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Abstract

The tomography of an object with limited angle can be addressed
through Iterative Reconstruction Reprojection (IRR) procedure, wherein
a standard reconstruction procedure is used together with a “filtering”
of the image at each iteration. It is here proposed to use as a filter a
phase-field — or Cahn-Hilliard — regularization interlaced with a filtered
back-projection reconstruction. This reconstruction procedure is tested
on a cone-beam tomography of a 3D woven ceramic composite material,
and is shown to retrieve a reconstructed volume with very low artifacts in
spite of a large missing angle interval (up to 28%).
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1 Introduction

Most of tomographic reconstruction commercial software are based on Filtered
Back-Projection (FBP) algorithm (including Feldkamp-Davis-Kress variant for
cone-beam geometry used in lab-scale tomographs) [11]. Indeed, FBP is ef-
ficient and can be implemented on GPU’s so that computation is very fast.
However, to use this method, projection angles have to sample 360° (or 180° for
a parallel beam) with an equi-angular spacing. In some cases, such as transmis-
sion electron microscopy tomography [9] or some specific applications of X-ray
micro-tomography (X-ray µ-CT) [21], the experimental gantry does not permit
the acquisition of a complete set of projection angles, a situation referred to
as “limited-angle”. This difficulty has led to the development of algebraic algo-
rithms (such as ART, SART, SIRT, MART, etc. [11]). As early as in 1982, it was
smartly proposed that FBP algorithms could also be used in such cases, at the
expense of using the algorithm iteratively instead of just once when all angles are
accessible. This last method was named Iterative Reconstruction-Reprojection
(IRR) by Nassi et al. [16].

The spirit of the IRR method is to perform an FBP reconstruction initially
based on arbitrary projection data (e.g. blank image) for missing angles. The re-
constructed volume is then filtered so as to get rid of the nonphysical data (such
as negative absorption coefficients). The resulting volume is then re-projected
providing synthetic projections in the missing angle orientations. Using the lat-
ter, complemented with the originally acquired projections, as input to FBP
allows an enhanced quality reconstruction to be obtained. Through iterations,
this procedure provides a more and more accurate reconstruction which by con-
struction matches the recorded projections, and provides plausible projection
data for the missing angles.

The importance of taking into account a priori information to clean out
nonphysical data in the reconstructions given by FBP, has been noted early.
Incorporation of those priors can be considered as a form of regularization that
provides a more likely substitute for the missing data and speeds up convergence.

• Medoff et al. [14] give examples of constraints which are split into two
categories: (i) constraints on the value of the reconstructed volume data
f or of its sinogram s (e.g. positivity of f and s, the fact that all gray levels
are in a known range or that a part of f is known), and (ii) constraints
on the geometry of the image (e.g. the image is confined within known
boundaries).

• Heffernan and Robb [10] have shown on artificial images that a regulariza-
tion which sets to zero negative values of f and all the pixels of f located
outside known boundaries, improves the reconstruction quality.
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• Riddell et al. [20] also use constraints on the positivity and on the contour
of the image and extrapolate sinogram data to missing angles to initialize
IRR. They employ attenuated Radon transform to ensure the quantitative
reconstruction.

• Ollinger [17] proposes a regularization based on expectation maximization
to improve the robustness of IRR with respect to noise. The Poisson char-
acter of the noise affecting the projection is taken into account, thereby
giving a fair estimate of the weight given to each data point of the projec-
tion data based on its uncertainty.

• Duan et al. [7] add a Total Variation (TV) minimization on the image
domain. This procedure introduced in Ref. [5] aims at concentrating gray
level variations onto a sparse support, leading to a small number of phases
(discrete histogram). The key feature of TV minimization, is that convex-
ity is preserved, and hence the minimizer is unique, and not dependent
on the pathway used to the solution, thus allowing for efficient and robust
implementation.

