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Abstract 24 

This paper presents a digital learning tool, MESTRAL ( “Modélisation Et Simulation des 25 

TRansformations ALimentaires”, “Modelling and Simulating Food Processing” in English), that can 26 

provide educators with a tool to teach food processing using simulators and a broad range of models 27 

derived from research in food science & engineering. It was built using electronic knowledge books 28 

(eK-book). The eK-book represents knowledge in the form of concept maps and knowledge sheets, 29 

connected via a network of hypertext links. MESTRAL encompasses 15 modules, that cover 30 

approximately 150 hours of teaching and a broad range of real systems, from a single unit operation 31 

(e.g., frying a banana) to a logistic chain (e.g., ham cold chain). Each module conveys information on 32 

a food product or a food process, and includes a simulator based on a published scientific model. 33 

Altogether, the models address various scale of systems and are based on different theoretical 34 
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frameworks. For each simulator, the model inputs and outputs are stored in a database. Outputs are 35 

visualized through abacuses, which can be used for virtual practice. MESTRAL modules also include 36 

training exercises and tests to help students to assess the knowledge they have acquired during 37 

consultation of the modules. Finally, MESTRAL has already been successfully tested by different 38 

audiences according to various learning forms. 39 

 40 

Keywords: abacus; concept map; electronic knowledge book; food processing; student 41 
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1. Introduction   43 

Despite an abundant scientific production, the use of models and simulators remains limited 44 

in the food industry where this approach is not familiar, in contrast with other technological sectors, 45 

and there is a clear lack of human resources to adopt modelling approaches in the food industry 46 

(Datta, 2016; Erdogdu et al., 2017; Djekic et al., 2019). Several educational institutions provide 47 

training in computerized techniques and approaches, including mechanistic approaches and multi-48 

scale modelling, in their food engineering curriculums, to face this issue.  49 

Digital resources could contribute to these efforts by implementing simulators as educational 50 

tools in order to prepare future food engineers to use models (Datta, 2016). Among various 51 

initiatives in this sector, a short-term International School on Modelling and Simulation in Food and 52 

Bio Processes (http://www.virprofood.org/msfs2016/) was selected to be the training school of the 53 

Cost Action CA15118 FoodMC1. Run by the ISEKI2 Food Association, more than 100 scholars from all 54 

over the world have benefitted from it so far. Another well-known example dedicated to education 55 

in food engineering is the website created by Prof. Paul Singh, which contains video tutorials, lecture 56 

notes, animated films devoted to food processing equipment, virtual experiments, design problems 57 

for what-if analysis, and video lectures based on food science and engineering (Singh, 2008). Prof. 58 

Ashim Datta developed a “learning by doing” approach by introducing modelling and simulation 59 

approaches to solve biological problems, which can be implemented in a food context (Datta, 2015). 60 

In addition to these examples, scientific activity in food engineering generates a great deal of 61 

research products, such as large experimental databases, figures, texts, images and films obtained 62 

with a wide variety of instruments (from images of industrial equipment to microscopic images at 63 

molecular scale), models and simulators, decision-support systems. Most of them are available as 64 

downloadable documents or as web pages on the internet. Many professors individually use their 65 

own research products for teaching purposes. These individual actions could be combined on a 66 

collective scale to convert these research products, including models, into widely available digital 67 

resources. 68 

A generic and collaborative approach would contribute to teach modelling in engineering, 69 

and facilitate its appropriation by the students (Carberry & McKenna, 2014). Electronic knowledge 70 

books (eK-book) where knowledge is mainly represented by conceptual maps (Cmaps), might be 71 

used in this purpose. Indeed, they have been shown to be original and effective transfer tools 72 

(Ermine, 2010; Suciu et al., 2012), so they may be converted into digital learning tools. In turn, they 73 

could be shared by educational institutions and made available to a large audience. By providing 74 

Mathematical and Computer Science Methods for Food Science and Industry Integrating food 75 

                                                           
1 Mathematical and Computer Science Methods for Food Science and Industry 
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Science and Engineering Knowledge Into the food chain online access, such tools would also offer 76 

good prospects for remote and self-training, and could be used for blended learning, such as in 77 

flipped classrooms (Datta et al., 2020).  78 

Given this context, the aim of this article is to present a digital learning tool, to train people 79 

in food processing using models from academia. This tool, organized into a harmonized format using 80 

electronic knowledge books, is named MESTRAL (“Modélisation Et Simulation des TRansformations 81 

ALimentaires” that means in English “Modelling and Simulating Food Processing”). While familiarizing 82 

students with modelling approaches, MESTRAL would, at the same time, encourage their transfer to 83 

industry. For this purpose, we built 15 modules based on eK-book, which are described in the section 84 

