m− 1)(ν + 1)

)m−1

= c
(2a(ν + 1)

p+ 2

)− p+2
2(ν+1)

(2(m− 1)(ν + 1)− p− 2

2(m− 1)(ν + 1)

) 2(m−1)(ν+1)−p−2
2(ν+1)

(m− 1)−
p+2

2(ν+1)

≤ c(m− 1)−
p+2

2(ν+1) , n /∈ I. (41)

Finally we conclude by combining (39), (40), and (41).

Theorem 4.4. Let f+ be the best-approximate solution defined in (15), fmδ is the
solution of the fractional Landweber regularization (21) with 0 < a < 1

‖K‖ν+1 or

(22) with a > 0. Assume the noisy data satisfies (7) and the solution satisfies the
a priori condition ‖f+‖D(L

p
2 )
≤ E for some p > 0. If the regularization parameter

m is chosen according to the discrepancy principle (34), then we have

‖fmδ − f+‖ ≤ c
(( E

τ − 1

) 2
p+2

δ
p
p+2 + E

2
p+2 (δ(τ + 1))

p
p+2

)
, (42)

where c is a positive constant, which may depend on a, ν, and p.

Proof of Theorem 4.4. In virtue of the triangle inequality

‖fmδ − f+‖ ≤ ‖fmδ − fm‖+ ‖fm − f+‖, (43)

we are brought to estimating the two terms on the right hand sides.
(i) Explicit case (21). First, similar to the proof of (29), we can obtain

‖fmδ − fm‖ ≤ ν+1
√
maδ.

Using the upper bound for m provided in Lemma 4.3, we have

‖fmδ − fm‖ ≤ c
( E

τ − 1

) 2
p+2

δ
p
p+2 . (44)
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For the second term in (43), we derive from the definitions of Kfm and Kf+

K
(
fm − f+) =

∞∑
n=1,n/∈I

−(1− aσν+1
n )m(g, φn)φn

=

∞∑
n=1,n/∈I

−(1− aσν+1
n )m(g − gδ, φn)φn +

∞∑
n=1,n/∈I

−(1− aσν+1
n )m(gδ, φn)φn

=

∞∑
n=1,n/∈I

−(1− aσν+1
n )m(g − gδ, φn)φn +Kfmδ −Πgδ.

Using the assumption on a and the discrepancy principle (34), we obtain

‖K
(
fm − f+

)
‖ ≤ δ + τδ = (τ + 1)δ.

Furthermore, it follows from the a priori bound condition ‖f+‖D(L
p
2 )
≤ E

‖fm − f+‖D(L
p
2 )

=

∞∑
n=1,n/∈I

((
1− aσν+1

n

)2m |(f+, ϕn)|2λpn
) 1

2 ≤ E.

Then applying Theorem 2.2 gives

‖fm − f+‖ ≤ cE
2
p+2 (δ(τ + 1))

p
p+2 . (45)

Finally the estimate (42) is obtained by bringing (44) and (45) into (43).

(ii) Implicit case (22). The desired result can be proved in a similar way as the
explicit case. The proof is completed.

Remark 4. Although the proposed fractional regularization is convergent, the
convergence rate of fmδ → f+ as δ tends to 0 can be arbitrarily slow without a
priori assumption on the solution. That was why, to guarantee the convergence of
the proposed method, we have assumed in Theorem 4.1 and Theorem 4.4 that the
solution satisfies a priori condition, i.e., f+ ∈ D(L

p
2 ) for some p > 0.

5. Numerical validation.

5.1. Implementation. To provide the input data g for the reconstruction of the
initial condition from the forward problem, we propose here to solve (6) by a finite
difference method, which, for the sake of completeness, we give a brief description
below for one-dimensional case.

Let Ω = (0, L),∆x = L
M , ∆t = T

N , xi = i∆x, 0 ≤ i ≤ M , and tn = n∆t, 0 ≤
n ≤ N . The approximated value of function u at the grid point (xi, tn) is denoted
by uni . The time fractional derivative at t = tn is approximated by the well-known
2− α scheme [30, 20] as follows:

∂αt u(xi, tn) ≈ Dα
t u

n
i :=

(∆t)−1

Γ(2− α)

[
b0δtu

n− 1
2

i −
n−1∑
k=1

(bn−k−1 − bn−k)δtu
k− 1

2
i

]
,

where

u
n− 1

2
i =

1

2
(uni + un−1

i ), δtu
n− 1

2
i =

1

∆t
(uni − un−1

i ), bl =

∫ tl+1

tl

dt

tα−1
, l ≥ 0.

