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Summary
Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic 
variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary 
arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes.

Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial 
hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with 
European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and 
the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching 
genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants 
at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and 
tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. 

Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13 × 10–¹⁵) and a second locus in 
HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], 
p=7·65 × 10–²⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus 
had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], 
p=1·69 × 10–¹²; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene 
regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined 
haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The 
HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in 
patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 
12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity.

Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in 
HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more 
common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed 
to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA 
typing or rs2856830 genotyping improves risk stratification in clinical practice or trials.
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Introduction
Pulmonary arterial hypertension refers to an un
common but devastating disorder characterised by 
obliterative pulmonary vascular remodelling, leading to 
a pro gressive increase in pulmonary vascular resistance 
and right heart failure. Annual mortality for idiopathic 
and heritable pul monary arterial hypertension remains 
around 10%, despite the use of modern therapies.1,2 The 
high mortality partly reflects the limited effect of 
licensed treatments on the underlying pulmonary 
vascular pathology, which includes vascular smooth 
muscle and fibroblast hyper plasia, endothelial cell 
proliferation, and inflam mation.3 Substantial variation 
between patients in their response to available 
treatments highlights underlying and inadequately 
characterised heterogeneity in the causes of pulmonary 
arterial hypertension.

Recent gene sequencing studies4–6 have revealed rare 
mutations in several genes, including BMPR2, genes 
encoding potassium channels, and most recently the 
transcription factor SOX17. Rare genetic variation is 
associated with both the risk of developing pulmonary 
arterial hypertension and survival, and it is found 
in up to 25% of patients with pulmonary arterial 
hypertension. In the majority of patients with 
pulmonary arterial hyper tension, the extent of genetic 
contribution, including that attributable to common 
variation, remains largely un known.7,8 Therefore, we 
aimed to test for genomewide association for pulmon
ary arterial hypertension in large international cohorts 
and assess the contribution of associated regions to 
patient outcomes (panel). This is the first report of the 
associations found at SOX17 and HLA-DPA1 and 
HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 
in this Article).

Methods
Pulmonary arterial hypertension cohorts and genotyping
We did two genomewide association studies and a meta
analysis on pulmonary arterial hypertension. Pulmonary 
arterial hypertension was defined by haemodynamic 
criteria according to international guidelines.2 Unrelated 
individuals with idiopathic, heritable, or anorexigen
associ ated pulmonary arterial hypertension were inclu
ded. Individuals with evidence of other known causes of 
pulmonary arterial hypertension were excluded; there fore, 
no patients were known to have pulmonary arterial hyper
tension associated with clinically dia gnosable autoimmune 
diseases (appendix pp 2–3). All enrolled individuals 
provided written informed consent from their respective 
institutions or were included as anonymous controls 
under the DNA databank at Vanderbilt University, BioVU, 
optout policy (appendix p 2).

Given the rarity of pulmonary arterial hypertension, four 
studies were used for the analyses. In the UK National 
Institute for Health Research BioResource (NIHRBR) 
Rare Diseases study, wholegenome sequencing (Illumina, 
San Diego, CA, USA; mean depth of around 35 ×; 
appendix p 2) was done in 5895 individuals of European 
descent, each with a rare disorder from 16 categories or 
their unaffected relatives, and 847 had pulmonary arterial 
hypertension (appendix p 4). The concept of this study was 
to sequence patients with rare diseases to identify genetic 
influences on the pathogenesis of one rare dis order using 
the other rare diseases as controls, assuming that distinct 
rare diseases are highly unlikely to share common genetic 
mechanisms. This assumption was tested by repeating 
analyses excluding each major control group (appendix p 6).

Three studies used genomewide genotyping arrays: 
the US National Biological Sample and Data Repository 
for Pulmonary Arterial Hypertension (also known as 

Research in context

Evidence before this study
We searched PubMed for research articles published in English 
before Aug 23, 2018, with search terms including “pulmonary 
arterial hypertension”, “genetics”, and “GWAS”. Rare genetic 
variation, primarily in genes associated with transforming 
growth factor-β family members, including BMPR2, but also in 
the transcription factor SOX17, is known to cause pulmonary 
arterial hypertension. However, little is known about the 
contribution of common variation to this disorder. Additionally, 
both pulmonary vascular endothelial dysfunction and altered 
immune and inflammatory signalling are observed in 
pulmonary arterial hypertension, but the underlying genetic 
mechanisms are poorly characterised.

Added value of this study
To our knowledge, this is the largest genetic analysis of 
pulmonary arterial hypertension to date, comprising more than 
2000 patients with pulmonary arterial hypertension from 

four international cohorts. We identified one locus near SOX17 
and another in HLA-DPA1 and HLA-DPB1 that reached 
genome-wide significance, and we cross-validated these loci by 
meta-analysis. The SOX17 locus includes two independent 
signals, both of which identify enhancer regions that specifically 
regulate the expression of SOX17, which is essential for 
pulmonary vascular development. Allelic variation at HLA-DPB1 
is associated with clinical outcomes, specifically survival, with 
more than two-thirds of patients harbouring genotypes 
associated with the poorest outcomes.

Implications of all the available evidence
Common variation near SOX17 is a risk factor for pulmonary 
arterial hypertension and dysregulation of SOX17 might be more 
common in pulmonary arterial hypertension than the occurrence 
of rare variants suggests. Further studies are needed to define 
whether HLA typing or rs2856830 genotyping improves risk 
stratification in clinical practice and in clinical trials.

https://victr.vanderbilt.edu/pub/biovu/
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PAH Biobank [PAHB]) study9 included 694 individuals 
with pulmonary arterial hypertension and 1560 controls 
ascer tained for a large pharmacogenomic study 
at Vanderbilt University (Nashville, TN, USA); 
the Pulmonary Hypertension AlleleAssociated Risk 
(PHAAR) study7 included 269 individuals with pulmon
ary arterial hypertension and 1068 populationbased 
controls from France; and the British Heart Foundation 
Pulmonary Arterial Hypertension (BHFPAH) study 
consisted of 275 individuals with pulmonary arterial 
hypertension and 1983 populationbased controls from 
several European countries (appendix p 12). All geno
typing studies were imputed (appendix p 12), and 
singlenucleotide poly morphisms (SNPs) with good 
imputation quality (r²≥0·3) were taken forward for 
testing. Individuals from NIHRBR, PHAAR, and 
BHFPAH were tested for relatedness to prevent 
inclusion of the same or related individuals across 
studies. Other qualitycontrol steps are detailed in the 
appen dix (pp 4, 5, 12).

Association analyses
We used logistic regression to test singlemarker variants 
for genetic association with a diagnosis of pulmonary 
arterial hypertension assuming a logadditive genetic 
model and adjusting for sex, read length chemistry 
(NIHRBR only), and population structure using the first 
four (NIHRBR and PHAAR), three (PAHB), or ten 
(BHFPAH) principal components. We calculated the 
genomic inflation factor, which was verified to be between 
1 and 1·05 for each study.

