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Abstract

Digital representations of real-world surfaces can now be obtained automatically using various acquisi-
tion devices such as 3D scanners and stereo camera systems. These newfast and accurate data sources
increase 3D surface resolution by several orders of magnitude, borrowing higher precision to appli-
cations which require digital surfaces. All major computer graphics applications can take benefit of
this automatic modeling process, including: computer-aided design, physicalsimulation, virtual real-
ity, medical imaging, architecture, archaeological study, special effects, computer animation and video
games.

Unfortunately, the richness of the geometry produced by these media comesat the price of a large,
possibility gigantic, amount of data which requires new efficient data structures and algorithms offering
scalability for processing such objects.

This thesis proposes time and space efficient solutions for modeling, editing and rendering such complex
surfaces, solving these problems with new algorithms sharing 4 fundamentalelements: a systematic
hierarchical approach, a local dimension reduction, a sampling-reconstruction paradigm and a point-
based basis.

Basically, this manuscript proposes several contributions, including: a new hierarchical space subdivi-
sion structure, the Volume-Surface Tree, for geometry processing such as simplification and reconstruc-
tion; a streaming system featuring new algorithms for interactive editing of large objects, an appearance-
preserving multiresolution structure for efficient rendering of large point-based surfaces, and a generic
kernel for real-time geometry synthesis by refinement.

These elements form a pipeline able to process acquired geometry, either represented by point clouds
or non-manifold meshes. Effective results have been successfully obtained with data coming from the
various applications mentioned.
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Résuḿe

La repŕesentation des surfaces du monde réel dans la ḿemoire d’une machine peut désormaisêtre
obtenue automatiquement via divers périph́eriques de capture tels que les scanners 3D. Ces nouvelles
sources de données, pŕecises et rapides, amplifient de plusieurs ordres de grandeur la résolution des
surfaces 3D, apportant un niveau de précision élev́e pour les applications nécessitant des modèles
numériques de surfaces telles que la conception assistée par ordinateur, la simulation physique, la réalit́e
virtuelle, l’imagerie ḿedicale, l’architecture, l’́etude arch́eologique, les effets spéciaux, l’animation ou
bien encore les jeux video.

Malheureusement, la richesse de la géoḿetrie produite par ces ḿethodes induit une grande, voire gi-
gantesque masse de donnéesà traiter, ńecessitant de nouvelles structures de données et de nouveaux
algorithmes capables de passerà l’échelle d’objets pouvant atteindre le milliard d’échantillons.

Dans cette th̀ese, je propose des solutions performantes en temps et en espace aux problèmes de la
mod́elisation, du traitement géoḿetrique, de l’́edition int́eractive et de la visualisation de ces surfaces
3D complexes. La ḿethodologie adoptée pendant l’́elaboration transverse de ces nouveaux algorithmes
est articuĺee autour de 4́eléments cĺes : une approche hiérarchique systématique, une réduction lo-
cale de la dimension des problèmes, un principe d’échantillonage-reconstruction et une indépendancèa
l’ énuḿeration explicite des relations topologiques aussi appeléeapproche baśee-points.

En pratique, ce manuscrit propose un certain nombre de contributions, parmi lesquelles : une nouvelle
structure híerarchique hybride de partitionnement, l’Arbre Volume-Surface (VS-Tree) ainsi que de nou-
veaux algorithmes de simplification et de reconstruction ; un système d’́edition int́eractive de grands
objets ; un noyau temps-réel de synth̀ese ǵeoḿetrique par raffinement et une structure multi-résolution
offrant un rendu efficace de grands objets.

Ces structures, algorithmes et systèmes forment une chaı̂ne capable de traiter les objets en provenance du
pipeline d’acquisition, qu’ils soient représent́es par des nuages de points ou des maillages, possiblement
non 2-varíet́es. Les solutions obtenues ontét́e appliqúees avec succès aux donńees issues des divers
domaines d’application précit́es.

Une traduction de l’introduction et de la conclusion résume cette th̀ese en fin de manuscrit.
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Chapter 1

Introduction

Digital modelingencapsulates objects and phenomena in a set of numerical values describing their prop-
erties. Among them, theshapehas a fundamental importance in all applications involving a simulation,
the simplest being the image synthesis capturing an approximation of the illumination undergone by the
object, in other words: therendering. Prior to this process, thegeometric modelingof a tri-dimensional
object uses a large variety of functions to represent this shape: they are structured by spatial, spectral or
semantic links, and differ according to the target application, the time and memoryconstraints, the level
of accuracy required or even the mandatory artistic rules.