2 of this paper. We then implemented simulators based on models for different food processing 85 

applications. These models are detailed in section 3. Finally, after a first validation step involving all 86 

of the authors, we report some of the feedback of a survey taken on the first 100 users. 87 

 88 

 89 

2. Building the digital learning tool 90 

 2.1 Basic elements of the eK-book 91 

Knowledge transfer is defined here as the addition of transmission, assimilation and eventual 92 

use (Davenport & Prusak, 1998). Knowledge can be collected and represented in various forms, like 93 

concept maps (Cmaps), in an electronic knowledge book (eK-book). To build the eK-book, we 94 

adapted the approach of Ermine (2010), initially designed for capturing know-how for the transfer of 95 

scientific knowledge following a methodology detailed by Suciu et al. (2014). An eK-book is a 96 

hypertext network (Conklin, 1987) in which knowledge is captured in a structured way using Cmaps, 97 

knowledge sheets and a glossary, connected by hypertext links. As a hypermediatool, it makes it 98 

possible to integrate videos, while allowing to download documents and browse web pages from the 99 

internet. As described in greater detail in Section 3, MESTRAL also includes simulators and training 100 

exercises.  101 

The canonical concept map (Fig. 1a) is a hierarchical graph that describes a concept according 102 

to four types of ontological relationships: taxonomy (is-a), synonymy (is-synonym), mereology (has-103 

as-parts) and domain relationship (is-characterized-by, is-measured-by, is-controlled-by, is-104 

implemented-by, etc.). Taxonomy allows a concept to be positioned in a well-defined group 105 

(Brachman, 1983). Synonymy makes it possible to specify alternative concepts in a given knowledge 106 

domain. Mereology links an entity to its parts (Schulz et al., 2006) through relationships such as 107 

member-collection, matter-object, portion-mass, and phase-activity. Domain relationships make it 108 

possible to indicate how (with which methods) a concept (an operation, a product, a variable, etc.) is 109 

measured, observed, characterized or studied. The application of Cmap in MESTRAL is illustrated by 110 
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the example taken from the module “Aroma release from yoghurt in mouth” (Fig. 1b). The 111 

specification of the main concept in a Cmap contains other concepts that are directly used to 112 

describe it, such as “strawberry flavour” in the example. This concept is then the main concept of 113 

another Cmap, as symbolized by icons giving access to this next Cmap, via a hyperlink. This way, the 114 

user can navigate within the network of Cmaps. As another example of application to MESTRAL, is 115 

the domain relationship “is characterized by” leading to the concept “viscosity” (of the yoghurt) (Fig. 116 

1b).  117 

A knowledge sheet is a document that captures less formal knowledge. It includes eight (8) 118 

fields: title, illustration, explanations, creation date, authors, keywords, see also and literature 119 

references. An example of a knowledge sheet is given for the “aroma release of yoghurt in mouth” 120 

module (Fig. 2). The illustration can be a video, a sound, a photo, a drawing, a graph, a table, an 121 

equation, etc., or a link to a document available online. Explanations are text that can be formatted 122 

(font, bold, italics, colour, etc.). Each author can be clicked on to access their contact details, 123 

including email address and the internet link to the web page of their home laboratory. Each 124 

keyword, contained in the glossary of the eK-book, can be clicked on to display its contextualized 125 

definition. The see also field contains the links to the related knowledge sheets that provide 126 

additional information. The literature references include those cited in the explanation field and 127 

other references that provide additional information. They are clickable to open a web page (that of 128 

the article on the publisher's website, for example) or to open a linked document.  129 

All the documents in the eK-book and the hypertext links between them constitute a 130 

hypergraph opened on the internet. Thanks to the representation of knowledge, from a general 131 

Cmap to more specific maps, the user can browse the book until the desired detail level is reached. 132 

This knowledge structuring minimizes the disorientation and the cognitive load of the user and thus 133 

promotes the assimilation of knowledge (Amadieu et al., 2009). Disorientation is the property which 134 

assesses the difficulty of the user to locate himself and find information in the eK-book, whereas 135 

cognitive load measures the mental effort invested by the user to grasp the concept maps and to 136 

explore the eK-book. 137 

 138 

2.2 Application to MESTRAL 139 

The cornerstone of any MESTRAL module is the “model Cmap”, which is an instance of the 140 

canonical map (Fig. 1a) specifying the model. It contains all the concepts and information on which 141 

the model relies. Hence, the model Cmap includes the type of model, its hypotheses, its input and 142 

output variables, its implementation, etc (Fig. 3).  143 

As for any Cmap, more refined specifications of the concepts are available by clicking on the 144 

icons to open links towards other concept maps or knowledge sheets. The taxonomical relationship 145 
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“type of model” especially refers to the theoretical framework in which the model is developed. A 146 

sheet, presenting in detail the equations that are solved, can also be opened from the output 147 