We used two independent sets for discovery: whole
genome sequencing data from NIHRBR (n=5895, 
including 847 pulmonary arterial hypertension cases); 
and metaanalysis of genotyping studies PAHB, PHAAR, 
and BHFPAH (n=5849, including 1238 pulmonary arterial 
hypertension cases). We crossvalidated findings and 
confirmed loci in a metaanalysis of all four studies 
using the inverse varianceweighted fixedeffects approach 
(which maximises power for discovery studies10), imple
mented in the GWAMA software tool.11 Randomeffects 
metaanalysis was subsequently applied to estimate 
generalisability of the results to different populations.10 
We did a conditional analysis including the lead variant in 
each locus as a covariate to test for independent distinct 
signals reaching p<5 × 10–⁸.

We used LDlink to assess linkage disequilibrium 
of variants in all European populations from the 
1000 Genomes Project. Credible sets of variants con
sidered 99% likely to include the functional causal variants 
were calculated by summing ranked posterior probabilities 
(appendix p 6).

Annotation and functional assessment of the locus near 
SOX17
The locus near SOX17 was assessed against publicly 
available functional annotation datasets (including 

ENCODE, Factorbook Motifs, and Blueprint). The locus 
was investigated using CRISPRmediated repression in 
human pulmonary artery endothelial cells (hPAECs; 
PromoCell GmbH, Heidelberg, Germany) by trans
duction with a lentivirus containing a plasmid en coding 
the nucleasedeficient Cas9 (dCas9) fused to the 
repressor KRAB and a 20 bp guide RNA (appendix 
pp 6–7). Cells were harvested following blasticidin 
selection, and the ex pression of SOX17 as well as 
neighbouring MRPL15 and TMEM68 was assessed by 
quantitative PCR.

Invitro enhancer activity of the loci and variants near 
SOX17 was investigated using a luciferase reporter assay. 
Specifically, genomic DNA was isolated from endothelial 
progenitor cells (also known as blood outgrowth 
endothelial cells) derived from a patient with pulmonary 
arterial hypertension who was heterozygous for the 
lead SNP at SOX17 and used to clone 100 bp putative 
enhancer regions containing the SOX17 pulmonary 
arterial hypertension variants. The cloned products were 
inserted into a luciferase reporter plasmid, which was 
sub sequently used for trans formation of stable bacteria. 
Picking various bacterial colonies allowed for isolation of 
luciferase reporter plasmids containing genomic DNA 
inserts differing only by the allele of the SNP of interest. 
Reporter plasmids were transfected into hPAECs by 
electro poration, and luciferase activity was measured to 
quantify the enhancer function of the inserts with the 
relevant haplotype.

Panel: Key terms

Genome-wide association study
A genetic analysis approach, typically using millions of 
common variants (eg, single-nucleotide polymorphisms 
[SNPs]) covering the genome, to test whether an allele of a 
genetic variant is associated with a disease or trait, or the 
levels of a continuous trait of interest.

Common variant
An SNP for which the frequency of the less frequent allele is 
at least 5% in a given population. Typically, a common variant 
has subtle biological effects, as opposed to rare variants (also 
known as mutations), which can cause diseases or extreme 
phenotypes.

Genetic locus
A position on the genome defined by the chromosome 
number and the genetic distance in centimorgans (cM) or 
physical distance in base pairs (bps) on the chromosome. 
A locus can refer to a gene or a non-coding region of varying 
length (eg, from one hundred to millions of bps).

Credible set
A set of variants that is statistically likely (eg, with 
99% probability) to contain the causal variant for the disease 
or trait of interest at a genetic locus.

https://ldlink.nci.nih.gov/
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Statistical analysis
Loci associated with pulmonary arterial hypertension were 
tested for associations with clinical variables (appendix 
pp 17–18). Allcause mortality was the primary endpoint in 
survival analyses using KaplanMeier estimates and Cox 
regression in the survival package in R, version 3.3.0.12 
Survival was calculated from diagnosis to date of death or 
censoring (Oct 31, 2016, for NIHRBR; Aug 1, 2017, for 
PAHB; Sept 27, 2017, for PHAAR; Oct 12, 2017, for 
BHFPAH), with left truncation using date of genetic con
sent, and patients were censored at lung or heartandlung 
transplantation. Age and sex were covariates to correct for 
their association with prognosis.2 NIHRBR and PAHB 
were analysed separately, and PHAAR and BHFPAH were 
combined before analysis because of their smaller sample 
sizes. Cox regression re sults from these three analyses 
were then metaanalysed using the default randomeffects 
model restricted maximumlikelihood estimator method 
implemented in the metafor package in R, version 3.3.0.13 
All cohorts were combined for KaplanMeier analysis. We 
did sensitivity analyses excluding pathogenic BMPR2 
variant carriers, all pathogenic rare variant carriers, and 
patients diagnosed in previous decades who might have 
been exposed to different treat ment regimens.

HLA alleles and amino acids totalling 1873 features were 
determined by imputation from genotyped and high
quality imputed variants in the HLA region using the 
SNP2HLA software and the type 1 diabetes genetics 
consortium reference database.14 HLA alleles and amino 

acids were tested for association with the novel lead 
variants or casecontrol status by χ² test with false discovery 
rate correction.

Role of the funding source
The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. CJR, KB, MB, MHa, LSo, MG, MWP, CH, AA, 
KBH, JHK, MK, AU, LH, JA, EMS, and SGr had access to 
raw data for analyses. The corres ponding authors had full 
access to all the data in the study and had final responsibility 
for the decision to submit for publication.

Results
In two separate GWAS discovery analyses (figure 1), 
we identified two loci associated with pulmonary 
arterial hypertension reaching genomewide signifi cance 
(p<5 × 10–⁸; table 1; appendix p 23). One locus was 
100–200 kb upstream of the transcription factor SOX17. A 
second locus was within HLA-DPA1/DPB1, which encodes 
the MHC class II DP α and β chains.

