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A newly developed clamping system for ceramic specimen is described in the present report. 

By using this system, the uniaxial tensile loading was first successfully applied up to fracture 

(950 MPa) on a SiCf/SiC minicomposite. A minicomposite is a 1D model composite. It 

consists of a SiC-based fiber tow embedded in a SiC matrix, which has a diameter of about 

0.5 mm. Afterwards, the irradiation creep properties of SiCf/SiC minicomposites were 

studied. In-situ creep was performed in an in-beam creep device under uniaxial tensile 

stresses from 40 to 382 MPa during homogeneous helium irradiation. Homogenous 

irradiation was carried out by helium implantation with energies varying from 0 to 45 MeV. 

The displacement dose rate was 1.2x10-6 dpa/s. The average temperature was controlled to 

700 and 900°C within ±15°C. Irradiation creep compliance of minicomposite was measured 

to be 3.07 x 10-5 and 5.43x10-5 dpa-1 MPa-1 at 700°C and 900°C, respectively. 
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1. Introduction 

 

Besides ITER as the key pilot fusion device toward future fusion power plants [1], several 

concepts for future nuclear fission plants were proposed as well within the framework of the 

international Generation IV Initiative Forum (GIF) [2] and of the Sustainable Nuclear Energy 

Technology Platform (SNETP) in Europe [3]. Different to current light water reactors 

(LWR), both fusion and Generation IV Reactors will operate at much more extreme 

conditions, including high temperatures, high stresses, and high irradiation doses. However, 

to realize these advanced nuclear plants, development of high performance materials 

(structural and fuel) in such environments is a key issue.  

 

Silicon carbide (SiC) fiber reinforced SiC matrix composites (SiCf/SiC) have an excellent 

retention of mechanical properties, chemical and environmental inertness at high temperature, 

inherently low activation properties in neutron radiation environments. They are therefore 

considered as promising potential materials for first wall and blanket in the fusion reactor 

system [4, 5] and candidate cladding materials for advanced high temperature gas cooled fast 

reactors [6], where in some accident scenarios the cladding temperature can rise to 1600°C. 

Following the Fukushima accident, SiCf/SiC composites are also considered as cladding 

materials for enhanced accident-tolerant fuels (ATF) of light water reactor (LWRs) [7, 8]. 

The proposed cladding shapes are the plate design with internal hexagonal cells, containing 

the fuel, or a conventional cylindrical shape [9]. In both cases the cladding has to withstand 

stress from swelling/expanding fuel, and formation of fission gas. Irradiation creep is one of 

the major processes by which the dimensional stability of structural components can be 

altered during radiation exposure, and its control is therefore crucial for cladding 

performance.  However, it is believed that the fibers are less creep resistant than the matrix, 

which make the fibers sensitive to the phenomenon of delayed failure by a mechanism called 

slow or sub-critical crack growth [10] and lead to a decrease in the mechanical strength of the 

composite or even to its failure.  

 

Because of technical difficulty, there is only a scarce database on irradiation creep of 

monolithic SiC, SiC fiber and SiCf/SiC composites [11-17]. By applying bend stress 

relaxation (BSR) methods, irradiation creep of monolithic SiC and SiCf/SiC composites has 

been investigated under neutron irradiation in a nuclear reactor [11, 15, 17]. Meanwhile 
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irradiation creep of SiC fibers have been studied by torsion method [12] and BSR method 

[13] under proton beam irradiation. Obviously, BRS and torsion methods have their 

disadvantages. Due to inhomogeneous strain/stress distribution in the samples, the analysis of 

the results is quite complex, especially when the exponent of stress is not equal to one and/or 

the irradiation creep experiences a transition stage during exposure. It is worth mentioning 

that irradiation creep of thin strip specimen of chemically vapor-deposited (CVD) monolithic 

SiC has been studied under tensile load during the penetrating proton irradiation [14]. In 

reference [14], the maximum tensile load reached 98 MPa still far below fracture stress and 

the strain measurement is still not precise enough to monitor the details of strain-dose curve, 

which is the main advantage of in situ experiments. Therefore, a new clamping system that 

can be adapted to an existing cyclotron-based irradiation creep device was designed for 

ceramic specimens. By using this system, irradiation creep of a SiCf/SiC composite under 

uniaxial tensile loading was investigated and discussed in regard with literature data. 