variables using the link “is-computed-by”. In addition, the mereology relationship leads to the 148 

hypotheses under which these equations are solved (e.g., the influence of gravity is discarded), and 149 

this box also refers to the assumptions that are made (e.g., the flow is steady at the entrance of the 150 

tubular heat exchanger). Finally, domain relationships refer to the input/output variables of the 151 

model. For example, inputs may be the physical properties of the foods, the equipment geometry or 152 

the process settings. All these concepts may lead to more detailed concepts or knowledge sheets 153 

available by browsing. Outputs also include icons that, once clicked on, open graph sheets where the 154 

variables are represented as functions of input variables (e.g., time -temperature graphs) for selected 155 

values of other inputs. The detailed method of results presentation, i.e., post-processing, is described 156 

in detail in Section 3.3. 157 

To complete the eK-book, every MESTRAL module is provided with a glossary where all of the 158 

keywords are listed and defined, and variable units recalled. Input and output variables generally 159 

belong to the keywords list. Their definition appears when browsing the keywords in the text of a 160 

knowledge sheet. In addition, the user looking for a specific keyword can request the list of 161 

documents (Cmap, knowledge sheet) where this keyword appears. 162 

At the end of the eK-book, training exercises are proposed with three different levels of 163 

difficulty, beginning with the easiest, which implies knowledge of most basic concepts and of 164 

keyword definition. Conversely, the most difficult ones not only require the acquisition of the 165 

knowledge conveyed by the maps and sheets, but the use of the simulator as well. Simulators are 166 

described in another section. They allow the student to experiment with a “learning by doing” 167 

approach, i.e., virtual practice.  168 

At the beginning of every module, six motivating questions are proposed to the student. For 169 

every question, a learning path, or itinerary, has been defined to indicate how to navigate within the 170 

module so as to collect the information required to answer the initial question. These itineraries 171 

make sure that most of the documents can be covered by the student, and they decrease the risk of 172 

disorientation. 173 

The eK-book makes it possible to build modules with a common structure, regardless of the 174 

systems studied (food and process), through models that are presented in the next section together 175 

with the simulators implemented. 176 

 177 

 178 

3. Food processing models in MESTRAL 179 

3.1 Various models & frameworks 180 
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Many valuable studies have been dedicated to food process modelling and the purpose of 181 

this section is to locate the various approaches used in MESTRAL in the modelling frameworks. 182 

Several reviews have underlined the various potentialities and challenges of modelling and 183 

simulation in food processing (Trystram, 2012; Manlik & Borkar, 2015; Datta, 2016; Saguy, 2016; 184 

Erdogdu et al., 2018; Vitrac & Touffet, 2019). Scientific work in food process engineering has led to 185 

models that use different mathematical formalisms, which can predict the composition (% water, 186 

micronutrients, neo-formed compounds, etc.) and properties (technological, sensory, safety, etc.) of 187 

a product according to its initial composition and the process operating conditions. 188 

Computational modelling was developed in food processing, in particular, by applying 189 

Computational Fluid Dynamics and using specialized software (Datta, 2016). This approach, also 190 

referred to as mechanistic, is physics-based and mostly relies on the theoretical framework of 191 

continuum mechanics and thermodynamics. It may appear complex due to mathematical formalism, 192 

and requires considerable investment, first, to analyse the problem and, then, to make the 193 

properties of the food system available. In a complementary manner, experimental approaches may 194 

be guided by statistical models that require the fitting of experimental data according to numerical 195 

procedures and reasoning. This modelling approach can lead to the optimization of a product or a 196 

process in a shorter time, but with lack of flexibility since it is valid in a narrower domain; such 197 

models are data-driven models and include a part of empiricism (Sablani et al., 2007). Note that the 198 

degree of empiricism may be reduced when the model integrates professional know-how with 199 

scientific knowledge, leading to phenomenological models. By doing so, the understanding of the 200 

mechanisms governing the studied phenomena is improved, as illustrated by the basic knowledge 201 

models proposed for the breadmaking chain (Della Valle et al., 2014). Recent approaches at the 202 

crossroads of mathematics and artificial intelligence provide adapted methods to deal with 203 

heterogeneous sources of knowledge and with different mathematical formalisms used by different 204 

disciplines that are manipulated under different forms of uncertainty (natural randomness, 205 

imprecision, data scarcity, vagueness, etc.) (Filter et al., 2015). All these approaches – from 206 

mechanistic to data-driven - represent, in various mathematical forms, the relationships between 207 

input and output variables. They are used in different MESTRAL modules and make it possible to 208 

simulate the food process system in a realistic domain.  209 

 210 

3.2 MESTRAL models 211 

In the following, an overview of the models implemented in MESTRAL is presented, roughly 212 

ordered from a fine to a coarse knowledge grain, and from small to large scales of the system studied 213 