Both the SOX17 and HLA-DPA1/DPB1 loci reached 
genomewide significance in the discovery analyses; our 
crossvalidation strategy confirmed that the same alleles 
were more frequent in pulmonary arterial hypertension 
than in other disease or population controls in both analyses 
(table 1). The genomewide metaanalysis of all four 
studies confirmed their associations with pulmonary 
arterial hypertension (rs2856830, odds ratio 1·56 

See Online for appendix

For more on BioVU see https://
victr.vanderbilt.edu/pub/biovu/

For more on LDlink see 
https://ldlink.nci.nih.gov/

Studies

UK NIHRBR
5895 unrelated European 
 individuals
 847 with PAH 

PHAAR
1337 unrelated European 
 individuals
 269 with PAH

PAHB
2254 unrelated European 
 individuals
 694 with PAH

BHFPAH
2258 unrelated European 
 individuals
 275 with PAH 

Platforms Whole-genome sequencing 
(Illumina)

Genome-wide genotyping array 
(Illumina Human610)

Genome-wide genotyping array 
(Illumina HumanOmni5)

Genome-wide genotyping array 
(Illumina OmniExpress Exome) 

Analyses GWAS analysis GWAS analysisGWAS analysis GWAS analysis

Discovery in whole-genome 
sequencing

Discovery in meta-analysis of genotyping studies

Variants meet p<5 × 10–8 Variants meet p<5 × 10–8

Validation in whole-genome 
sequencing

Validation in genotyping studies

Final meta-analysis of all four studies (n=11 744) confirms SOX17 and HLA-DPA1/DPB1 loci

Conditional analysis of all four studies confirms two signals at SOX17 locus

Figure 1: Study design
HLA-DPA1 and HLA-DPB1 are collectively referred to as HLA-DPA1/DPB1 in this Article. BHFPAH=British Heart Foundation Pulmonary Arterial Hypertension study. 
GWAS=genome-wide association study. NIHRBR=National Institute for Health Research BioResource study. PAH=pulmonary arterial hypertension. PAHB=PAH 
Biobank study. PHAAR=Pulmonary Hypertension Allele-Associated Risk study.
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[95% CI 1·42–1·71], p=7·65 × 10–²⁰ for HLA-DPA1/DPB1; 
rs10103692, 1·80 [1·55–2·08], p=5·13 × 10–¹⁵ for SOX17; 
table 1; figure 2; appendix p 13). We detected no further loci 
at genomewide significance. Allele frequencies in the 
different control groups were similar between studies and 
to nonFinnish Europeans in the public database gnomAD 
(table 1).

The conditional analysis confirmed that the HLA-DPA1/
DPB1 locus contained a single signal of asso ciation, but 
showed that the SOX17 locus was composed of two 
independent signals; signal 1 is 100–103 kb upstream of 
SOX17 (pconditional=9·82 × 10–⁹) and signal 2 is 106–200 kb 
upstream of SOX17 (pconditional=4·16 × 10–¹¹; figure 2; 
appendix p 15). The lead SNPs for the two signals in the 
SOX17 locus were rs13266183 (for signal 1, odds ratio 1·36 
[1·25–1·48], p=1·69 × 10–¹²) and rs10103692 (signal 2). 
A Bayesian credible set analysis to narrow the variants in 
these loci to those 99% likely to be causal (appendix p 15) 
showed that the HLA-DPA1/DPB1 locus included nine 
SNPs (all p<9·1 × 10–¹⁸), SOX17 signal 1 included four SNPs 
100–103 kb upstream of SOX17 (all p<3·3 × 10–⁸), and 
SOX17 signal 2 included 31 SNPs 106–142 kb upstream of 
SOX17 (all p<5·7 × 10–¹⁰).

Previous studies have reported the association of 
variants near CBLN2, and PDE1A and DNAJC10 with 
pulmonary arterial hyper tension.7,8 These common variant 
signals showed no association with pulmonary arterial 
hypertension in the combined NIHRBR, PAHB, and 
BHFPAH cohorts (p=0·17 for CBLN2 and p=0·24 for 
PDE1A and DNAJC10; appendix p 14). Sensitivity analyses 
excluding patho genic BMPR2 variant carriers, all 
pathogenic rare variant carriers, and controls from 

different disease groups yielded similar results to the main 
analyses (appendix p 9).

To search for evidence of regulatory elements in relevant 
tissues at SOX17 signal 1 and signal 2, we examined 
publicly available epigenomic data (including histone 
modifications; figure 3; appendix p 24). We identified 
several putative enhancer elements active in both lung 
tissue and endothelial cells (figure 3). One of these 
elements (around hg19chr8:55·270 Mb) contains a cluster 
of three of four credible variants from SOX17 signal 1 
(figure 3). Another (around hg19chr8:55·252 Mb) con
tains one credible variant from SOX17 signal 2. Of these 
variants, rs10958403 in signal 1 and rs765727 in signal 2 
overlap a DNase I hypersensitivity signal, which indicates 
accessible chromatin (allowing binding of transcription 
factors), detected in hPAECs (figure 3).

To study the effects of the pulmonary arterial hyper
tension risk variants on the putative enhancers defined by 
the epigenomic signals, we developed reporter con structs 
containing 100 bp of the regions containing either the risk 
allele or nonrisk alleles at each of the four SNPs using 
genomic DNA from a patient heterozygous for both SOX17 
signals. A haplotypespecific reporter assay in hPAECs 
confirmed that the regions containing either rs10958403 or 
rs765727 exhibited enhancer activity (be tween threefold 
and sixfold induction of luciferase:Renilla ratio, p<0·0001), 
whereas constructs containing rs12674755 or rs12677277 
had no effect com pared with the empty vector control 
(figure 4). We also observed haplotypespecific activity with 
the active con structs, which differed only by the alleles at 
pulmonary arterial hypertensionassociated risk variants 
rs10958403 or rs765727 (both p<0·05; figure 4).

Chromosome and 
position, 
hg19:effect/
non-effect alleles

Effect allele 
frequency in 
non-Finnish 
Europeans in 
gnomAD

Effect 
allele 
frequency 
in NIHRBR 
controls

UK NIHRBR whole-genome 
sequencing study (847 cases 
vs 5048 controls)

Effect allele 
frequency in 
genotyping 
controls

Meta-analysis of 
genotyping studies PAHB, 
PHAAR, and BHFPAH 
(1238 cases vs 
4611 controls)

Meta-analysis of all cohorts 
(2085 cases, 9659 controls, 
neff=6648)

Odds ratio 
(95% CI)

p value Odds ratio 
(95% CI)

p value Odds ratio 
(95% CI)

Meta-analysis 
p value

Lead SNPs

HLA-DPA1/DPB1, 
rs2856830

6:33041734:C/T 0·12 0·12 1·71 
(1·48–1·96)

4·41 × 10–¹⁴* 0·13 1·44 
(1·26–1·64)

5·35 × 10–⁸ 1·56 (1·42–1·71) 7·65 × 10–²⁰*

SOX17, signal 1 
rs13266183

8:55267612:C/T 0·73 0·73 1·44 
(1·26–1·64)

4·44 × 10–⁸* 0·74 1·31 
(1·17–1·46)

4·1 × 10–⁶ 1·36 (1·25–1·48) 1·69 × 10–¹²*

SOX17, signal 2 
rs10103692

8:55258127:G/A 0·90 0·90 1·85 
(1·47–2·31)

9·51 × 10–⁸ 0·91 1·76 
(1·45–2·14)

9·84 × 10–⁹* 1·80 (1·55–2·08) 5·13 × 10–¹⁵*

Other SNPs in same loci

HLA-DPB1 missense 
SNP, rs1042140

6:33048640:G/A 0·23 0·23 1·38 
(1·22–1·55)

9·21 × 10–⁸ 0·23 1·44 
(1·29–1·61)