 

2. Experiments 

 

2.1 Materials and samples 

 

The samples used in this study were SiCf/SiC minicomposites. They were manufactured at 

the laboratory for thermostructural composites (LCTS), CNRS/University of Bordeaux, 

France. A minicomposite is a 1D model composite [18]. It consists of one fiber tow in which 

a thin pyrocarbon coating called “interphase” and then the SiC matrix are infiltrated by 

chemical vapor infiltration (CVI) methods derived from CVD. The interphase makes it 

possible to obtain tough composites despite the brittleness of the ceramic components. The 

gas method used produces materials of very high purity. The tow is composed of 500 Hi-

Nicalon S fibers (monofilaments, ∼12 µm in diameter, from Nippon Carbon, Japan) (Fig. 1). 

These last generation fibers are referred to as “near-stoichiometric SiC fibers”. The geometry 

of the minicomposite is simpler than that of the actual composite. It can properly represent its 

behavior and, specially, its small size (0.5 mm in diameter and 32 mm in length) is well 

suited for the present irradiation creep experiments. 

The interphase and the matrix were successively infiltrated into fiber tows at low pressure 

and at a temperature of about 1000°C in the same hot wall reactor. Propane was the gas 

precursor for the pyrocarb on interphase. The interphase coating thickness was estimated at 
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30-40 nm from the deposition time and rate. The SiC matrix was infiltrated from a gaseous 

mixture of methiltrichlorosilane and hydrogen. The matrix volume fraction of the processed 

minicomposites were measured by weighing without taking into account porosity, it is 0.69.  

 

 

2.2  Clamping system for ceramic specimen 

The in-situ irradiation device, originally developed by FzJ [19,20] and modified by PSI, 

installed at CEMHTI/CNRS was employed for the present experiment. The irradiation creep 

of the SiCf/SiC composite is a technical challenge. The clamping system developed for metal 

samples does not work properly for ceramics. The sample is fixed by forced mechanical 

contact in traditional clamping system. Looking more closely, such contact between sample 

and sample holder actually occurs at several points. The real stress applied on the sample at 

the contact point are very high. The ceramic cannot have local plastic deformation to mitigate 

such stress at low temperature but the metal samples do. This could be the reason that 

traditional clamping system does not work properly for ceramic. To avoid the forced 

mechanical contact between sample and sample holder, a new clamping system for ceramic 

was therefore designed. Minicomposites were glued with alumina-based glue (Ceramabond® 

503 from Aremco) in the graphite grips, which were fixed to the metal frame. The ensemble 

could be mounted in the loading parts of in situ irradiation creep device. The glue was cured 

in air by incremental heat treatment up to a temperature of ~370°C according to the 

manufacturer's instructions. During the heat treatment, the screws of one of the two graphite 

grips were removed from the mounting to avoid sample damages due to metal thermal 

expansion. The graphite block could stand for high temperature, could be fixed mechanically 

to the metal frame without broken, and could protect metal pieces against overheating. The 

overall schematic view of the specimen holder for irradiation creep test of ceramics is showed 

in Fig. 2.  

 

2.3   Irradiation 

In-beam creep tests under He-irradiation were performed at the cyclotron of CEMHTI 

(Conditions Extrêmes et Matériaux: Haute Température et Irradiation)/CNRS (Centre 

National de la Recherche Scientifique) under support of the French Network EMIR (Réseau 

national d’accélérateurs pour les Etudes des Matériaux sous Irradiation) and the NEEDS 
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(Nucléaire, énergie, environnement, déchets, société) programme. A sketch of the 

experimental set up is illustrated in Fig. 3. With 45 MeV 4He2+ ions passing through firstly a 

magnet scanning system which create a Lissajous scanning, then a vacuum window of a 25  

µm thick Hastelloy foil, and finally a degrader wheel with 30 Al-foils of various thicknesses, 

the 0.5 mm thick samples were 3D-homogeneously irradiated/implanted under constant 

uniaxial stress. The specimens were loaded by a motor driven spring, with the specimen 

clamps moving in a guiding frame to avoid any torsion. The production of displacement 

damage was calculated by TRIM and SRIM for a displacement threshold energy of 35 and 20 

eV for Si and C atoms, respectively; and a binding energy of 3.25 and 2.63 eV for Si and C 

atoms, respectively [21, 22]. The displacement damage profile in SiC sample is shown in Fig. 