Up to now, most studies have been carried out on artificial images (such as
the famous Shepp-Logan phantom) in 2D parallel or fan-beam geometry. Using
such algorithms on experimental data, requires to account for (and correct) im-
age imperfections and artifacts because the reprojection step has to provide data
that is fully consistent with the reconstruction. In the present study, based on
lab-scale tomography, the use of wide distribution of energies in the X-ray source
produces naturally a significant artifact known as “Beam Hardening” (BH). As
the absorption coefficient of materials is generally higher for low energy X-rays,
the beam spectrum concentrates on higher energies as it travels through the
part, and the Beer-Lambert law (used to interpret the radiography) appears to
be only a rough approximation. A usual remedy to account for BH, is to iden-
tify an effective Beer-Lambert attenuation law, so that the projection data can
be preprocessed with a non-linear grey level correction, from which a standard
reconstruction algorithm can be run.

For complex materials and industrial parts, the geometry of the object to
scan is often quite complex and generally only a model of the geometry (say
a CAD description) is known and, due to the fabrication or elaboration pro-
cesses, it has to be considered as no more than an approximation. It is often
safer to base the regularization on the microstructure, say the homogeneous
phases composing the object of interest (which are often just a few). An orig-
inal regularization approach based on a phase field model is presented in this
article.

Phase field models were initially developed to describe the physics of phase
separation by free energy minimization [4, 1]. This global method has also
demonstrated its efficiency in image segmentation [12] where the “free energy”
now incorporates some known features or properties of the image itself. For
instance, the grey level of a pixel can be considered as a parameter which char-
acterizes its phases. In this context, phase field models can be used to very effi-
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ciently de-noise images, based on a prior knowledge with is included in the very
definition of the free-energy. Regularization is expected to lower noise, filtering
out high frequencies, however, it is desirable that it does not blur boundaries.
Thus ideally, one would anticipate domains of constant grey levels separated by
sharp interfaces according to regularization parameters. Those considerations
was the motivation for TV filtering, however the latter approach does not exploit
the existence of a limited number of phases with say a well defined absorption
coefficient. The phase field regularization approach has this potential, from the
flexibility offered by the very definition of the “free energy”. It is proposed here
to use a form of the free energy that includes a phase information enriched by a
gradient term for boundaries. Let us stress that such a filtering of images require
that no spurious gradients are produced by say BH artifacts, and hence such
phenomena have to be cleared from the projection data prior to reconstruction.

If tomography was first developed for medical imagery, today its usage has
diffused to a much broader scope of applications, including materials science.
X-ray µ-CT is a valuable tool to study the microscopical structure and under-
stand the behaviour of complex materials, such as composites. It is today a
technique of choice for non-destructive evaluation. The sample chosen to illus-
trate this analysis is a Ceramic Matrix Composite (CMC) [15, 6] whose out-
standing thermo-mechanical properties make it a very promising key material
to be used in hot regions of an aircraft engine. Matrix and fibers are made of the
same material and to distinguish the texture, an excellent quality tomography is
imperatively needed. Moreover, in situ thermo-mechanical testing is extremely
desirable to detect the first fore-signs of damage to assess the performance of
such parts [13]. A mechanical testing machine requires to balance say a tensile
force on the sample by an equivalent compressive one that has to be sustained
by a rigid frame around the object. For heavy loads, a steel frame is well suited
mechanically, but it will partly mask the specimen as it rotates in front of the
beam, its shadow on the detector renders inexploitable a domain of the sino-
gram and thus induces reconstruction issues equivalent to those encountered in
“limited-angle” tomography. Therefore, IRR is used to alleviate the difficulty
of these missing data, yet imaging faithfully the faint contrast of the material
microstructure is very demanding, and thus BH corrections and a rich prior
filter (based on phase-field approach) are needed to extract an accurate 3D re-
construction. The present paper aims at exploring the ultimate performance of
such an approach.