(Fig. 4). The knowledge grain is defined here according to the level of uncertainty of the knowledge 214 

gained by the model results: the larger the uncertainty level, the coarser the grain. The largest 215 
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systems are at the bottom right and represent a food chain, addressed using the simplest theoretical 216 

framework. As we move along the horizontal axis, the knowledge grain becomes coarser and the 217 

model predictions become more uncertain, resulting in general trends rather than accurate 218 

predictions. In Fig. 4, the overall trend suggests that MESTRAL models arrange around the bisector. 219 

However, it is noteworthy that food engineering models may lead to acceptable precision (i.e. a fine 220 

knowledge grain) at a large scale, by computing properties from knowledge about structure at a 221 

lower scale, which is precisely the challenge addressed by multi-scale modelling (Ho et al., 2013). 222 

 As seen for the complementary information reported in Table 1, these models rely on 223 

different theoretical frameworks, from continuum mechanics (physics-based models) to stochastic 224 

approaches and statistical analysis (data-driven models). They are implemented through various 225 

numerical and computer resources, either based on commercial software, possibly using Finite 226 

Elements (FE), or developed by the scientists themselves. For the purpose of simplicity, the literature 227 

references that have led to the development and validation of every model are not mentioned all, 228 

but the most recent ones are quoted so that the reader may, in turn, find more in-depth information 229 

when needed.  230 

Deep fat frying of starch foods involves coupled heat and mass (water and oil) internal 231 

transfers. By solving the partial differential equations (PDE) of these transfers in thin or thick slices of 232 

plantain banana, the 2D numerical, FE-based model makes it possible to predict the nutritional 233 

impact through various indicators (nutrient density and toxic components such as acrylamide) that 234 

are linked to computed fields such as temperature, moisture and oil content (Bassama et al., 2015).  235 

Using the same formulation and numerical resources to solve heat mass transfer PDEs, a 236 

deterministic approach is proposed to predict the transformation of starch suspensions in a tubular 237 

heat exchanger by computing the fields of velocity, pressure and temperature along the tube. In this 238 

case, an essential original feature comes from the two-way coupling of rheology, fluid flow and heat 239 

transfer, taken into account by the kinetics of starch granule swelling, which depends on 240 

temperature and drastically modifies the apparent viscosity (Plana-Fattori et al., 2016).  241 

Based on the solution of the mass balance equations in three compartments 242 

(nose/pharynx/food layer), the model of in vivo aroma release computes the evolution of the 243 

concentrations of representative aroma compounds (diacetyl and ethyl octanoate).  The evolution of 244 

concentrations is computed in the product and in the air after swallowing for yoghurts with various 245 

fat contents (Trelea et al., 2008). Because it integrates the consumer’s physiology and because aroma 246 

release is correlated with sensory perception, this model is used to address the re-engineering of 247 

food formulations. 248 

Solid food texture is addressed by a 3D numerical, FE-based mechanical model that considers 249 

cereal food as a solid foam in the linear elastic domain. Compression loading of virtual realistic 250 
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cellular structures is simulated and the model computes the variations of foam stiffness, represented 251 

by the mechanical property of Young’s modulus with respect to the foam density. The correlation 252 

between foam density and stiffness is compared to the analytical solution from Gibson-Ashby’s 253 

model, and with experimental data obtained on bread, biscuits and breakfast cereals (Guessasma et 254 

al., 2008).  255 

Non-conventional heating is treated through a simplified 1D numerical Finite Volume model 256 

that accounts for microwave-matter interactions in the case of unidirectional propagation (plane 257 

wave) (Curet et al., 2009). The model provides a tool for predicting temperature kinetics during a 258 

microwave heat treatment, as well as the absorbed power density as a function of the depth for two 259 

foods - bread and meat - to deal with two different moisture levels. 260 

The modelling of dairy food foaming considers the 1D-flow of viscous fluid in a static mixer 261 

(SMX™) and its expansion tube, where the pressure drop is computed at various steps (Laporte et al., 262 

2014). Hence, along the tube, it is possible to calculate the incorporated air fraction and size of the 263 

bubbles and the power consumption from geometry data, gas and liquid flow rates, as well as the 264 

rheological properties of the dairy formulation. 265 

The flow of molten starchy products in a twin screw extruder is modelled in the same way by 266 

summing the pressure drop or rise in each screw part (Della Valle et al., 1993). This  analytically 267 

solved, 1D model makes it possible to compute the main flow variables, melt temperature, pressure, 268 

shear rate and viscosity, and the specific mechanical energy along the screws. The model is 269 

implemented in a commercial software program called Ludovic®, that is used to perform simulations. 270 