Applications of geometric modeling and rendering range from scientific simulation to entertainment
software, including reverse engineering, special effects, archaeological exploration, video games, educa-
tion, training and computer animation. With the recent increase of digital technologies, widely supported
by the development of Internet, all these fields have to face a growing demand on a short time schedule,
resulting in complex multimedia systems like, for instance,high-end 3D packages, graphics-physics
3D enginesandflying simulators. However, while 3D technologies are now able, in many situations,
to quickly produce near-realistic images, there is still a lack in the creation of what really matters: the
content.

For decades, digital 3D models have been created by Computer Graphics (CG) designers, using complex
interactive tools for reproducing real-world objects and inventing imaginary ones. While computer
animation and video games strongly rely on their artistic skills, CG designers cannot fulfill demands on
rapid and precise surface modeling from real-world.

Recently, a new way to create 3D objects has emerged:automatic modeling, or how to generate 3D
objects with a 3D scanner, just like pictures are taken by cameras. With thesenew devices, generat-
ing million of polygons sampling a human face can be done in a matter of seconds,and two or three
engineers can produce digital models of a building, with a sub-millimeter precision, in few hours.

Unfortunately, this new source of content brings a bunch of new problems, coming from the two char-
acteristics of sampled surfaces:

• acquisition is a discrete process that only gets a sampling of reality. Therefore, the notion of sur-
face, intrinsically continuous, has to be reconstructed, involving more or less arbitrary decisions
to reconnect the discrete samples

• the fine degree of accuracy induces huge data sets, which challenge even the most powerful com-
puters for applications that require a quick feedback, like processing,editing and rendering.
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In this thesis, we propose new algorithms for large 3D objects, designed for time and memory efficiency,
and able to handle the complex shapes coming straight from the 3D acquisition pipeline.

1.1 Overview of Contributions

Throughout our research work, we had to solve various problems occurring in the geometric processing
pipeline dedicated to acquired geometry. We present several original contributions in the fields of effi-
cient processing, editing and rendering techniques for sampled 3D surfaces. Here is an exhaustive list
of the main contributions:

Processing

• a new hierarchical space subdivision structure, the Volume-Surface Tree, which can replace the
octree for efficient partitioning, offering a better error-driven split.

• a new fast surface simplification algorithm based on VS-Tree

• a new fast surface reconstruction algorithm based on VS-Tree

• a generic kernel for out-of-core simplification.

Editing

• a size-insensitive framework for interactive editing

• two kernels for transferring appearance and deformation between different sampling of an object.

Rendering

• an efficient multiresolution polygonal rendering algorithm for point-basedsurfaces

• an appearance preserving conversion for large objects rendering

• a generic kernel for real-time mesh refinement with arbitrary displacement

• a controllable refinement method for mesh smoothing with singularities

• an approximation of subdivision surfaces for real-time applications.

1.2 Outline

In the various topics that we address in this thesis, a large number of previous ideas and papers are
discussed. In order to maintain a clear presentation, we do not concentrate the presentation of these
numerous previous contributions in a single chapter, but spread out them,according to the context, at
the beginning of each chapter. This thesis is organized in 3 parts:

Part I proposes new geometry processing and editing methods for large objects.

Chapter 3 introduces the volume-surface tree and its application to fast simplification andreconstruction
of surfaces.

11



Chapter 4 describes our size-insensitive framework for arbitrary large model editing.

Part II offers a new multiresolution generation and rendering system for point-based surfaces.

Chapter 5 explains how to generate and render an adaptive polygonal structure for visualizing point-
based surfaces.

Chapter 6 extends this idea by introducing the idea of attribute mapping in streaming for appearance
preservation of large objects.

Part III introduces a new generic refinement kernel for interactive applications.

Chapter 7proposes a new GPU kernel for adaptive mesh refinement, allowing arbitrary mesh refinement
and displacement in a single pass, at vertex shader level.

Chapter 8 extends the original Curved PN Triangle refinement scheme by introducingscalar tags to
control surfaces singularities such as sharp creases and tension.

Chapter 9 tackles the problem of real-time subdivision surface rendering by proposing a visually plau-
sible approximation which avoids recursion, and allows adaptive sampling atvery deep levels.