The principle of IRR implementation is recalled in Section 2 where notations
are defined. In Section 3, the sample used as support is presented. Section 4
explains the BH correction strategy. Section 5 details the regularization step
based on a phase field model. In Section 6, a reconstruction computed from real
experimental data is discussed to illustrate the capacity of the algorithm to pro-
vide quality reconstruction with low limited-angle artifacts. Finally, conclusions
and further possible improvements are proposed.
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2 Implementation of IRR

For lab-tomography, radiographies of a specimen rotating for a full 360° rotation
between an X-ray source considered as punctual, and a detector are acquired.
The intensity of these radiographies is denoted as I(r, θ), where r is the 2D
detector coordinates, θ is the sample rotation. The intensity of the beam I0(r)
without sample is also recorded. From these data, the “projections” defined as

p(r, θ) = log(I0(r))− log(I(r, θ)) (1)

can be obtained, and they correspond to the line integral of the specimen X-ray
attenuation f(x) along the ray hitting the detector at position r, for a sample
rotation of θ. Ideally, all rotation angles, 0 ≤ θ < 2π, and all relevant detector
positions r are accessible, so that a reconstruction algorithm R acting on p
provides the reconstructed volume f(x), where x stands for 3D coordinates of
voxels

R[p] = f (2)

Mathematically, R is a mere linear operator, which in practice is never written
explicitly because of its huge size, and a numerical procedure such as the Filtered
Back-Projection algorithm is used as equivalent to R. The inverse operator, is
the projection P

P[f ] = p (3)

In the case of obstruction, only some pairs of (r, θ) are accessible forming a
set Σm for which p(r, θ) = pm(r, θ) where the superscript m stands for “mea-
sured”.

The IRR algorithm is based on the following scheme illustrated in Figure 1:

• pm is complemented by say null data, p(r, θ) = 0 for (r, θ) /∈ Σm;

• A reconstructed volume is computed f = R[p];

• When the missing data has been complemented with inconsistent data,
the resulting f usually contains unphysical features such as negative ab-
sorption coefficients. Moreover, the effect of the missing angle data is is
spread out over the entire reconstruction domain. A filtering operation F
is introduced that makes the data more acceptable, by projecting negative
values of f to 0, and cancelling f to 0 outside a known or guessed support.
The cleaned reconstruction is denoted as g = F [f ];

• Projecting the cleaned reconstruction provides the computed projection
s(r, θ) = P[g];

• Because of the filter, and the fake data used in the missing domain, s does
not coincide with pm on the measured points. However, in the comple-
mentary domain, s is much more satisfactory than the initial guess. Thus,
the complement operation S is introduced so that

p(r, θ) =

{

pm(r, θ) for (r, θ) ∈ Σm

s(r, θ) for (r, θ) /∈ Σm (4)
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• As shown in Figure 1, these four operations define a cycle, that produce
a physically more consistent missing data in p. This full cycle can thus
be repeated as a fixed point algorithm until the filtering or complement
operations do not change appreciably their output data.

p(r, θ) f(x)

s(r, θ) g(x)

S

R

F

P

Figure 1: Iterative Reconstruction-Reprojection algorithm principle: Starting
from projection data p(r, θ), the FBP reconstruction algorithm R provides a
reconstructed volume f(x). The latter is filtered through a regularization pro-
cedure, F , to obtain the volume g(x). The projection operator, P, gives pro-
jections s(r, θ). The procedure S restores the projections for the known angles,
and leaves s(r, θ) for the missing angles. This loop corresponds to one iteration
of the IRR algorithm, which is repeated until convergence to a fixed point

For this algorithm to converge, it is essential that the filter F provides a
physically realistic information that is consistent with the known projections.
The positivity of f or the prescription of its support are very generic filters that
were introduced very early. They do not constraint much the reconstruction f
and hence the convergence rate is quite slow.

It is worth noting an interesting parallel that can be drawn with regular-
ization. In a seminal paper, Candès et al. [5] proposed to perform tomography
with a very coarse angular sampling. They showed that a drastic reduction in
the number of projections could be performed without loss on the quality of
the reconstruction for the Shepp-Logan phantom. This can be seen also as a
kind of missing information on the angles not used as an input. The algorithm
they proposed can be cast into the scheme of Figure 1, where the “filter” they
proposed was a Total Variation (TV) minimization. The latter promotes uni-
form absorption coefficient within domains and the sparsity of the support of
the non-zero gradient of f is the key underlying assumption to complement the
missing information. It is to be noted that the example chosen for illustration
was a numerical example deprived of any artifact.