The spatial differential operator L is approximated by

Lu(xi, tn) ≈ Fxuni :=
1

∆x2

(
ai+ 1

2
uni+1 − (ai+ 1

2
+ ai− 1

2
)uni + ai− 1

2
uni−1

)
+ b(xi)u

n
i ,
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where

ai+ 1
2

= a(xi+ 1
2
), xi+ 1

2
=
xi + xi+1

2
, i = 1, 2, · · · ,M − 1.

This leads to the following scheme for (2) Dα
t u

n
i = Fxu

n
i , 1 ≤ i ≤M − 1, 1 ≤ n ≤ N,

u0
i = f(xi), 0 ≤ i ≤M,
un0 = unM = 0, 1 ≤ n ≤ N.

Both the explicit and implicit fractional regularization methods ExFLR (21) and
ImFLR (22) are used to compute the regularized solutions. The number of trun-
cation terms used in the regularization formulas is fixed to 50. The Mittag-Leffler
function is evaluated using the code from [26] with accuracy 10−15. The noisy data
is generated by adding a random perturbation, i.e., gδ = g + ε ρ

‖ρ‖‖g‖, where ε > 0

is the relative noise level, ρ = 2rand(size(g)) − 1 is a vector with random entries
uniformly distributed in [−1, 1]. This means the noise level in (7) is δ = ε‖g‖. Since
the a priori bound is generally unknown, we will only carry out the numerical test
using the a posteriori parameter choice rule. Thus the regularization parameter
m will be chosen according to the discrepancy principle (34) with τ = 1.1. The
accuracy of numerical solutions will be measured through the relative error:

er(f
m
δ , ε) =

‖fmδ − f‖
‖f‖

, with ‖f‖ ≈

√√√√ M∑
i=1

f2
i ∆x.

5.2. Numerical results. We first consider the one-dimensional problem with L =
1, T = 1, a11 ≡ 1, and b ≡ 0. In this case, we have λn = n2π2 and ϕn(x) =√

2 sin(nπx). The discretization parameters are fixed to be M = N = 200. The
final date g is obtained through solving the direct problem (6) with the initial
conditions provided in Examples 5.1–5.3.

Example 5.1. Smooth initial function f1(x) = sin(2πx).

Example 5.2. Continuous piecewise smooth function

f2(x) =

{
2x, 0 ≤ x < 1

2 ,
−2x+ 2, 1

2 ≤ x ≤ 1.

Example 5.3. Square wave function

f3(x) =

 1, 1
4 ≤ x <

1
2 ,

−1, 1
2 ≤ x <

3
4 ,

0, otherwise.

Note that the exact initial values in Example 5.2 and Example 5.3 are less regular
that the one in Example 5.1.

In the three examples, we fix ν = 0.5 and a = 5. Figures 1–2 show the recon-
structed initial conditions with different relative noise levels ε and fractional orders
α = 1.1 and α = 1.6 for Examples 5.1–5.3. It is first observed that the accuracy
increases as the noise level decreases in all three examples. Furthermore, more
regular is the exact initial condition more accurate is the reconstructed solution,
as predicted by the theoretical estimate given in Theorem 4.4. Another notable
observation is that the explicit regularization ExFLR and implicit regularization
ImFLR produce almost same results. In Table 1, we investigate the effect of the
noise level ε on the relative errors and regularization parameter m for all three
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examples for α = 1.1, 1.6. We notice that the regularization parameter m becomes
larger as ε and α decrease, and smaller is ε or α better is the accuracy of the reg-
ularized solution. This table further confirms that ExFLR and ImFLR perform
equally well under the same choice of the acceleration papameter a. However it is
worth mentioning that the implicit regularization is more robust in the sense there
is no restriction on the acceleration parameter, thus larger a is allowed. Another
notable point from Table 1 is that the required regularization parameter signifi-
cantly increases when the fractional order α decreases. This is probably due to
the diminution of the singular values when α decreases. However we believe more
investigation is needed to give a convincing explanation.

Figure 1. The regularized solutions with α = 1.1 for Examples 5.1–
5.3, corresponding to the three figures from left to right. (a)–(c) for
ExFLR; (d)–(f) for ImFLR.

Next test concerns the investigation of the effect of the fractional parameter
ν ∈ [0, 1] on the regularized solutions. For this test, we set a = 5, α = 1.5, ε = 10%
in Example 5.1 and ε = 0.1% in Examples 5.2 and 5.3. In Figure 3 we compare
the required regularization parameter m and relative error er(f

m
δ , ε) for different

values of the fractional parameter, computed by ExFLR. First of all, we observe
from the top figures that the required regularization parameter m is an increasing
function with respect to ν. This means that the proposed fractional regularization
methods with ν < 1 need smaller value of the regularization parameter m than the
classical one (ν = 1) to achieve the same accuracy. This is in a good agreement with
the theoretical estimate given in Lemma 4.3. The impact of ν on the relative error
between the regularized solutions and exact solutions is shown in the bottom figures
of Figure 3. We observe from Figures 3(a), corresponding to Example 5.1, that the
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Figure 2. Regularized solutions with α = 1.6 for Examples 5.1–5.3,
corresponding to the three figures from left to right. (a)–(c) for ExFLR;
(d)–(f) for ImFLR.