Each chapter starts by a motivation and a context, stating related state-of-the-art problems and solu-
tions. Each contribution is systematically concluded with results and implementation details, as well
as a discussion presenting limitations, particular notions, a summary and the perspectives related to the
contribution.

12
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Chapter 2

Background

The algorithms, data structures and techniques presented in this thesis aims atoffering efficient process-
ing of sampled geometry. Therefore, the background of this work takes place at the junction of several
fields and we discuss the related work when necessary throughout the manuscript. However, several
topics are transverse and presented in the following sections.

2.1 Acquiring Geometry

The raise of 3D scanners leverages the work of CG designers, but requires an engineering process for
ending with high quality 3D surfaces. Basically, the idea is to combine several2.5D sampling of an
object, taken from various points of view, to form a 3D sampling, latter converted to a surface. One must
note that only 3D samples capture the reality: any topological connectivity between these samples, either
explicit or implicit, comes as an assumption made over the original surface. Usually, the 3D acquisition
pipeline is composed of three main steps:

1. thecapture, which samples intersections distances (or depth values) in a whole range of directions
from a given point of view, outputting depth images (also called scan sheets),

2. theregistration, which puts together a set of depth images, taken from different points ofview,
to form a 3D point cloud,

3. thereconstruction, which generates a surface (e.g. mesh) from the point cloud.

At each step,data cleaningmust be applied for eliminating the various artefacts that may occurs. In
this thesis, we will focus on the processing and use of these geometries. Nevertheless, in order to cor-
rectly appreciate the choice we made all along our work, we give a deeperdescription of this geometry
acquisition pipeline (illustrated in Figure2.1) in the following paragraphs.

We refer the reader to the course on 3D Photography by Curless and Seitz [CS00] and to the survey on
the 3D model acquisition pipeline by Bernardini and Rushmeier [BR02] for a complete review of 3D
acquisition technologies.
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Figure 2.1: The 3D acquisition pipeline.

Raw data capture The surface sampling is performed through a set of depth images{D0, ...Dn} that
indicates, for a whole range of rays, at which depth arise the first intersection with the real model along
the ray defined by{x,y}, providing a 2.5D sample{x,y,Di(x,y)} in the frame of the sensor. This capture
can be performed with various devices, called3D scanners, which are classified in two main families:

• Active 3D scanners: a radiation (e.g. light) is emitted and the response produced by the scanned
model is used to define its depth values. For instance:

– Laser 3D Scannersuse laser rays to sample the surfaces, either using a time-of-flight mea-
sure (for large scale distant objects, like buildings) or triangulation (a fixed camera is used
for capturing the laser impact on the surface of smaller objects).

– Structured Light 3D Scannersproject 1D or 2D patterns using an LCD projector, analyze
the deformation of the pattern produced by the surface projection and triangulate the depth
value. Such acquisition is usually faster but less accurate than laser techniques.

• Passive 3D scanners: simple cameras can be used to capture different views; the set of resulting
images is then analyzed using:

– Stereoscopy, measuring the difference obtained from two near points of view.

– Silhouettes, extracted by image analysis, and combined to approximate the convex hull of
the model (concavities can be missed).

Active 3D scanners are more expensive, may not work in some particularlighting conditions, but still
offers betters results than passive ones. Note also that while color may beacquired using the same pro-
cess, the view/light-dependent nature of this property usually requires different systems for capturing the
underlying material and reusing it in different view/lighting conditions (see Goesele’s thesis [Goe04]).
Finally, capturing transparent objects is not really possible with all these systems (see the topographic
reconstruction of Trifonov et al. [TBH06]).

Registration The registration searches for a set of transformation matrices{M0, ...,Mn} that align
relatively to each other the 3D geometry defined by the set of depth image. Let p = {x,y,Di(x,y)} a 3D
sample defined byDi , the registration process generates a matrixMi so thatMi ⊗ p⊤i = M j ⊗ p⊤j , with
pi andp j sampling the same surface point from their relative frame. Popular methods toregister scans
divide the problem in two steps:

1. a global registration that use a full scan analysis to roughly align two scans; this step is the harder
one if no additional information is provided (it may be user-controlled)
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2. a local registration, that use curvature-based feature correspondence to perform the precise align-
ment. One efficient algorithm to do so is the Iterative Closest Point (ICP) [BM92], which can be
enhanced to spread the residual error over the complete set of pair-wise aligned scans, minimizing
the maximum error [Pul99].