Thus filtering or regularization can be considered as a very powerful lever
to extend the performance of tomography, and in the following a novel phase-
field regularization will be used. However, it is essential that no model error is
present which would render the regularization assumption invalid, ruining the
convergence of the IRR procedure.

IRR makes use of two standard primitives for tomography: FBP recon-
struction R and (re-)projections P. Here, the free software ASTRA [23, 22] is
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chosen. It offers a python and matlab toolbox with many such flexible primitives
wrapped in an efficient GPU-implementation [19]. The two transformations R
and P are resp. the ASTRA functions FKD3D and FP3D.

A tomographic scan often represents a huge amount of data (more than
109 pixels for the full sinogram). To reduce the size of the problem, the spa-
tial resolution of projection can be degraded, so that the computation is faster.
Reconstruction and sinogram obtained at the coarse scale is then used as initial-
ization for finer resolution computation. Finally a multiscale algorithm may be
designed by a recursive use of this coarsening step, in a pyramidal approach [8].

3 CMC sample

To illustrate the addressed problem, a SiC-SiC Ceramic Matrix Composite
(CMC) sample is chosen. It has a rather faint texture with short wavelength de-
tails corresponding to the 3D woven fabric, and some Si inclusions. This rather
weak contrast makes the problem quite difficult to handle. Moreover, because
the chemical species are light elements the X-ray absorption is low and gives rise
to a significant beam-hardening. The sample (Fig. 2a) has a rectangular section
with both machined and rough surfaces so that the capacity of the algorithm
to reconstruct edges can be demonstrated. For the same reason, a groove was
added on one side leaving a very thin wall. This case is thus quite challenging.

The composite sample is placed in a mechanical testing device which presents
two columns on the side of the sample (Fig. 3). Those columns (that withstand
the compressive load balancing the tensile one applied to the sample) cross the
beam line during the tomographic acquisition. Thus angular data are missing
to perform the reconstruction.

To quantify the ability of the proposed algorithm results to match the
scanned sample, the projections used in the following were taken without the
columns. Missing data are numerically suppressed on the measured sinogram
to initialize the computation. Hence the ground truth reconstruction is known
and errors can be trustfully quantified.

4 Beam hardening correction

4.1 Principle

As earlier mentioned, in a lab-tomograph, the broad spectrum of energy of the
X-ray source alters the effective absorption of the beam as it passes through
the sample. However, when the nature of the constitutive phases of the studied
sample is comparable in terms of attenuation, then the original projection data
p can be corrected by a non-linear function of the path length ℓ in the material,
and hence of p itself to restore an effective Beer-Lambert law.

Algorithmically, one can infer this correction in the following way. Starting
from uncorrected projection data, a first reconstruction is performed and a
binary mask h(x) of the studied sample is created (with an Otsu filter [18])
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(a) Initial image (b) Binarized image used to compute ℓ

(c) Corrected image (d) Difference between corrected and
initial images

Figure 2: (a) Sample cross-section as reconstructed from a complete acquisition
and no BH corrections; (b) Binary mask obtained with an Otsu filter [18] used
to compute the actual length ℓ traversed by each ray; (c) Reconstruction after
BH correction where a much more uniform texture is observed; (d) Difference
between (c) and (a) showing the net effect of BH corrections: the texture is not
much impacted, however the correction produces a better uniformity close to
the edges

O
A A

B

C

Figure 3: Scheme of the system in the horizontal plane. B is the scanned sample,
C the reconstruction area (dashed) and A are the columns of the experimen-
tal device which cut the X-ray beam during the rotation of tomograph plate
around O

where h = 1 within the material, and 0 elsewhere. The projection of this binary
mask P[h] gives precisely the length of the intersection of the beam with the
sample ℓ(r, θ). Collecting data for all (r, θ), a large collection of (p, ℓ) data
points is obtained from which a non-linear regression can be made to estimate
the correspondence

p = ψ(ℓ) (5)