Expansion of the starch melt at the die outlet to generate airy snack foods has also been tackled by a 271 

phenomenological model that predicts cellular structure (Kristiawan et al., 2019). 272 

The model of food packaging is based on ordinary differential equations (ODEs) that describe 273 

mass transfer phenomena in the system defined by the food and the packaging material (Guillard et 274 

al., 2012). By coupling these ODEs with the gas consumption of microbial species, it makes it possible 275 

to predict product shelf life (Chaix et al., 2015). It also includes a multi-criteria decision support 276 

system that helps the user to choose a package for a given food. The multi-criteria choice is then 277 

adapted to the different actors in the food packaging sector (Guillard et al., 2015). 278 

The model of the hot air-drying process of agricultural products (corn and rice grains) is 279 

based on the concept of drying kinetics, which explicitly considers the heat and mass transfers 280 

between three compartments: the surrounding air, and the external layer and the core of the grain 281 

(Abud Archila et al., 2000). In addition to time-temperature and moisture variations, the model also 282 

predicts the impact of drying on grain quality using an image bank.  283 

Similar phenomena of heat and matter transfer applied to the cooling of carcasses can be 284 

modelled using a 1D numerical approach (Kondjoyan & Daudin, 1997) that makes it possible to 285 
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calculate the kinetics of temperature at different points (surface, core, average) of the carcass for 286 

two animal sizes (typically pork and rabbit). The evolution of weight loss of the carcass is also 287 

predicted, keeping in mind that this loss must be minimized for quality purposes. 288 

 Still considering fresh animal proteins (white fish and beef), an application of the high-289 

pressure (HP) treatment process (up to 500 MPa) is addressed through the use of experimental 290 

results (Cheret et al., 2005). In this case, the phenomenological model makes it possible to study the 291 

increase in the shelf life of these products thanks to this HP process, and its parameters (time, 292 

pressure level), while taking the organoleptic changes (texture and colour) observed after treatment 293 

into account. 294 

The mixing process in a stirred tank is addressed by modelling principles that use dimensional 295 

analysis, with applications to the homogenization of sucrose solutions, the dissolution of dairy 296 

powders and heat transfer within viscous solutions of glucose syrup. It is then possible to predict the 297 

mixing time and the power demand of the equipment, the dissolving time and the heat transfer 298 

coefficient using abacuses of dimensionless numbers (Reynolds, Nusselt and power numbers), 299 

established from the analysis of the mixing operation and from dedicated experiments (Delaplace et 300 

al., 2015). In this case, the interest of using dimensionless numbers to reason about scaling up using 301 

a physics-based approach is shown.  302 

The mixing process is also a critical operation in the bread-making chain since it converts a 303 

solid divided medium, the flour, into a continuous viscoelastic one, the dough. In this case, mixing 304 

modelling is addressed through an expert system known as AsCoPain®, which models the bread 305 

technologists’ expertise using a qualitative algebra (Ndiaye et al., 2009). This model makes it possible 306 

to calculate the sensory variables that define the state of the bread dough on the basis of the 307 

formulation variables (characteristics of the flour) and the operating conditions of the mixer (Kansou 308 

et al., 2014). This module also includes a simple phenomenological model of the dough-proofing 309 

stage, directly affected by parameters of the mixing process (Kansou et al., 2013). 310 

Heterogeneous knowledge can also be assembled in a model using Dynamic Bayesian 311 

Networks (DBN) in order to predict the ripening process of Camembert-type cheese (Baudrit et al., 312 

2010). While also introducing conditional probabilities, the model maps the evolution of the 313 

organoleptic properties of cheese according to microbial activity, which itself depends on its 314 

environment. The model helps to reduce the uncertainties linked to the working, the design and the 315 

control of the ripening process. 316 

Conditional probabilities are also used for predictive microbiology, which is coupled to a 317 

simple heat transfer model of three compartments of the cold chain. This model describes the 318 

evolution of the temperature and of the microbial load of ham slices (Flick et al., 2012). Taking 319 

several random variables into account (residence time in the different compartments, adjustment of 320 
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the thermostat of the refrigerator, speed of growth of micro-organisms), the model makes it possible 321 

to represent the influence of equipment and consumer behaviour on the health safety aspects of the 322 

ham slices. 323 

As may be seen from this rapid review, these models address a large panel of real (food and 324 

process) systems, at various scales and through different theoretical frameworks (Fig. 4). Actual 325 

access to MESTRAL on the computer screen is given by the portal presenting the fifteen (15) 326 

modules, each one illustrated by an image of the system, according to following link 327 

http://thot.i2m.u-bordeaux.fr/mestral/portail/. Each model is assigned a model Cmap (see Section 328 