At the end of the process, a 3D discrete point setP is output, so that∀p ∈ P,∃{x,y, i}/p = Mi ⊗
{x,y,Di(x,y)}⊤

Reconstruction Finally, P is converted into a continuous surfaceS. Most of these algorithms end with
a mesh and can be classified in three families:

• explicit methodsgenerate directly a mesh interpolatingP. Such methods include displacement-
based methods [STKK99, JK02], deformable models [TM91, DQ01] and growing fronts [SLS∗06]

• combinatorial methods use an intermediate combinatorial structure built uponP for selecting
a part of the so-defined connectivity as the surface. Such methods canbe based on the Voronoi
diagram [BC00, ACK01, DGH01], its dual Delaunay Triangulations [GKS00, CSD02], the convex
hull or the k-graph (graph linking each sample ofP with k neighbors)

• implicit methods define a functionf : R
3→ R so that one of its iso-surface (usually, the zero

set) approximates or interpolatesP [HDD∗92, HDD∗94]. Several basis exist for these func-
tions, either using Radial Basis Functions (RBF) [SPOK95, CBC∗01, TO02], quadric approxi-
mations [OBA∗03], or Poisson equations [KBH06]. Depth Image can also be directly used after
registration for constructing a distance function [CL96]. These techniques often relies on some
least square fitting, and may be:

– global: P is entirely used for definingf in any point

– local: only a small and compact subset ofP is considered for a given point

– artificially local: several functions interpolate globally subsets ofP and are combined to-
gether, using for instance thepartition of unity [OBA∗03, TRS04] for solving the global
reconstruction.

As meshes are ubiquitous in 3D applications, a final explicit solution must be extracted from the
implicit form of f . In general, finding this solution is not possible through an analytical process,
so a piecewise linear approximation is usually obtained with a 3D contouring method, such as the
Marching Cubes [LC87, Blo88] algorithm, for creating a polygonal mesh.

In spite of the numerous papers published over the last 15 years, surface reconstruction — and its dual
sampling theory — is still an open problem [Gro06] and all existing solutions have specific drawbacks
and advantages, with theoretical guarantees that do not hold in practice.In Chapter3, we will focus on
fast reconstruction methods and show how the problem can be solved in most of the cases by an hybrid
implicit-explicit reconstruction. We refer the reader to the work of Kazhdan[Kaz05] for a recent survey
on surface reconstruction.

Data cleaning Each stage of the acquisition pipeline introduces its own noise and artifacts. Therefore,
specific data filtering must be employed a each level. Note that all these processes strongly benefit from
additional user control [WPK∗04], particularly in in under-sampled or highly noisy areas.
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Image-based filtering Raw data samples are organized in depth images. This indicates an acquisition
“direction” for samples and image processing techniques can be employed.For instance, on very spec-
ular material, laser scanners may estimate a too small value for the depth of some samples, producing
“peaks” in the direction of view. Therefore, a local Laplacian filtering can help to detect and remove
these artifacts. Moreover, since depth images only represent partial capture, another global cleaning has
to be performed after registration, for eliminating unwanted component (e.g.,wall behind the scanned
object)

Point-based filtering After the second stage, the resulting point cloud may also exhibit some noise that
needs to be removed, particularly in overlapping regions that have driven the registration. At this point,
point-based methods are employed. In particular, the Moving Least Square projection is recognized as a
good filter for non uniform point clouds. In the original operator [Lev98a, Lev98b], the surface defined
by stationary projection, the Point Set Surface or PSS [ABCO∗01, AK04a], is evaluated at any point
p∈ R

3 by:

• collecting a set of neighboring samplesNp in the point cloud

• fitting a plane toNp in the least square sense

• fitting a low degree polynomial parameterized on this plane, that minimize theL2 error toNp

This projection procedure can actually be replaced by a simple projection onan average plane when a
normal estimation is provided [AK04b], still converging. This operator acts as a smoothing operator,
and can preserve features when required [FCOS05]. Note that it is somewhat related to thereproducing
kernel particle approximation. We refer the reader to our own work [RJT∗05], not discussed in the
present thesis.

Mesh-based filtering Finally, once reconstructed, the resulting mesh can undergone various enhance-
ment like hole filling, noise removal, anisotropic semi-regular remeshing and parameterization. We refer
to the course of Botsch et al. [BPK∗07] for an introduction to mesh processing.