9·73 × 10–¹¹* 1·41 (1·30–1·53) 7·13 × 10–¹⁷*

SOX17, genotyping 
lead SNP, rs28576721†

8:55265980:T/C 0·91 0·92 1·55 
(1·23–1·95)

1·57 × 10–⁴ 0·92 1·96 
(1·57–2·43)

1·54 × 10–⁹* 1·75 (1·50–2·05) 3·07 × 10–¹²*

Odds ratios are for association between effect allele and pulmonary arterial hypertension. gnomAD is the Genome Aggregation Database, which provides information including allele frequencies in different 
populations. HLA-DPA1 and HLA-DPB1 are collectively referred to as HLA-DPA1/DPB1 in this Article. BHFPAH=British Heart Foundation Pulmonary Arterial Hypertension study. neff=number of individuals that 
would make up an equally powered study with a 1:1 case:control ratio (appendix p 2). NIHRBR=National Institute for Health Research BioResource study. PAH=pulmonary arterial hypertension. PAHB=PAH 
Biobank study. PHAAR=Pulmonary Hypertension Allele-Associated Risk study. SNP=single-nucleotide polymorphism. *Significant. †This is the most significant SOX17 SNP after combining the three genotyping 
studies (not including NIHRBR) and forms part of signal 2.

Table 1: Novel loci associated with pulmonary arterial hypertension in sequenced and genotyped cohorts
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DNA folding patterns determined by HiC data from 
lung tissue and endothelial cells (human umbilical vein 
endothelial cells [figure 3] and human microvascular 
endothelial cells [data not shown]) indicate that the 
SOX17 pulmonary arterial hypertension locus resides in 
a defined topologically associated domain in which the 
only gene found, and thus likely target of any regulatory 
elements in this region, is SOX17. CRISPRmediated 
inhibition of the SOX17 signal 1 region in hPAECs 
resulted in selective downregulation of SOX17 expression 
but not the ex pression of neighbouring genes MRPL15 
and TMEM68, suggesting that the enhancers in this 
locus specifically regulate SOX17 (figure 4; appendix p 26).

We investigated whether the HLA-DPA1/DPB1 and 
SOX17 variants affect clinical outcomes in pulmonary 

arterial hypertension, specifically allcause mortality. The 
HLA-DPA1/DPB1 rs2856830 genotype, but not the 
SOX17 locus, was strongly associated with survival 
(figure 5). Median survival from diagnosis in patients 
with pulmonary arterial hypertension with the C/C 
homozygous genotype was double (13·50 years [95% CI 
12·07 to >13·50]) that of those with the T/T genotype 
(6·97 years [6·02–8·05]). Cox regression survival 
analyses showed that the rs2856830 T/T genotype 
conferred an increased annual risk of death in pulmonary 
arterial hypertension (hazard ratio [HR] 1·94 [95% CI 
1·08–3·51]; figure 5).

Sensitivity analyses excluding pathogenic BMPR2 
variant carriers, all pathogenic rare variant carriers, and 
patients diagnosed in previous decades who might have 
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Figure 2: A meta-analysis of all cohorts and regional plots of novel loci
The regional plots indicate variant location at the HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 in this Article) locus and linkage disequilibrium structure at SOX17 locus. At the 
SOX17 locus, several variants associated with pulmonary arterial hypertension are in very weak or no linkage disequilibrium (r2<0·2) with the lead single-nucleotide polymorphism (SNP), rs10103692. 
We refer to these variants as SOX17 signal 1 and the most significant variant, rs13266183, is indicated. The variants coloured as in linkage disequilibrium with rs10103692 comprise signal 2. 
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been exposed to different treatment regimens gave 
results similar to the main analyses (appendix p 27).

We tested both loci for association with other clinical 
variables, including disease severity measures and 
comorbidities (appendix pp 17–18). The C allele at HLA-
DPA1/DPB1 lead SNP rs2856830 was associated with 
younger age at diagnosis (figure 5), with C/C homo
zygotes presenting a decade earlier than T/T homozygotes 
(appendix p 17). The rs2856830 genotype was not associ
ated with vasoresponder status.

The HLA-DPA1/DPB1 locus included a missense 
variant rs1042140 in HLA-DPB1 reaching genomewide 
significance (table 1) in partial linkage disequilibrium 

(r²=0·45 with lead rs2856830 in Europeans). The SNP 
rs1042140 determines a glutamic acid (Glu⁶⁹) or a lysine 
at amino acid residue 69. To determine specific HLA 
alleles associated with the lead variant, rs2856830, we 
imputed HLA types from the genotype data. These types 
are represented by digit codes, where the first two digits 
represent related groups of similar alleles (eg, DPB1*02), 
and four digits represent specific proteins with distinct 
amino acid sequences (eg, DPB1*02:01). We found 
that the pulmonary arterial hypertensionenriched 
C allele of rs2856830 was associated with 
HLA-DPB1*02:01/02:02/16:01 (all p<1 × 10–⁹ after false 
discovery rate correction; table 2; appendix p 19), which 
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Figure 3: In-silico analysis of SOX17 locus
Hi-C data from human umbilical vein endothelial cells (hUVECs) indicate regions of DNA found in close proximity in the three-dimensional structure. The genomic 
region containing the significant variants identified by the genome-wide association study (GWAS) analysis is indicated by a black box, overlapping a topologically 
associated domain (TAD) indicated in blue, which contains only SOX17. Mapping of SOX17 locus variants associated with pulmonary arterial hypertension with public 
epigenomic data is underneath Hi-C data. The credible set indicates positions of variants 99% likely to contain the causal variants. Auxiliary hidden Markov models, 
which summarise epigenomic data to predict the functional status of genomic regions in different tissues or cells, are shown. Epigenomic data in endothelial cells 
including hUVECs, human pulmonary artery endothelial cells (hPAECs), and endothelial progenitor cells (EPCs), indicate areas likely to contain active regulatory 
regions and promoters. Markers include histone H3 lysine 4 monomethylation (H3K4Me1; often found in enhancers) and trimethylation (H3K4Me3; strongly 
observed in promoters) and H3 lysine 27 acetylation (H3K27Ac; often found in active regulatory regions). The blue vertical blocks indicate where epigenomic data 
suggest a putative enhancer region, some overlapped by variants associated with pulmonary arterial hypertension. These regions were cloned for the luciferase 
reporter experiments (figure 4B). DHSs=DNase I hypersenstivity sites.
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all contain the Glu⁶⁹ residue. The most numerous 
DPB1*02:01 and DPB1*04:01 alleles were associated with 
survival in patients with pulmo nary arterial hypertension 
(HR 0·70 [95% CI 0·49–1·00] for DPB1*02:01 and 1·33 
[1·04–1·70] for DPB1*04:01; appendix p 21). 

The risk alleles at both signals within the SOX17 locus 
are common (risk allele frequencies are 74% for 

rs13266183C and 92% for rs9298503C), such that 
1230 (59%) of 2085 patients with pulmonary arterial 
hyper tension were homozygous for the risk allele at both 
SOX17 SNPs, compared with 4443 (46%) of 9659 controls.