Then, applying the reverse transformation peff = ψ−1(p), restores the validity
of Beer-Lambert law for peff .
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4.2 Application of BH correction

In the studied example, because the material is made mostly of a single phase,
SiC, such a beam correction is well justified. Figure 4 shows the raw data
points and their fit with the following expression that revealed adequate, ψ(ℓ) =
ℓ(1 + a

√
ℓ).

p

ℓ
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Figure 4: Joint distribution of projection gray level p and path length ℓ plotted
as thin black dots in the background. Superimposed on the data points, the bold
red curve shows the regression that provides the BH correction ψ−1 function.

In the reconstruction, beam hardening appears as an halo around the sample
as shown in figure 2a and an overestimate of X-ray absorption near the edge.
This artifact is particularly detrimental for image processing based on gray levels
such as TV regularization or the approach proposed in the following that would
tend to display several phases according to the distance to boundary. After
correcting the projection data, the reconstruction shown in (Fig. 2c) is obtained.
As compared to the raw reconstruction (Fig. 2a), a much more uniform texture
is obtained as could have been anticipated from the large scale homogeneity of
the material.

5 Phase field regularization

In the regularization formulation, prior knowledge about the microstructure is
to be inserted to help reaching a physically admissible reconstructed volume.
For instance, TV aims at reducing the number of phases (i.e., gray levels in the
reconstruction) but only through a penalization of phase boundaries. In fact,
no information is provided on the nature of the different phases. Such an ap-
proach can easily be generalized through the formulation of a free energy density

φ[g(x)], so that the minimization of the total free energy, Φ[g] =
∫

φ[g(x)] dx,

aims at bringing the reconstruction closer to the actual microstructure. The free
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energy can be designed so that the microstructure lies at or close to a minimum.
Thus for a known initial reconstructed volume, f(x), the filtered image, g(x),
is such that it minimizes

χ[g] = (1/2)

∫

(f(x)− g(x))2 dx+Φ[g] (6)

where the first part of the functional is an “attachment to data” term designed to
maintain a close connection between f and g, whereas the second term embodies
the prior knowledge on g.

For instance, if the free energy density is simply the L1 norm of the gradient
of g, then plain TV regularization is recovered. Another very generic model in
this description introduces a double well potential φ(g) = (g − γ1)

2(g − γ2)
2

together with a L2 norm of the gradient of g. The former term favors two “pure
phases”, g = γ1 or g = γ2, and the latter through the gradient term induces a
smooth transition (resulting from surface tension) between those values wher-
ever needed. Actually such a form is a standard “phase-field”, or Cahn-Hilliard
model, introduced in the context of statistical physics [4], and then frequently
used to describe phase morphologies [2]. It has been exploited more recently
very successfully in image processing (for denoising or inpainting) [12, 3] that is
quite close to the presently proposed usage.

The general form of Φ offers much more flexibility than the above cited
examples and allows one to tailor the potential to suit the specimen at hand.
A natural strategy is to perform an expansion of φ based on the assumption
that the regularity of g is mostly local. At dominant, or 0th order, φ depends
of the local value of g only. At first order, a local nearest neighbor information
can be formulated by introducing the gradient of g. Order after order, higher
derivatives can be inserted. When inserted into a multiscale approach, non-local
information about features having a specific shape can be introduced.

5.1 Gray level corrections based on histogram

A very first exploitation of this technique is based on a 0th order free energy
density. In order to limit the introduction of a prior knowledge, (the absolute
value of the coefficient of absorption is fragile as discussed in Section 4), a
first determination of the reconstructed image f may be used to estimate the
values of favored phases through the histogram of gray levels. Let n(f) be the
histogram of f values, a natural idea is to propose a free energy density defined
as

φ(f) = −µn(f) (7)

where µ is a free parameter to tune the regularization term.
Minimizing the free energy defined from this density tends to favor gray

values that are already well represented in f . Indeed, all maxima of n will
remain invariant under the transformation, and will behave as attractors for
the corrected value g, whereas minima of n will be repulsive fixed points (as it
can be seen on an example in Fig. 5a).
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Because of this observation, the binning of the histogram is very important.
For too fine a binning, spurious peaks will hamper the regularization effect, and
for a too coarse one, information may be lost by artificially grouping different
phases into one. The ideal bin size is given by the noise (or artifact) level which
limits the identification of the different phases.