2.2) and a simulator that is embedded in the modules as described below. 329 

 330 

3.3 Post-processing and simulators 331 

Implementing MESTRAL models raises two issues: first, the access to commercial modelling 332 

software; and, second, the necessity of having sufficient computation resources to run the 333 

simulation.  Both are of course prohibitive for a potentially intense use of the simulators by the 334 

students, exacerbated by remote access from home and the use of their own terminals (smartphone, 335 

tablet or PC). Therefore, a database was included in each module by collecting the results of output 336 

variables (values computed by the model) for a selected number of values of input variables. This 337 

database is run using abacuses, a technique traditionally used for learning purposes, as suggested by 338 

Lopez et al. (2018) for mechanical material engineering. Clearly, the representation of abacuses is 339 

limited by the large number of variables and of the values that these variables can take. In MESTRAL, 340 

no more than four to five abacuses, one per output variable, with four to five curves, are presented 341 

on the same screen page (Fig. 5a, b). Sliders make it possible to select discrete values (up to ten 342 

values) of the input variables. For every combination of sliders positions, a set of graphs is 343 

instantaneously presented. In Fig. 5a, graphs represent, for example, the grain water content after 344 

various drying times and for different drying conditions. In Fig. 5b, the graphs represent the 345 

variations of starchy product temperature, pressure, viscosity at the extruder die outlet, and specific 346 

mechanical energy for various screw speed, feed rate and barrel temperature values. 347 

The simulator includes the abacuses drawn from the database and the graphical 348 

representation of the results. All simulator interfaces are developed in HTML5, CSS3 and Javascript. 349 

These are the core technologies for building web pages, which allows the simulators to be easily 350 

accessible in the future. Hence, the generation of abacuses is automated and their presentation is 351 

adapted to the student using digital charts that allow storage and post-processing of highly variable 352 

solutions in a very efficient way (Lopez et al., 2018). Note that it allows any user to perform a 353 

simulation of the process without fully understanding the theoretical framework of the model, but 354 

with knowledge of its basic principles. Conversely, it can incite the student to become acquainted 355 
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with this framework as well as with the equations on which it is based, since this ease-of-use can be 356 

compared to the possibility of “driving a car without knowing how its engine works”.  357 

 358 

 359 

4. First tests and surveys for validation 360 

 The validation of the work involved two testing steps corresponding to two different 361 

audiences and questionnaires.  362 

In the first one, performed during a two-day seminar, the twenty-five (25) contributors first 363 

checked the consistency, the completeness and the accuracy of the content of their module. They 364 

also acted as “beta-testers” by browsing two to three other modules for 2 to 4 hours each. To do 365 

this, they had to fill in an open questionnaire (see Appendix A), and declare whether they considered 366 

themselves as expert or novice in the field covered by the module. Those who have already worked 367 

and published in the area are referred to as experts, whereas those who have never read any 368 

scientific article on the topic are considered as novice. The answers were collated and transmitted to 369 

each of the contributors who then performed the appropriate corrections.  370 

In a second step, MESTRAL was tested by a large audience (100 users) from various horizons, 371 

students and professionals, and with various education levels in engineering and science (chemical, 372 

agricultural), from bachelor’s degrees to PhDs, on a volunteer and anonymous basis. It took place 373 

during the period from September 2018 to April 2019. No specific instruction was given and testers 374 

could choose any module on the website “http://thot.i2m.u-bordeaux.fr/mestral/portail/” using 375 

appropriate identifier and password. So MESTRAL was mainly tested for self-learning, possibly 376 

leading to a flipped classroom. Conversely, in some cases, blended learning conditions were also 377 

proposed. In this case, the students were asked to use a module in the presence of the teacher, who 378 

was the module’s contributor. After each test, the user was asked to fill in a questionnaire (see 379 

Appendix B) of twenty (20) questions. The results reported in Fig. 6 show that: (a) more than 90% of 380 

the testers were (quite) satisfied overall and (b) found the content clear and relevant; (c) the learning 381 

effort was judged moderate and equally distributed from significant to very low; whereas (d) about 382 

75% found browsing on the eK-book quite easy. Finally, a large majority found it easier to learn about 383 

the models by running the simulators than by a traditional presentation of the model equations and 384 

of the theoretical framework (Fig. 6e). 385 

However, this positive trend should be balanced by the necessity to test the students for the 386 

acquired knowledge, a purpose for which learning tests (quizzes) have also been planned and 387 

implemented. The aim of this survey was clearly not to obtain definitive answers, but just to obtain 388 

initial feedback about the way the knowledge, and especially the models, are presented in the eK-389 

book. Altogether, the 15 MESTRAL modules integrated in the eK-book contain over six hundred (600) 390 
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Cmaps and more than seven hundred (700) knowledge sheets, which leads to an overall total of 391 

approximately 150 h of teaching, including student’s effort. A more systematic evaluation by a larger 392 

group of students is to be scheduled under well-defined learning conditions. From the feedback, the 393 

necessary improvements will be performed prior to delivering this digital resource to educational 394 

institutions. Up until now, all of the modules were written in French, and one has been translated 395 

into English (Aroma release from yoghurt in mouth), which suggests that translation into another 396 

language is within reach, provided the necessary resources are available. Presently, free access to 397 