Table 1. Examples 5.1–5.3. Relative errors and regularization param-
eter versus relative noise levels.

α = 1.1 α = 1.6

ExFLR (21) ImFLR (22) ExFLR (21) ImFLR (22)

f ε m er(f
m
δ , ε) m er(f

m
δ , ε) m er(f

m
δ , ε) m er(f

m
δ , ε)

f1 1% 7324 0.0103 7328 0.0103 147 0.0188 152 0.0187
5% 4775 0.0506 4778 0.0506 96 0.0634 99 0.0634
10% 3677 0.1003 3680 0.1002 73 0.1209 76 0.1188

f2 0.1% 14913 0.0323 14915 0.0323 510 0.0647 511 0.0641
0.5% 3846 0.0674 3846 0.0674 8 0.1183 13 0.1187
1% 701 0.1068 706 0.1067 6 0.1211 11 0.1200

f3 0.1% 232223 0.2947 232224 0.2947 69253 0.2728 69254 0.2728
0.5% 32815 0.3827 32817 0.3827 7456 0.3753 7458 0.3752
1% 20594 0.4186 20595 0.4186 4695 0.4032 4697 0.4032

error is a decreasing function with respect to ν, and the best accuracy is achieved
by taking ν = 1. In contrast, Figure 3(f) shows that the error is an increasing
function with respect to ν, and the best solution is obtained by taking ν = 0. The
result for Example 5.2, presented in Figure 3(e), is between the two extreme cases,
and the optimal value of ν for this example is between 0 and 1, say something
close to 0.2. We want to point out that ImFLR has produced very similar results
as ExFLR, which is not shown in the paper to limit the length of the paper.
An interesting conclusion can be drawn from this test: the proposed fractional
regularization methods are more efficient for problems having low regularity, as
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demonstrated in Figure 3(e)–(f) where the initial condition to be reconstructed is
respectively only of H1(0, 1) and L2(0, 1) regularity. One possible explanation for
this observation is that changing the fractional parameter ν affects the smoothness of
the computed (regularized) solution — bigger is the fractional parameter smoother
is the computed solution. This explanation is evidenced by Figure 4, where the
solution curves are plotted for three values of ν. It is seen that increasing ν produces
smoother solution, and over-smoothing may cause a loss of accuracy of the numerical
solution.

Figure 3. (ExFLR) Regularization parameter m and relative error
er as functions of ν, vary ν in the range {0, 0.1, · · · , 1}. (a) and (d) for
Example 5.1 with ε = 10%; (b) and (e) for Example 5.2 with ε = 0.1%;
(c) and (f) for Example 5.3 with ε = 0.1%.

Finally, we perform numerical experience for a 2D example in the domain Ω =
(0, 1)× (0, 1) with the initial condition given in Example 5.4.

Example 5.4. Consider the initial function

f4(x1, x2) =

{
1, (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.22,
0, otherwise.

We set T = 1, α = 1.3, a11(x) = a22(x) ≡ 1, and b(x) ≡ 0. In this case,
we have the eigenvalues λm,n = (m2 + n2)π2 and corresponding eigenfunctions
ϕm,n(x1, x2) = 2 sin(mπx1) sin(nπx2). The data of the final state is produced by
solving the forward problem on the 50× 50 grids in space and 100 in time domain.
We choose a = 50 and ν = 0, 0.5, 1 in the fractional regularization methods. Figure
5 plots the regularized solutions computed by the implicit regularization method,
and their absolute errors with relative noise level ε = 0.1%. Once again, we observe
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Figure 4. The computed (regularized) solutions for Example 5.1–5.3
(from left to right) with α = 1.6: smoothness comparison of the com-
puted solutions for three different values of ν. (a)–(c) for ExFLR; (d)–
(f) for ImFLR.

that the optimal choice for the fractional parameter ν is 0, reflecting the fact that
the initial condition to be recovered is only a L2(Ω) function. These results confirm
that the proposal fractional regularization methods are efficient and stable, and
readily applicable to higher dimensional problems using eigenfunction expansion in
space.