The alleles at HLA-DPB1 associated with the poorest 
outcomes are also common (risk allele frequency of 
86% for rs2856830T), such that 1432 (69%) of 
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Figure 4: In-vitro analysis of SOX17 locus
(A) Process for haplotype-specific reporter construct derivation. 100 bp genomic DNA inserts containing SOX17 single-nucleotide polymorphisms (SNPs) are isolated 
from endothelial progenitor cells derived from a patient with pulmonary arterial hypertension (PAH) heterozygous for the SOX17 SNPs. Colonies of transformed 
bacteria can be sequenced to determine alleles present in the product. Transfection of luciferase reporter constructs containing inserts into human pulmonary artery 
endothelial cells (hPAECs) allows for determination of luciferase activity. (B) Luciferase reporter assay results. Luciferase:Renilla ratios relative to the empty vector 
demonstrate haplotype-dependent enhancement of promoter activity. Enhancer effects were tested by one-way analysis of variance followed by Dunnett’s post-hoc 
tests: rs10958403-G/A and rs765727-C/T were both p<0·0001 significant versus empty vector; variant effects of these two SNPs were tested by t test. The mean 
(SEM; error bars) of five experiments is shown. (C) Relative expression of SOX17:ACTB in hPAECs on CRISPR-mediated repression of the near SOX17 genome-wide 
association study (GWAS) locus. The mean (SEM; error bars) of four measurements in a representative experiment is shown. Three further experiments showed 
consistent results. Blue fluorescent protein (BFP), enhanced green fluorescent protein (eGFP), and control, which refers to a region between the enhancer region and 
the SOX17 gene that is negative for regulatory markers, are used as negative controls. The SOX17 promoter was targeted as a positive control of repression. 
Significance shown versus BFP by Dunnett’s post-hoc analysis. (D) Relative expression of MRPL15:ACTB in hPAECs on CRISPR-mediated repression of the GWAS locus.
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2085 patients with pulmonary arterial hypertension had 
the T/T genotype associated with the poorest outcomes 
and 1975 (95%) of 2085 patients had at least one T allele.

Discussion
Through a metaanalysis of 11 744 individuals, we have 
established loci at an enhancer upstream of SOX17 and 
at HLA-DPA1/DPB1 associated with pulmonary arterial 
hypertension disease risk. Common genetic variants 
in the enhancer region of SOX17 are biologically 
plausible candidates for susceptibility to pulmonary 
vascular disease. Polymorphic variation at the HLA-
DPA1/DPB1 locus is strongly associated with both the 

age at diagnosis and prognosis in pulmonary arterial 
hypertension.

Both insilico and experimental analyses of the common 
variants upstream of the SOX17 gene suggest that they 
affect susceptibility to pulmonary arterial hypertension 
through regulation of SOX17 expression. We provided 
direct evidence that inhibition of SOX17 signal 1 reduced 
SOX17 expression, and luciferase activity experiments 
showed a functional variant in both signals. Combined 
with the insilico data, it seems highly likely that signal 2 
would also be targeting SOX17 because no other gene is 
present in the topologically associated domain and 
promoter capture HiC data show that this area associates 
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Figure 5: Clinical impact of HLA-DPB1 rs2856830
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values in subgroups. The p value shown is from a linear regression model correcting for cohort differences. (B) Forest plot showing hazard ratios for the rs2856830 
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with the SOX17 promoter. We have recently reported4 
enrichment and familial segregation in pulmonary arterial 
hypertension of causal rare deleterious variation in 
SOX17, implicating this gene in the pathogenesis of 
pulmonary arterial hypertension. SOX17 is involved in the 
development of the endoderm,15–17 vascular endo thelium, 
haemopoietic cells,18 and cardiomyocytes.19,20 SOX17 also 
determines the endo thelial fate of CD34 progenitor cells 
dedifferentiated from fibroblasts.21 Deletion in the mouse 
leads to ab normal pulmonary vascular development, poor 
distal lung perfusion and biventricular hypertrophy.22 
SOX17 is a proangiogenic transcription factor and 
interacts with well established endothelial molecular 
mediators;23,24 reduction of SOX17 in endothelial cells 
through Notch activation (which is associated with BMPR2 
signalling25) restricts angiogenesis.23 Conversely, vascular 
endothelial growth factor (VEGF) upregulates SOX17 and, 
as part of a positivefeedback loop, SOX17 promotes 
expression of VEGF receptor 2.24

We report that HLA-DPB1 alleles are associated with 
pulmonary arterial hypertension and have a pivotal role in 
determining disease progression. The beneficial effect of 
the C/C genotype at rs2856830 on survival is clinically 
significant, extending average survival from about 7 to 
about 14 years, despite no apparent difference in baseline 
disease severity by standard clinical measures, including 
haemo dynamics and exercise capacity. Patients with the 
C allele at rs2856830 presented at a significantly younger 
age than those with the T allele, but the association of the 
HLA-DPB1 SNP with survival remains significant after 
correction for both age and sex. The somewhat conflicting 
observation that the C/C genotype is associated with 
earlier, more frequent presentation but improved survival 
compared with the C/T or T/T genotypes perhaps suggests 
that there could be two different mechanisms involved; 
one that affects initial disease pathogenesis and another 

that alters the adaptation to the established disease state. A 
parallel in pulmonary arterial hyper tension is the paradox 
of female prevalence contrasted with poorer outcomes for 
male patients,2 although the mechanisms for this still 
remain unclear. Further evaluation of this survival 
association in independent datasets would help to define 
how clinical HLA typing or rs2856830 genotyping could 
improve risk stratification in clinical practice and in clinical 
trials, in which overrepresentation of the C/C genotype in 
one treatment group could significantly affect outcomes.

The mechanism of rs2856830 involvement in pulmon
ary arterial hypertension is probably through its associ
ation with specific HLA-DPB1 alleles. Class II (HLADRB1, 
HLADQB1, and HLADPB1) antigenpresenting proteins 
have crucial roles in the adaptive immune response.26,27 
The HLA-DPB1 alleles associated with rs2856830 
(HLA-DPB1*02:01/02:02/16:01) in the current study have 
also previously been linked to susceptibility to hard metal 
lung diseases, such as berylliosis.28,29 A number of indi
vidual amino acid residues in the peptidebinding pockets 
of the HLADPB1 molecule affect its function and Tcell 
recognition, either by changing peptide antigen binding 
or the conformation of the peptidebinding groove.30 
HLA-DPB1*02:01/ 02:02/16:01 all contain a glutamate at 
position 69 and a valine at position 36 that reduce the risk 
of clinical deterioration. These same residues are essential 
for Tcell activation and cytokine production in 
berylliosis.31,32 The potential role of this modification in 
antigen binding, autoimmune response, and vascular 
damage in pulmonary arterial hypertension demands 
further investigation.

To examine whether the associations observed were 
driven by trans effects of known rare pathogenic variants 
in pulmonary arterial hypertension, we did sensitivity 
analyses that demonstrated that the asso ciations were 
independent of BMPR2 and other rare pathogenic variants. 