MESTRAL may be granted upon personal request to the corresponding author of this paper. 398 

  399 

5. Conclusion 400 

In this paper, we have presented an original digital learning tool known as MESTRAL. It was 401 

built for the purpose of teaching food processing using models and that covers approximately 150 h 402 

of teaching, including student’s effort. It is based on knowledge engineering methods such as 403 

concept maps, which have been adapted for this purpose, and are implemented in an electronic 404 

knowledge book. Fifteen (15) models, all derived from research studies, are treated. They cover a 405 

wide range of real applications and can be mapped according to the system scale and the knowledge 406 

grain assessed by the different theoretical frameworks under which they are developed. This variety 407 

may clearly be a source of complexity for the student. However, cognitive load and disorientation can 408 

be reduced as a result of the harmonized knowledge representation. Furthermore, using the abacus 409 

technique, the results of simulations integrated into a database are graphically represented. Hence, 410 

the user can simulate various operations of the modelled system and test the influence of changes of 411 

either process conditions or product formulation on final food properties and process performances. 412 

Finally, an initial validation test on a large audience made it possible to obtain encouraging feedback. 413 

As advocated by the basic hypothesis of this work, this result suggests that by letting students 414 

simulate the workings of the (food and process) system, such a tool may contribute to sensitizing 415 

them about modelling approaches and various theoretical frameworks. Furthermore, since the 416 

results are derived from recent scientific research studies, they may draw the student’s attention to 417 

innovative processes. As a digital learning tool, MESTRAL could provide students with remote and 418 

self-training resources, and could also be used for blended learning by educational institutions. 419 

Finally, because of its potential to share digital resources, it contributes to a collaborative response 420 

to the teaching of modelling and favours the transfer of computer-aided engineering to the food 421 

industry. 422 

 423 
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List of figures 550 

 551 

Figure 1: The canonical concept map (a) and an example of an application taken from the module 552 

“Aroma release from yoghurt in mouth” (b). Concepts are written in the boxes. They are linked by 553 

relationships from left to right: taxonomy (pink), synonymy (grey), mereology (blue) and domain 554 

(green). In the example, there is no synonymy relationship. Only the taxonomic relationship is always 555 

present on all the instances of the canonical concept map. Small icons that appear in Cmap (b) give 556 

access to another Cmap or to a knowledge sheet that can be opened by clicking on it. 557 

 558 

Figure 2: Example of a knowledge sheet taken from the module “Aroma release from yoghurt in 559 

mouth” with the eight fields, from top to bottom: title, illustration, explanations, creation date, 560 

authors, keywords, see also and literature references. 561 

 562 

Figure 3: Concept map adapted to the representation of the model, taking the model of “Heat 563 

exchanger for starch suspension”, for example. Note that a concept “simulator” is added on the right 564 

to represent how the model is implemented and to give access to the results computed by the 565 

model. A knowledge sheet may be opened from this Cmap using the icons, providing information 566 

about the theoretical framework on which the model is based. 567 

 568 

Figure 4: Schematic mapping of the various models implemented in MESTRAL according to their 569 

knowledge grain (from more to less accurate predictions, x axis) and size scale of the modelled 570 

system (y axis). Models dealing with multiphase transport of heat and mass in (semi) solid medium 571 

are coded in red, whereas blue ones refer more to models that address the flow of complex media, 572 

with momentum transfer and large deformations, i.e., where rheology is pivotal. Purple codes stand 573 

for models involving both. 574 

 575 

Figure 5: Two screenshots of the MESTRAL simulator for “rice grain drying” (a) and “extrusion-576 

cooking of cereals” (b). On the upper part, sliders (green) feature the numerical values of model 577 

input variables. Below, several abacuses present the simulation results for the above input 578 

combinations and for various model parameters (initial and drying conditions in the case of grain 579 

drying (a); extruder operating conditions in the case of extrusion (b). Note that for real use, the 580 

graphs may be enlarged at the user’s demand. 581 

 582 

Figure 6: Overview of the results of the second validation step, i.e., testing MESTRAL on a large 583 

audience (100 students) on the basis of a questionnaire (Appendix B): (a) overall satisfaction 584 
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(question #9); (b) relevance and clarity of the knowledge conveyed; (c) mental effort made (cognitive 585 

load, #12); (d) navigating smoothness (#14); and (e) comparison to conventional lesson (#17). 586 

 587 
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Table 1: Overview of the different models represented in MESTRAL and their main characteristics (FEM=Finite Element Method) ordered according to 

increasing  system scale length and coarseness of knowledge grain. « Analytical with compartment » means that differential equations of heat, or mass, or 

momentum are solved explicitly, (time or space) step by step. 