4. Typical displacement damage rate was 1.2x10-6 dpa/s (displacement per atom per second) 

with a concurrently helium implantation rate of 0.0067 appm-He/s (atomic parts per million 

per second) if the aperture was 4 mm x12 mm and beam current was 5 µA after aperture 

window. The desired specimen temperature was obtained by cooling the samples via 

controlled jets (5 on the right and 5 on the left side of the sample) of purified helium gas. The 

temperature distribution along the sample was monitored by an infrared pyrometer under 45° 

from the backside of the specimens during irradiation (see Fig. 5). The geometrical center of 

the sample is defined as position of origin (0 position), and up direction is positive. The 

region irradiated by beam located between two arrows (from position -6 to 6). The emissivity 

value of SiCf/SiC composites was chosen as 0.8 [23]. The temperature fluctuation during 

irradiation was ±15°C. The temperature fluctuation during beam-on directly leads the length 

changes of samples that is much larger than the elongation induced by irradiation in the 

present experiment conditions. Therefore, the elongation of specimens was monitored by two 

LVDT (Linear Variable Differential Transformer) positioned on both sides of the specimen 

under constant load in the period of beam-off. The irradiation continued until the strain rate 

became constant (stationary creep). Then, irradiation of the same specimen was resumed at a 

different stress in the range of 40 to 382 MPa. 

 

3. Results and discussion 

  

To check the feasibility of the new clamping system, a trial tensile test was performed at 900°C 

under beam heating. A typical tensile curve of SiCf/SiC composites is shown in the fig. 6.  The 

insert of photo in Fig. 6 shows fractured specimen after tensile test. From the plot, uniaxial 
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tensile loading was first applied up to fracture of 950 MPa and SiCf/SiC composite specimen 

failed in the center region. It demonstrates that this new clamping system is successful. 

According to our tensile curve, below 400 MPa there is a complete absence of sample sliding 

and pseudo-plastic deformation. The stress applied for creep tests will be remained below 

400 MPa. 

 

Because of different thermal expansion coefficient of specimen holder, support parts and 

sample itself, the measured length change by LVDT depends on the temperature distribution 

in the chamber. Therefore, in order to improve data precision, all strains have to be taken at a 

constant chamber temperature. One example is illustrated in Fig. 7. The strain measurements 

were taken at 65°C and a precision of  0.1 µm (corresponding to the strain resolution of 

better than 10-5) was achieved. 

 

Fig.8 and 9 show the strain of SiCf/SiC minicomposite during He-irradiation at 700°C and 

900°C as a function of the displacement dose, respectively. Each stress change caused, aside 

from elastic strain, also a short transient stage before stationary creep was reached. Those 

transient strains are similar to observations in steels [24, 25]. They are ascribed to irradiation-

induced relaxation or transient irradiation creep. It is worth mentioning that a contraction of 

the specimen against the applied tensile stress occurred at the beginning of irradiation when 

the applied stress was reduced (e.g. from 280 MPa to 101 MPa at 700°C and from 382 to 93 

MPa at 900°C). Nevertheless, already after a dose of less than 0.03 dpa, creep proceeds again 

in the stress direction. The mechanism of the transient irradiation creep is not clear yet. 

Hesketh [26] has proposed a model to describe this phenomenon. The basic idea is that 

vacancies and interstitials created by irradiation give rise to a chemical stress on dislocation. 