Amino acid residues in HLA-DPB1 alleles Frequencies by GWAS SNP rs2856830 q after FDR 
correction

8 9 11 33 35 36 55 56 57 65 69 76 84 85 86 87 96 178 194 T/T T/C C/C

DPB1*02:01† L F G E F V† D† E† E I E† M G G P M R L R 244/8870 
(3%)

1182/2682 
(44%)

211/234 (90%) <5 × 10–²⁴⁷

DPB1*02:02† L F G E L V† E A E I E† M G G P M ·· ·· ·· 2/8870 
(<1%)

93/2682 
(3%)

16/234 (7%) 2·77 × 10–⁸⁷

DPB1*16:01† L F G E F V† D† E† E I E† M D E A V ·· ·· ·· 4/8870 
(<1%)

64/2682 
(2%)

5/234 (2%) 7·08 × 10–⁴¹

DPB1*03:01‡ V Y L E F V† D† E† D L K‡ V D E A V K L R 1094/8870 
(12%)

152/2682 
(6%)

0/234 (0%) 5·50 × 10–²³

DPB1*04:01‡ L F G E F A‡ A‡ A‡ E I K‡ M G G P M R L R 4251/8870 
(48%)

697/2682 
(26%)

1/234 (<1%) 2·40 × 10–¹³⁸

DPB1*04:02‡ L F G E F V† D† E† E I K‡ M G G P M R M R 1153/8870 
(13%)

166/2682 
(6%)

0/234 (0%) 2·08 × 10–²³

DPB1*01:01‡ V Y G E Y A‡ A‡ A‡ E I K‡ V D E A V K L Q 611/8870 
(7%)

99/2682 
(4%)

0/234 (0%) 1·17 × 10–⁸

Data are n/N (%) unless otherwise stated. FDR=false discovery rate. GWAS=genome-wide association study. SNP=single-nucleotide polymorphism. †Alleles and residues depleted in pulmonary arterial 
hypertension cases. ‡Alleles and residues enriched in pulmonary arterial hypertension cases. 

Table 2: Associations of HLA-DPB1 alleles with the lead SNP rs285683
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Although the sequencing and array platforms used in this 
study might perform differently across the genome, the 
signals detected for each platform remained strong.

This study has some limitations. The majority of patients 
studied were prevalent cases, and the association with 
survival is only marginally significant and based on a 
relatively small sample size, from multiple studies with 
different ascertainment criteria. Thus, confirmation of the 
survival analysis in an independent sample of patients 
recruited at diagnosis would greatly increase confidence in 
this finding. Some variants displayed heterogeneity of 
effects between studies, which is most likely due to the 
limited sample size in the smaller genotyping studies. 
Variants in CBLN2 and other loci previously associated 
with pulmonary arterial hyper tension7,8 were not replicated 
by this study, suggesting that these previous findings were 
either false positives or only relevant to the specific 
subpopulations studied.

We have shown in a rare disorder that common variation 
can drive significant clinical differences in presentation 
and outcomes. Furthermore, a common noncoding 
variant can regulate expression of a gene linked by rare, 
deleterious mutations to the same disease. HLA-DPB1, and 
wider immune regulatory pathways, should be considered 
a priority for patient stratification and investigation of new 
treatments in pulmonary arterial hyper tension. SOX17 is 
a key endothelial regulator and its dysfunction in pulmon
ary arterial hyper tension might be more common than 
suggested by the occurrence of rare pathogenic variants in 
heritable cases.
Contributors
All authors were involved in study design, data collection, and constructive 
criticism of the manuscript. CJR, KB, MB, MHa, LSo, MG, MWP, JA, LH, 
IP, RK, SGr, WCN, RCT, AAD, NWM, and MRW were involved in data 
interpretation and writing of the manuscript. Data were analysed by CJR, 
KB, MB, MHa, LSo, MG, MWP, CH, JA, AA, KBH, JHK, MK, AU, LH, 
EMS, and SGr. 

Declaration of interests
CJR reports personal fees from Actelion Pharmaceuticals. HG reports 
personal fees and nonfinancial support from Actelion, AstraZeneca, 
Bayer, BristolMyers Squibb, GlaxoSmithKline (GSK), Janssen Cilag, Lilly, 
Merck Sharp & Dohme (MSD), Novartis, Pfizer, and United Therapeutics/
OMT. KL reports grants from the US National Institutes of Health (NIH). 
FA reports grants from NIH. PA reports personal fees from Servier, Total, 
Genoscreen, Takeda, and Foundation Plan Alzheimer. RA is on the 
advisory boards of Actelion Pharmaceuticals and Gilead Pharmaceuticals, 
and reports grants from Reata Pharmaceuticals. DB reports grants from 
NIH/National Heart, Lung, and Blood Institute (NHLBI) subcontract 
through the University of Cincinnati (Cincinnati, OH, USA); grants and 
personal fees from Acceleron, Actelion, Gilead, United Therapeutics/Lung 
LLC, Arena, Liquidia, Complexa, Bayer, and Bellerophon; personal fees 
from Respira; and grants from Novartis. MC reports grants and personal 
fees from Actelion, Bayer, Gilead, United Therapeutics, and Reata; grants 
from Eiger, Medtronic, Novartis, and Liquidia; personal fees from Express 
Scripts, Phase Bio, WebMD Medscape, and SteadyMed; salary support for 
continuing medical education review from Pulmonary Hypertension 
Association; and grants from NIH. RC reports personal fees from 
Actelion, MSD, and Bayer. PAC reports grants and personal fees from 
Bayer and Actelion, and personal fees from MSD. CGE reports grants 
from Intermountain Healthcare and Actelion; consultant fees paid by 
Intermountain Healthcare (event adjudication committee for BEAT study) 
from Lung Biotechnology; safety committee board fees from ARENA; and 
data safety monitoring board fees from Actelion. TF reports grants and 