 

Title  

& Process 

Food  

system 

Theoretical 

framework and 

model type 

Inputs a Outputs a Simulator 

basis 

Reference 

Frying Banana 2D-Numerical (FEM) Product thermal properties and 

geometry, oil properties and 

fryer settings 

Fields of water, oil contents and 

temperature ; composition, 

micronutrients and nutrition indices 

Comsol b Bassama et 

al., (2015) 

Tubular 

heat 

exchanger 

Starch 

suspension 

2D- Numerical 

(FEM) 

Exchanger geometry & settings, 

suspension thermo-rheological 

properties and starch swelling 

kinetics 

Fields of temperature, velocity, 

pressure, granule diameter and 

volume fraction 

Comsol b Plana-Fattori 

et al., (2016) 

Aroma  

release 

Yoghurt 

 in mouth 

Numerical with 

compartments  

Food composition, transfer and 

partition coefficients, 

consumer’s physiology 

Time-concentration of aroma 

compounds in nose, pharynx and 

product 

MATLAB® Trelea et al., 

(2008) 

Texture Cereal solid 

foams 

3D Numerical (FEM) Food sample geometry, cellular 

structure and cell wall’s Young 

moduli 

Local stress & strain fields, foam 

Young modulus 

Comsol b Guessasma 

et al., (2008) 

Microwave 

heating 

Pan bread, 

beef meat 

1D Numerical (Finite 

Volume) 

Product physical properties and 

thickness, microwave operating 

conditions 

Time –temperature and microwave 

absorbed power at different 

locations in food 

MATLAB® Curet et al., 

(2009) 

Static 

mixer 

Milk liquid 

foams 

Analytical with 

Compartments 

Fluid properties, mixer 

geometry and settings 

Pressure profile, air volume fraction, 

mean bubble diameter, foam 

viscosity 

Personal c Laporte et 

al., (2014) 

Extrusion 

cooking 

Cereals & 

starchy 

products 

Analytical with 

Compartments 

Material thermo-rheological 

properties, extruder geometry 

and settings 

Material pressure, temperature, 

residence time, viscosity and specific 

energy profiles 

Ludovic® Della Valle 

et al., (1993) 



Packaging Dry foods , or 

fresh 

respiring or 

not  

Analytical with 

Compartment and 

1D-numerical 

Food & packaging physical 

propertie and geometry, 

storage conditions 

Head space CO2, O2 and micro-

organisms time variations. Packaging 

material selection 

Personal c Guillard et 

al., Chaix et 

al. (2015) 

Drying Corn and rice 

grains 

Analytical with 

Compartment 

Inner and surface initial 

moisture content, grain physical 

properties and dryer settings  

Time variations of grain 

temperature, moisture content & 

quality 

Personal c Abud Archila 

et al., (2000) 

Cooling Meat (pork, 

rabbit) 

carcass 

1D - Numerical Size, mass & physical properties 

of carcass, conditions of air 

velocity, humidity, temperature 

& turbulence 

Time -temperature & water mass 

loss at surface, and inside variations 

Personal c Kondjoyan & 

Daudin, 

(1997) 

High  

pressure 

Fish and meat Phenomenological Initial products characteristics & 

composition, time, pressure & 

temperature settings 

Final microbial load, texture and 

color 

Personal c Cheret et al., 

(2005) 

Agitation Syrups and 

milk powders 

Dimensional 

analysis 

Geometry, mixer settings, 

product properties  

Homogeneisation or dissolution 

times, consumed power 

Personal c Delaplace et 

al., (2015) 

Bread 

making 

Wheat flour 

dough 

Qualitative algebrae 

and 

phenomenological 

Flour composition, mixer 

settings, proofing time 

Dough rheological properties, 

porosity and stability after proofing 

AsCoPain® Ndiaye et 

al., (2009) 

Ripening Cheese Dynamic Bayesian 

network 

Initial pH temperature, 

composition, ripening time 

Microbial behaviour and evolution of 

sensory properties  

Personal c Baudrit et 

al., (2010) 

Cold chain  

and micro-

biological 

growth 

Ham Analytical with heat 

transfer coupled to 

previsional 

microbiology 

 probability distributions of 

residence time, ambient 

temperature, microbial growth 

product temperature and microbial 

load evolutions 

Personal c Flick et al., 

(2012) 

 

a these characteristics are not exhaustive of the model considered but they provide more insight on the system (process, food) modelled. 
b Comsol stands for COMSOL Multiphysics®   
c « Personal » means that the model has been implemented by the author through current software resources (Office  or else) 