Pinned dislocation lines climb to form the bows under this chemical stress. Such dislocation 

bows randomly and homogenously distributed in the all-possible lattice directions. External 

stress will cause preferential arrangement of the bows in sizes resulting a final creep strain, 

which is proportional to stress, and independent of temperature. Afterwards, a steady state 

irradiation creep follows up. When applied stress changes, the rearrangement of those bows 

leads such transient creep strain, i.e. contraction or expansion depending on stress change 

directions. According to results from thermal creep test, it is fair to conclude that thermal 

creep is negligible at T ≤ 1000°C [27]. The measured length change is sum of irradiation 

creep and defect swelling as described by equation (1).  
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                  𝑡𝑜𝑡𝑎𝑙
′ (𝜎, ) = 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ () + 𝑐𝑟𝑒𝑒𝑝
′ (, )                                         (1) 

 

Where 𝑡𝑜𝑡𝑎𝑙
′ , 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ and 𝑐𝑟𝑒𝑒𝑝
′  are measured total strain rate, strain rate due to defect 

swelling i.e. swelling strain/damage dose (in unit of dpa-1), and strain rate due to irradiation 

creep i.e. irradiation creep strain rate/damage rate (in unit of dpa-1).  𝜎 ,  are applied stress 

and damage dose, respectively.  If strain rate reaches the steady state and keep a linear 

relationship with the irradiation flux [12], then:  

                                   
                             𝑡𝑜𝑡𝑎𝑙

′ (𝜎, ) = 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ () + 𝐵0 ∙ 𝜎                                       (2) 

 

 

Where 𝐵0 denotes irradiation creep compliance. Published data on irradiation creep of SiC 

demonstrated a linear stress dependence of the irradiation creep rate [11-17].  

Irradiation-induced total strain rates, i.e. strain-rate per dose-rate (in unit of dpa-1) were 

obtained by fitting straight lines to the stationary parts of the curves in Fig. 8 and 9. These 

values of 𝑡𝑜𝑡𝑎𝑙
′ (𝜎, ) are plotted in Fig. 10 as a function of the applied stress () for both 

temperatures. The number close to the measurement point in Fig. 10 indicates the measuring 

sequences. Because 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ () smoothly and monotonously decreases down to zero (due to 

the saturation of defect swelling in SiC) in high dose at temperature below 1000°C [28, 29]. 

The swelling contribution in measured total strain rate should continuously decrease with 

increasing damage dose. Accordingly, irradiation creep compliance can be measured by 

changing the applied stress alternately to higher and lower values. Here a detailed explanation 

is given. At 700°C, the applied stresses designed in a sequence (see Fig. 8) of 𝜎1=40 MPa 

(M-1), 𝜎2=280 MPa (M-2), 𝜎3=101 MPa (M-3) and 𝜎4=280 MPa (M-4).  According to the Eq 

(2), the measured strains of 4 points at 700°C could be described by   

 

𝑡𝑜𝑡𝑎𝑙
′ (𝜎1,

1
) = 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (
1

) + 𝐵0 ∙ 𝜎1      (3) 

 

𝑡𝑜𝑡𝑎𝑙
′ (𝜎2, 

2
) = 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (
2

) + 𝐵0 ∙ 𝜎2      (4) 

 

𝑡𝑜𝑡𝑎𝑙
′ (𝜎3, 

3
) = 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (
3

) + 𝐵0 ∙ 𝜎3      (5) 

 

𝑡𝑜𝑡𝑎𝑙
′ (𝜎4, 

4
) = 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (
4

) + 𝐵0 ∙ 𝜎4      (6) 
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The numbers in the subscript position of 𝜎 (stress) and   (dose) symbols in the equations (3) 

to (9) indicate the measuring sequences. Since the swelling portion is high at measurement 

M-1 which can cause large error, we take measurement M-2, M-3 and M-4 to extract the 𝐵0 

 

Subtracting eq (4) to eq (5) and eq(6) to eq (5), one obtains:  

 

𝐵0 =
𝑡𝑜𝑡𝑎𝑙

′ (𝜎2, 
2

)−𝑡𝑜𝑡𝑎𝑙
′ (𝜎3, 

3
)

𝜎2 − 𝜎3
−
𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (
2

) − 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ (

3
)

𝜎2 − 𝜎3
                    (7) 

 

    

𝐵0 =
𝑡𝑜𝑡𝑎𝑙

′ (𝜎4, 
4

)−𝑡𝑜𝑡𝑎𝑙
′ (𝜎3, 

3
)