personal fees from Gilead and United Therapeutics; and grants from 
Actelion, Lungs Rx, Bayer, and Eiger. RPF reports grants from 
NIH/NHLBI. HAG reports personal fees from Actelion, Bayer, GSK, 
Novartis, Pfizer, Bellerophon Pulse Technologies, and MSD; and grants 
from Deutsche Forschungsgemeinschaft. JSRG reports grants and 
personal fees from Actelion, Bayer, GSK, and MSD; personal fees from 
Arena, Bellerophon, Complexa, and Pfizer; and grants from United 
Therapeutics and Amco. JH reports grants from NIH and the US 
Department of Veterans Affairs; personal fees from Janssen 
Pharmaceuticals, Shenzhen Rheumatic Disease Hospital (Shenzhen, 
China), Columbia University (NY, USA), and New York University (NY, 
USA); and options from Board of Directors service from Now Diagnostics. 
NSH reports financial support in the form of a subcontract from an NIH 
grant to the institution to support infrastructure. DI is a consultant for 
Actelion, Bayer, Lilly, and United Therapeutics through University of 
Colorado (Aurora, CO, USA) contracts, and reports grant funding from 
the NIH and US Food and Drug Administration. DGK reports grants, 
personal fees, and nonfinancial support from Actelion, Bayer, GSK, 
and MSD. GK reports personal fees and nonfinancial support from 
Actelion, Bayer, GSK, MSD, Pfizer, AOP, Boehringer Ingelheim, Novartis, 
and Chiesi. TL reports consultancy fees from Actelion, Bayer, and Gilead. 
MN reports educational travel grants from MSD and GSK. HO reports 
grants from Bayer, Unither Pharmaceuticals, Actelion Pharmaceuticals, 
Roche, Boehringer Ingelheim, and Pfizer; personal fees from Gilead 
Sciences, Encysive Pharmaceuticals, and NebuTec; and personal fees and 
nonfinancial support from Bayer, Unither Pharmaceuticals, Actelion 
Pharmaceuticals, Pfizer, Eli Lilly, Novartis, AstraZeneca, Boehringer 
Ingelheim, Chiesi, Menarini, MSD, and GSK. AJP reports grants and 
personal fees from Actelion and Bayer; personal fees from GSK and 
Pfizer; and grants from Gilead. JPZ or her institution has received 
research or educational grants, and she has served on the advisory boards 
of Actelion, Merck, Bayer, and GSK. GS reports grants from NIH; grants 
and nonfinancial support from Actelion; and personal fees from Bayer 
and Gilead. RS is on the speakers’ bureau and has done funded clinical 
research or consulting for Actelion, Bayer, Gilead, Arena, Eiger, and 
United Therapeutics. WS reports personal fees from United Therapeutics, 
Liquidia Technologies, and Bayer AG. MS reports grants from 
NIH/Cincinnati Children’s Hospital Medical Center, NIH, US National 
Science Foundation, Aires/Mast Therapeutics, Novartis; and personal fees 
from United Therapeutics, Gilead, Actelion, Bayer, St Jude Medical, 
Hovione, and Complexa. TT reports personal fees from Actelion and 
Gilead. FT reports grants from United Therapeutics, Gilead, Medtronic, 
Eiger, and GeNO; and personal fees from Actelion, Bayer Pharmaceuticals, 
SteadyMed, Reata, Arena, and Bellerophon. AKW reports grants from 
NIH. JWh reports personal fees from Actelion Pharmaceuticals. 
RJW reports grants from NIH/NHLBI. SJW reports grants and personal 
fees from Actelion Pharmaceuticals and Bayer, and personal fees from 
MSD and GSK. WCN reports grants from NIH. All other authors declare 
no competing interests.

Acknowledgments
We gratefully acknowledge the participation of patients recruited to the UK 
National Institute of Health Research BioResource (NIHRBR) Rare 
Diseases study. We thank the NIHRBR staff and coordination teams at the 
University of Cambridge (Cambridge, UK), and the research nurses and 
coordinators at the specialist pulmonary hypertension centres involved in 
this study. We are also grateful to Jenny Thomson and Caroline Langman 
for invaluable assistance in patient recruitment for the British Heart 
Foundation Pulmonary Arterial Hypertension (BHFPAH) study. 
The UK National Cohort of Idiopathic and Heritable PAH is supported by 
the NIHRBR; the BHF (SP/12/12/29836); the BHF Cambridge Centre of 
Cardiovascular Research Excellence; the UK Medical Research Council 
(MR/K020919/1); the Dinosaur Trust; BHF Programme grants to RCT 
(RG/08/006/25302), NWM (RG/13/4/30107), and MRW (RG/10/16/28575). 
We also gratefully acknowledge the participation of patients recruited to the 
US National Institutes of Health/National Heart, Lung, and Blood Institute 
(NIH/NHLBI)sponsored National Biological Sample and Data Repository 
for PAH (also known as PAH Biobank). We thank the physicians, research 
nurses, and coordinators at the 38 pulmonary hypertension centres across 
the USA involved in the PAH Biobank. Vanderbilt University Medical 
Center’s BioVU projects are supported by numerous sources: institutional 
funding, private agencies, and federal grants. These include the 

For a list of investigators and 
enrolling centres see 
http://www.pahbiobank.org

http://www.pahbiobank.org
http://www.pahbiobank.org


Articles

238 www.thelancet.com/respiratory   Vol 7   March 2019

NIHfunded Shared Instrumentation Grant S10RR025141; and CTSA 
grants UL1TR002243, UL1TR000445, and UL1RR024975. The genotyping 
of the VESPA samples was supported by RC2GM092618. The authors 
acknowledge use of BRC Core Facilities provided by financial support from 
the UK Department of Health via the NIHR comprehensive Biomedical 
Research Centre award to Cambridge Biomedical Research Centre, 
Imperial College Healthcare NHS Trust, and Guy’s and St Thomas’ NHS 
Foundation Trust in partnership with King’s College London and King’s 
College Hospital NHS Foundation Trust. NWM is a British Heart 
Foundation Professor and NIHR Senior Investigator. CH is a NIHR Rare 
Disease Translational Research Collaboration Clinical PhD Fellow. CJR is 
supported by a BHF Intermediate Basic Science Research fellowship 
(FS/15/59/31839). LH and JA are the recipients of ERS and joint 
ERS/EMBO LongTerm Research Fellowships (LTRF 2016–6884 and 
LTRF 20170100072). AL is supported by a BHF Senior Basic Science 
Research fellowship (FS/13/48/30453). LSo is supported by the Wellcome 
Trust Institutional Strategic Support Fund (204809/Z/16/Z) awarded to 
St George’s, University of London (London, UK). IP is supported by the 
Wellcome Trust (WT205915), and the EU H2020 programme 
(DYNAhealth, project number 633595). Funding for the PAH Biobank is 
provided by NIH/NHLBI (HL105333). WCN and MWP are supported by 
NIH/NHLBI (HL105333). JHK receives support from the American Heart 
Association (16SDG29090005) and the American College of Clinical 
Pharmacy Research Institute (Futures Grant). AAD receives support from 
NIH/NHLBI (R01HL136603). JF is supported by the Wellcome Trust 
(WT101033). JH is supported by eMERGE U01 (NHGRI U01 HG008666). 
We acknowledge the support of the Imperial NIHR Clinical Research 
Facility and Biomedical Research Centre, Netherlands CardioVascular 
Research Initiative, the Dutch Heart Foundation, Dutch Federation of 
University Medical Centres, the Netherlands Organisation for Health 
Research and Development, and the Royal Netherlands Academy of 
Sciences. This work was supported in part by the Assistance 
PubliqueHôpitaux de Paris, INSERM, Université ParisSud, and Agence 
Nationale de la Recherche (Département HospitaloUniversitaire Thorax 
Innovation; LabEx LERMIT, ANR10LABX0033; and RHU BIOART 
LUNG 2020, ANR15RHUS0002). MRW and HAG receive funding from 
German Research Foundation (DFG) SFB1213, project A09. The 
popgen 2.0 network is supported by a grant from the German Ministry for 
Education and Research (01EY1103). We thank all the patients and their 
families who contributed to this research and the UK Pulmonary 
Hypertension Association for their support.