As φ only depends on the gray level value, it is straightforward to solve
Eq. 6. In fact, it leads to a correction that only depends on the gray value and
not on the voxel location. More precisely, differentiating Eq. 6 leads to

g + φ′(g) = f (8)

The solution to this equation can be written as g = ω(f) and is seen as a color
correction where the initial gray level f is re-encoded with a different value,
ω(f), that solves the above equation. Thereby, a mere look-up table can be
written to represent efficiently this filter. In practice, the weight µ is adjusted
so that the correspondence ω(f) fulfills a stable convergence towards the minima
of n and hence −1 < dω/df < 1 at those points, or µ < 2/(max(|n′′|)).

This regularization actually reinforces the peaks of the histogram and de-
pletes the population of other gray values, thereby selecting stable phases. One
may also note that such an effect can easily be strengthened by iterating the
gray level mapping, g = ωα(f), with α > 1. In the limit of a very large α, only
“pure” phases are obtained.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10

3
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gray level

n

 

 

f
g

(a) Effect of the regularization on histogram

(b) Initial image f

(c) Corrected image g

Figure 5: (a) Example of phase field regularization for α = 1 and µ = (1/2)µmax.
The histogram peak sharpens around the maximum. Voxels corresponding to
void are not considered in the regularization and hence only pixels with a gray
level higher than a threshold (here 0.33) are used to compute the histogram; (b)
Initial cross-section image; (c) Effect of the regularization on the image.
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5.2 Gradient term

The free energy can also be enriched by a gradient term such as the addition of
ξβ |∇f |β where ξ and β are tunable parameters. ξ is homogeneous to a length
scale, to be interpreted as the width over which the transition between two
stable gray levels takes place. A large value of ξ will smooth out (or “blur”)
boundaries, and a small one will keep transitions rather sharp. The exponent β
also plays a role on the sharpness of the transition: When β ≤ 1 discontinuous
transitions are encouraged through a localization instability (instability is due
to a loss of convexity of this part of the potential when β < 1), while β = 1,
aka TV regularization, is just the marginal case, allowing sharp interfaces, but
still being convex, a unique combination that made the success of this form).

Here β = 2 is chosen, and equation 8 can be generalized to

g + φ′(g)− 2ξ2∆g = f (9)

This equation is to be solved after each reconstruction. Adding this gradient
term allows new peaks to emerge in the histogram and to discriminate phases
with neighboring gray levels.

6 Results

6.1 Regularized IRR computation

To provide a reference, a first computation is performed on the complete sino-
gram. Only one IRR loop is performed because, as there is no missing domain,
the sinogram is not updated during transformation S (see Fig. 1). Parameters
of regularization α and ξ are chosen such that they lower noise without altering
the texture of the material. This choice is made by studying the difference be-
tween the corrected and the original images, and targeting parameters that give
rise to mostly noise in this difference, and no feature that could be read as mi-
crostructure. The same parameters will be used to perform IRR on missing-data
sinogram so that the results can be compared. Parameters α = 3, µ = 0.2µmax

and ξ = 1 voxel are a good compromise for the studied image.