𝜎4 − 𝜎3
−
𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (
4

) − 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ (

3
)

𝜎4 − 𝜎3
                   (8) 

 

Because 𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ () smoothly and monotonously decreases down to zero (due to the 

saturation of defect swelling in SiC) in high dose at temperature below 1000°C [27, 28], then: 

 

𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ (

2
)  𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (
3

)   𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ (

4
)  

 

One obtains the second term in eq (7) 
𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (2)−𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ (3)

𝜎2−𝜎3
  0; and in eq (8) 

𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔
′ (4)−𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔

′ (3)

𝜎4−𝜎3
  0 

therefore 

𝑡𝑜𝑡𝑎𝑙
′ (𝜎4, 

4
)−𝑡𝑜𝑡𝑎𝑙

′ (𝜎3, 
3

)

𝜎4 − 𝜎3
 𝐵0 

𝑡𝑜𝑡𝑎𝑙
′ (𝜎2, 

2
)−𝑡𝑜𝑡𝑎𝑙

′ (𝜎3, 
3

)

𝜎2 − 𝜎3
                  (9) 

 

The right term in eq (9), 
𝑡𝑜𝑡𝑎𝑙

′ (𝜎2,2)−𝑡𝑜𝑡𝑎𝑙
′ (𝜎3,3)

𝜎2−𝜎3
 and the left term in eq (9), 

𝑡𝑜𝑡𝑎𝑙
′ (𝜎4,4)−𝑡𝑜𝑡𝑎𝑙

′ (𝜎3,3)

𝜎4−𝜎3
  are the slopes of the lines connecting M-3 and M-2; and connecting 

M-3 and M-4, respectively. 

Conclusively, the slope of straight line connecting M-3 and M-2 (short dash) gives an upper 

limit of irradiation creep compliance. On the other hand, slope of straight line connecting M-

3 and M-4 (short dash) gives a lower limit. The correct one should be a slope between above-



9 

 

mentioned two slopes as indicated by solid line fitting to measurement M-2, 3 and 4 (red 

square) in the Fig. 10. From measured data, the swelling contribution at 700°C is significant 

at beginning of irradiation but decreases quite quickly with dose. At 900°C, the strain rate at 

93 MPa (M-4) cannot be extracted since the last part of strain-dose curve stopped within 

transient stage. Fortunately, the data (black circle) can be fitted by linear stress dependence 

with an offset close to 0 up to 382 MPa at 900°C (dashed line). This indicates that swelling at 

900°C is negligible. The creep compliances B0, i.e. creep rate per dose rate were determined 

as 3.07x10-5 dpa-1∙MPa-1 and 5.43x10-5 dpa-1∙MPa-1 at temperature of 700°C and 900°C, 

respectively. 

 

Similar to metal and steels, irradiation creep of SiC and its composites under constant load is 

believed to exhibit primary transient creep followed by steady-state creep with increasing 

irradiation damage dose. There are very limited in situ experiment in studying irradiation 

creep behavior [12, 14], where the strain-dose curves under stress could be measured. In ref. 

[14], recorded strain-dose curve under stress does not show the details due to poor resolution 

of strain measurement. Irradiation creep of SCS-6 fiber were characterized by transients 

below 0.05 dpa at 600°C by in situ torsion experiment as reported in Ref. [12]. In present 

study, strain-dose curves under applied stress demonstrates that transient creep remains up to 

0.02 – 0.05 dpa even affected by the history of applied stress.  

 

Irradiation creep compliance of various experiments, i.e. from different irradiation 

environments, different loading states are summarized in Fig. 11. All data divided in three 

displacement dose regimes, i.e. 0.01-0.1 dpa, 0.1-1 dpa and above 1 dpa indicated by empty 

(black), x-hair (red) and filled symbols (blue), respectively. Measurable irradiation creep 

starts from 400°C (symbols located in the abscissa mean that no irradiation creep stress could 

be measured). Meanwhile it was reported no stress dependence of strain of SiC under tensile 

loading up to 100 MPa at temperature range of 235-505°C [30]. It is worth mentioning that 

by keeping all other parameters constant, the torsion method gives a higher creep compliance 

under irradiation than the BSR technique in spite only one data point. The measured 

irradiation compliance scatted in wide orders of magnitude. This discrepancy can possibly 

arise from the following reasons: 