6. Conclusion. In this work, we consider a backward problem associated to the
time-fractional wave equation in bounded domains. Two regularization methods
have been proposed to solve the backward problem, which consist in first trans-
forming the ill-posed problem into a weighted normal operator equation using
eigenfunction expansion in space, then solving the resulting equation by an iter-
ative procedure. Both a priori and a posteriori regularization parameter choice
rules were investigated, and an upper-bound was estimated for the smallest regu-
larization parameter according to a Morozov discrepancy principle. Furthermore,
the convergence rates were provided for the regularized solutions generated by the
proposed methods. Compared with the classical Landweber regularization method,
it was shown, both theoretically and numerically, that the fractional regularization
method needs smaller regularization parameter and lightens the well-known over-
smoothing effect caused by the classical method. This is an interesting feature of the
new method when used to treat problems having low regularity. For those problem
the new method can efficiently improve the accuracy of the regularized solutions by
avoiding over-smoothing.
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Figure 5. The computed initial conditions by ImFLR and absolute
errors for Example 5.4. (a)–(c) for the regularized solutions fm,δ4 ; (d)–(f)

for the absolute errors |fm,δ4 − f4|.

7. Appendix. We list in the appendix a number of definitions and lemmas, which
have been used in the previous sections.

Definition 7.1. (See [25]) The Mittage–Leffler function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α, β > 0.

Lemma 7.2. (See [35, 25]) For 1 < α < 2, β ∈ R, η > 0, it holds

Eα,β(−η) =
1

Γ(β − α)η
+O

(
1

η2

)
, η →∞. (46)

Lemma 7.3. For constants a > 0, p > 0, 0 < ν ≤ 1, and m ∈ N+, we have

s
p
2 (1− asν+1)m ≤

(
p

a(2m(ν + 1) + p)

) p
2(ν+1)

(
2m(ν + 1)

2m(ν + 1) + p

)m
, 0 < s <

1
ν+1
√
a
.

Proof of Lemma 7.3. Define the function

F (s) = s
p
2 (1− asν+1)m, 0 < s <

1
ν+1
√
a
.

It can be readily checked that

F ′(s) =
1

2
s
p−2
2 (1− asν+1)m−1

(
p− a(2m(ν + 1) + p)sν+1

)
, 0 < s <

1
ν+1
√
a
.
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Let F ′(s0) = 0, then

s0 = ν+1

√
p

a(2m(ν + 1) + p)
<

1
ν+1
√
a
.

Observe that F ′(s) > 0 for s ∈ (0, s0) and F ′(s) < 0 for s ∈
(
s0,

1
ν+1
√
a

)
, thus F (s)

attains its maximum at s = s0. That is

F (s) ≤ F (s0) =

(
p

a(2m(ν + 1) + p)

) p
2(ν+1)

(
2m(ν + 1)

2m(ν + 1) + p

)m
, 0 < s <

1
ν+1
√
a
.

The proof is completed.

Lemma 7.4. For constants a > 0, p > 0, 0 < ν ≤ 1, m > p
2(ν+1) , and m ∈ N+, we

have

s
p
2 (1 + asν+1)−m ≤

(
p

a(2m(ν + 1)− p)

) p
2(ν+1)

(
2m(ν + 1)− p

2m(ν + 1)

)m
, ∀s > 0.

Proof of Lemma 7.4. Define the function

G(s) = s
p
2 (1 + asν+1)−m, s > 0.

A direct calculation gives

G′(s) =
1

2
s
p−2
2 (1 + asν+1)−m−1

(
p− a(2m(ν + 1)− p)sν+1

)
, s > 0.

Let G′(s0) = 0. It is easy to get

s0 = ν+1

√
p

a(2m(ν + 1)− p)
> 0.

A similar analysis as in the proof of Lemma 7.3 shows

G(s) ≤ G(s0) =

(
p

a(2m(ν + 1)− p)

) p
2(ν+1)

(
2m(ν + 1)− p

2m(ν + 1)

)m
, ∀s > 0.

This proves the lemma.

Similarly we can derive the following lemmas.

Lemma 7.5. For constants a > 0, p > 0, 0 < ν ≤ 1, and m ∈ N+, it holds

s
p
2
+1

(1− asν+1
)
m−1 ≤

(
p+ 2

a(2(m− 1)(ν + 1) + p+ 2

) p+2
2(ν+1)

(
2(m− 1)(ν + 1)

2(m− 1)(ν + 1) + p+ 2

)m−1

for any s in
(
0, 1

ν+1
√
a

)
.

Lemma 7.6. For constants a > 0, p > 0, 0 < ν ≤ 1, m > p+2+2(ν+1)
2(ν+1) , and m ∈ N+,

we have

s
p
2
+1

(1 + as
ν+1

)
−(m−1) ≤

(
p + 2

a(2(m− 1)(ν + 1)− p− 2)

) p+2
2(ν+1)

(
2(m− 1)(ν + 1)− p− 2

2(m− 1)(ν + 1)

)m−1

for any s > 0.
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