6.2 Limited-angle

On the sinogram, the traces of the columns of a mechanical testing machine are
now inserted as shown in Figure 6a, and two scenarii are considered to deal with
the data they hide. First, referred to as missing data domain A, all radiographs
where at least one column can be seen are rejected. The resulting mask is
shown in Figure 6b, (θ ∈[15°;64°]∪[205.25°;258.75°], or 28% of the data from
the complete sinogram are lost). If only the region obscured by the columns is
masked, missing data domain B, as shown in Figure 6c, only 9% of the data is
discarded. Both of these strategies can be handled with IRR, and the results
are shown thereafter.
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(a) Sinogram of the sam-
ple on the experimen-
tal device, shadows of
columns are black

(b) Missing-data domain
A: all radiographs where
the columns can be seen
are discarded: 72% of the
full data range is used

(c) Missing-data domain
B: Only the region ob-
scured by the columns are
discarded: 91% of the full
data range is known

Figure 6: Definition of the missing-data domain

6.2.1 Missing-data domain A

Figure 7 shows the result of IRR with missing domain A for the first, second
and fourth iterations. We observe that progressively the missing domain in the
sinogram is filled with an increased fidelity. After the fourth iteration changes in
the reconstructed volume becomes negligible, showing a very fast convergence.
When compared to the reference volume where no obscuration takes place, it
can be observed that gray levels are spatially modulated (left part is slightly
darker). Some streaks aligned in the direction of the missing angles are also
visible.

The norm of the difference between reconstructed volumes with full or lim-
ited angle, (resp. f0 and fA), normalized by the norm of the reconstructed
volume, is ‖fA − f0‖/‖f0‖ = 5.5%.

These results can also be compared with non-regularized IRR (Fig. 8). In
this case convergence is reached in 6 iterations, and the residual relative error
is r = 12.7%. Fig. 8b shows that missing angles are responsible for marked
streaks that cannot be erased. Because of the filtering stage, each iteration
is more costly for the phase field filter, but this is compensated by a faster
convergence, and a better quality of the result.

6.2.2 Missing-data domain B

In the considered problem, one can easily exploit all the projection data that is
not masked by the columns of the testing machine, as illustrated in Figure 6c.
The IRR algorithm is quite similar to the previous case. Only the shape of the
sinogram missing-data domain is needed, to define which part is updated and
which part, Σm, is preserved along iterations.
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The results of regularized IRR (shown in Fig. 9), are very close to the re-
construction with the complete sinogram data. A relative error of r = 2.8%, is
reached after 3 iterations.
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(a) Step 0: sinogram

(b) Step 0: reconstruction

(c) Step 0: residual

(d) Step 1: sinogram

(e) Step 1: reconstruction

(f) Step 1: residual

(g) Step 4: sinogram

(h) Step 4: reconstruction

(i) Step 4: residual

Figure 7: Example of IRR results for missing projections. Step 4 is the final step
when a stationary solution is reached. The residual is the difference between the
considered step of the reconstruction and the one without missing data (after
BH correction)
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(a) Reference (full angle)

(b) Non Regularized reconstruc-
tion

(c) Regularized reconstruction

Figure 8: Comparison between the IRR results for 28% of missing angles with
and without regularization. Convergence is reached in 4 (resp. 6) iterations
with (resp. without) regularization

(a) Step 3: sinogram

(b) Step 3: reconstruction

(c) Step 3: residual

Figure 9: Example of IRR results for missing-data domain B. Step 3 is the final
one
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7 Conclusion

A new and efficient regularization, based on a phase field approach, has been
implemented in IRR algorithm and has proven its ability to correctly reconstruct
volume with large missing-data domains. The few parameters (µ, α, β, ξ) of
this phase-field-based regularization are all means to adapt this algorithm to
the specificity of the scanned object and can be set to values optimized from a
limited volume where they can be tuned at low cost. The counterpart of the
missing data is the additional computational time of the regularization step and
of the needed iterations. Computation costs were not reported here since the
phase field filter was not optimized, but this regularization is essentially a very
short range problem so that a GPU implementation should provide very efficient
solutions, so that the incurred cost of the missing angle should reach almost the
number of iterations times the cost of a full reconstruction.

As explained in part 6.2.2, the proposed formulation for IRR is versatile
enough to take into account a missing-data domain of arbitrary shape. For
instance, the proposed IRR scheme is directly applicable for any metal artifact
corrections.
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