1) In all neutron irradiation study, the conversion factor of 1 dpa = 1.0 x 1025 n/m2 (E > 

0.1 MeV) is applied which overestimate the dpa number according to the suggested 

conversion factor of 1 dpa = 6.3 x 1025 n/m2 (E > 0.1 MeV) [21]. Light ions and 
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neutrons (and heavy ions) produce different recoil spectrum, which have a different 

efficiency of defect production. Calculations based on NRT model overestimate the 

efficiency of defect production of neutrons by about a factor of three [31] in metal. 

Considering above-mentioned reasons, irradiation creep compliance has been 

measured too low in the neutron irradiation investigation. 

2) There are some indications [32] that irradiation creep rates in bending test may be 

slightly lower than uniaxial loading. Especially, the sample suffered continuous 

decreasing stress during irradiation by BSR method that may cause uncompleted 

transient stage in the whole irradiation period. This results in a lower additional 

measurement of the irradiation creep compliance.    

3) Materials of compared data consisted of SiC, different SiC fibers, and even SiCf/SiC 

composites. Microstructural differences among various SiC impact on irradiation 

creep behavior [17]. This can explain the scattered results. 

As discussed in ref. [33], irradiation creep on steels and metals has been intensively studied 

for decades, both experimentally and theoretically, but a detailed understanding has not been 

achieved. The lack of high quality irradiation creep data on SiC retards the deep 

understanding of phenomenon and calls for further systematic experimental investigation and 

complementary modelling study.   

 

 

4. Summary and conclusion 

A newly designed clamping system for ceramic matrix composites was developed. By using 

this system, the uniaxial tensile loading was successfully applied up to fracture (950 MPa) on 

a SiCf/SiC minicomposite.  

An Irradiation creep test of a SiCf/SiC composite was performed by using an in-beam creep 

device under uniaxial tensile stresses from 40 to 382 MPa during homogeneous helium 

irradiation at 700°C and 900°C. The creep compliances B0, i.e. creep rate per dose rate 

(assuming linear dependence) are of 3.07x10-5 dpa-1∙MPa-1 and 5.43x10-5 dpa-1∙MPa-1 for 

temperature of 700°C and 900°C, respectively.  
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Fig. 1: SiCf/SiC minicomposite prepared by CVI: (a) sketch (for clarity, only a few fibers out 

of the 500 that constitute a whole tow are represented) and (b) SEM observation of the failure 

surface. 

 

 
 

(b)

(a)pyrocarbon interphase
CVI-SiC matrix

Hi-Nicalon S fiber



16 

 

Fig. 2: Ensemble drawing of sample holder: the pink parts are made of graphite and the grey 

ones of stainless steel. The round sample of SiCf/SiC minicomposites is indicated by dark red.  
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Fig.3: The sketch of in-beam irradiation set up 
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Fig. 4: calculated damage profile of 0 - 45 MeV α beam in SiC by SRIM 
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Fig. 5: Measured temperature profile of SiCf/SiC sample. The geometrical center of the 

sample is defined as position of origin (0), and up direction is positive. The region irradiated 

by beam located between two arrows (from position -6 to 6).  
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Fig. 6 Tensile curve of SiCf/SiC minicomposite at 900 °C under helium irradiation 
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Fig. 7: Length changes monitored during beam-off periods by LVDT as a function of the 

chamber temperature. All strains were measured at 65°C. 8 successive strain measurements 

were typically performed every 2 hours  of irradiation. 
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Fig.8: the strain of SiCf/SiC minicomposite during He-irradiation at 700°C as a function of 

the displacement dose. 
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Fig. 9: the strain of SiCf/SiC minicomposite during He-irradiation at 900°C as a function of 

the displacement dose. 
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Fig. 10: strain rate/dose rate as a function of stress. Slope of fitting lines give irradiation 

creep compliances. 
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Fig. 11 Comparison of irradiation creep compliance  
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