References
1 McGoon MD, Benza RL, EscribanoSubias P, et al. Pulmonary 

arterial hypertension: epidemiology and registries. J Am Coll Cardiol 
2013; 62 (25 suppl): D51–59.

2 Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS guidelines for 
the diagnosis and treatment of pulmonary hypertension: the Joint 
Task Force for the Diagnosis and Treatment of Pulmonary 
Hypertension of the European Society of Cardiology (ESC) and the 
European Respiratory Society (ERS): Endorsed by: Association for 
European Paediatric and Congenital Cardiology (AEPC), 
International Society for Heart and Lung Transplantation (ISHLT). 
Eur Respir J 2015; 46: 903–75.

3 Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of 
pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 
186: 261–72.

4 Gräf S, Haimel M, Bleda M, et al. Identification of rare sequence 
variation underlying heritable pulmonary arterial hypertension. 
Nat Commun 2018; 9: 1416.

5 Hiraide T, Kataoka M, Suzuki H, et al. SOX17 mutations in Japanese 
patients with pulmonary arterial hypertension. 
Am J Respir Crit Care Med 2018; 198: 1231–33.

6 Zhu N, Welch CL, Wang J, et al. Rare variants in SOX17 are 
associated with pulmonary arterial hypertension with congenital 
heart disease. Genome Med 2018; 10: 56.

7 Germain M, Eyries M, Montani D, et al. Genomewide association 
analysis identifies a susceptibility locus for pulmonary arterial 
hypertension. Nat Genet 2013; 45: 518–21.

8 Kimura M, Tamura Y, Guignabert C, et al. A genomewide association 
analysis identifies PDE1A|DNAJC10 locus on chromosome 2 
associated with idiopathic pulmonary arterial hypertension in a 
Japanese population. Oncotarget 2017; 8: 74917–26.

9 Bowton E, Field JR, Wang S, et al. Biobanks and electronic medical 
records: enabling costeffective research. Sci Transl Med 2014; 
6: 234cm3.

10 Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP. Discovery 
properties of genomewide association signals from cumulatively 
combined data sets. Am J Epidemiol 2009; 170: 1197–206.

11 Magi R, Morris AP. GWAMA: software for genomewide association 
metaanalysis. BMC Bioinformatics 2010; 11: 288.

12 Therneau T. A package for survival analysis in S version 2.38. 2015. 
https://CRAN.Rproject.org/package=survival (accessed Oct 31, 2016). 

13 Viechtbauer W. Conducting metaanalyses in R with the metafor 
package. J Stat Soft 2010; 36: 48.

14 Jia X, Han B, OnengutGumuscu S, et al. Imputing amino acid 
polymorphisms in human leukocyte antigens. PLoS One 2013; 
8: e64683.

15 Hudson C, Clements D, Friday RV, Stott D, Woodland HR. 
Xsox17α and β mediate endoderm formation in Xenopus. Cell 1997; 
91: 397–405.

16 Alexander J, Stainier DY. A molecular pathway leading to endoderm 
formation in zebrafish. Curr Biol 1999; 9: 1147–57.

17 KanaiAzuma M, Kanai Y, Gad JM, et al. Depletion of definitive gut 
endoderm in Sox17null mutant mice. Development 2002; 
129: 2367–79.

18 Kim I, Saunders TL, Morrison SJ. Sox17 dependence distinguishes 
the transcriptional regulation of fetal from adult hematopoietic stem 
cells. Cell 2007; 130: 470–83.

19 Zhang C, Basta T, Klymkowsky MW. SOX7 and SOX18 are essential 
for cardiogenesis in Xenopus. Dev Dyn 2005; 234: 878–91.

20 Liu Y, Asakura M, Inoue H, et al. Sox17 is essential for the 
specification of cardiac mesoderm in embryonic stem cells. 
Proc Natl Acad Sci USA 2007; 104: 3859–64.

21 Zhang L, Jambusaria A, Hong Z, et al. SOX17 regulates conversion of 
human fibroblasts into endothelial cells and erythroblasts by 
dedifferentiation into CD34+ progenitor cells. Circulation 2017; 
135: 2505–23.

22 Lange AW, Haitchi HM, LeCras TD, et al. Sox17 is required for 
normal pulmonary vascular morphogenesis. Dev Biol 2014; 
387: 109–20.

23 Lee SH, Lee S, Yang H, et al. Notch pathway targets proangiogenic 
regulator Sox17 to restrict angiogenesis. Circ Res 2014; 115: 215–26.

24 Kim K, Kim IK, Yang JM, et al. SoxF transcription factors are positive 
feedback regulators of VEGF signaling. Circ Res 2016; 119: 839–52.

25 Hurst LA, Dunmore BJ, Long L, et al. TNFα drives pulmonary 
arterial hypertension by suppressing the BMP typeII receptor and 
altering NOTCH signalling. Nat Commun 2017; 8: 14079.

26 Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci 
map: expression, interaction, diversity and disease. J Hum Genet 
2009; 54: 15–39.

27 Trowsdale J, Knight JC. Major histocompatibility complex genomics 
and human disease. Annu Rev Genomics Hum Genet 2013; 14: 301–23.

28 Richeldi L, Sorrentino R, Saltini C. HLADPB1 glutamate 69: 
a genetic marker of beryllium disease. Science 1993; 262: 242–44.

29 Potolicchio I, Mosconi G, Forni A, Nemery B, Seghizzi P, 
Sorrentino R. Susceptibility to hard metal lung disease is strongly 
associated with the presence of glutamate 69 in HLADP β chain. 
Eur J Immunol 1997; 27: 2741–43.

30 Diaz G, Amicosante M, Jaraquemada D, et al. Functional analysis of 
HLADP polymorphism: a crucial role for DPβ residues 9, 11, 35, 55, 
56, 69 and 84–87 in T cell allorecognition and peptide binding. 
Int Immunol 2003; 15: 565–76.

31 Fontenot AP, Torres M, Marshall WH, Newman LS, Kotzin BL. 
Beryllium presentation to CD4+ T cells underlies 
diseasesusceptibility HLADP alleles in chronic beryllium disease. 
Proc Natl Acad Sci USA 2000; 97: 12717–22.

32 Lombardi G, Germain C, Uren J, et al. HLADP allelespecific T cell 
responses to beryllium account for DPassociated susceptibility to 
chronic beryllium disease. J Immunol 2001; 166: 3549–55.


	Genetic determinants of risk in pulmonary arterialhypertension: international genome-wide associationstudies and meta-analysis
	Introduction
	Methods
	Pulmonary arterial hypertension cohorts and genotyping
	Association analyses
	Annotation and functional assessment of the locus nearSOX17
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	Acknowledgments
	References