One fundamental geometric processing is the simplification step, that allows to conform a surface res-
olution to a given budget of samples or polygons allowed by the final application. We will discuss this
problem in Chapter3.

About Normals Once registered and before reconstruction, having an estimation of the normal vector
for each sample of the point cloud is a very useful information. One solutionfor that is to estimate this
vector directly in the depth image, using local differentiation. However, the resulting normal information
remains an estimation as it is based on the depth image geometry, and it might be false on silhouettes (this
can be prevent by either filtering the normals or removing border samples, which have low confidence
anyway). An alternative method is to useshape-from-shadingto “measure” the normal information,
by using several photos with different lighting conditions, and which can be used with geometry-based
estimation in an optimization process. We refer to the work of Nehab et al. [NRDR05] for additional
information.

Last, when the point cloud comes without any information on the original depthimages, Hoppe et
al.[HDD∗92] propose to consider, for each sample, the eigen vector associated to smallest eigen value
of the covariance matrix of its nearest neighbors as an approximation of thedirection of the normal. A
minimum spanning tree is then used to make the orientation consistent. We will essentially consider
point-based surfacesas point clouds equipped with normal vectors.
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2.2 Meshes Versus Point-Sampled Surfaces

At the end of the third stage of the acquisition pipeline, the large repository ofgeometry processing, edit-
ing and rendering techniques is available and can be used. However, observing the second stage, several
researchers have developed methods that act directly on the point cloud, before reconstruction. In the
literature, they appear asPoint-basedof Mesh-lessmethods. Globally, point-based algorithms process
shapes without considering any explicit topology information, such as the edges and the polygons of a
mesh. They rather use weak topological estimators based on thek nearest neighbors (k-neighborhood),
or all the samples contained in ball around the considered location (ε-neighborhood). In facts, many of
point-based tools offer similar results that mesh-based ones. Sometimes, the results are even better, like
for surface simplification, for which point-based methods allow more degrees of freedom for reducing
the resolution of a shape.

Figure 2.2: Left: The Max Plank model.Top right: Close-up on the mesh version.Bottom right:
Close-up on its point cloud version.

Considering performances, both representations trade memory for speed: meshes encode additional
data for polygons (and sometimes edges) but offer constant time neighboraccess, while point sets, free
from topological information, can only offer a linear access time to neighbors. A logarithmic access is
possible at the price of the pre-generation of a space partitioning structure, such as kD-Trees, but this
structures implies an additional memory overhead.

So neither efficiency nor quality can clearly help to distinguish situations where point-based surfaces
should be preferred to meshes. Still, two elements vote for using point-basedprocessing when possible.
First, the surface reconstruction is far from being a straightforward task: it is time-consuming and many
algorithms have side effects on the final geometry compared to the original sampling provided by the
3D scanner. So using point-based methods helps to maintain as long as possible the original sampled
surface as a “ground truth”. Second, even after reconstruction, most of surface reconstruction algorithms
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cannot provideguaranteedmanifold for the output mesh. This means than the explicit connectivity may
not be consistent everywhere, resulting in a so-calledtriangle soup. Third, surface reconstructionis a
more or less arbitrary answer to the question: “Which samples should be indexed by a given polygon and
thus become privileged neighbors ?”. Likewise, nothing is said about the choice made by the surface
reconstruction algorithm when a mesh is submitted to a given process. In fact, topology information
cannot be acquired statically, and is decided using more or less strong supposition during the sampling
of the shape, an information usually unknown.

In this context, point-based methods appear as generic processing methods, able to process either man-
ifold meshes, polygon soups and point clouds. Unfortunately, rendering hardware and algorithms are
designed for polygonal surfaces, imposing meshes in most of commercial CG software. In Chapter5
and6, we will show that polygonal rendering technique can benefit to point-based surfaces, introducing
a fast local meshing algorithm for interfacingdirectly point-based surfaces and polygonal rendering
systems, allowing to combine flexible point-based modeling tools with efficient polygonal rendering,
even with large models.

In this thesis, we will not make a strong difference betweenacquired geometry, sampled surface,
point cloud or point-based surface(PBS). All these terms correspond to the set of samples coming
from the acquisition pipeline before reconstruction. In general, we consider this set as processed (e.g.,
outliers removal, noise filtering) and in many cases, with sampled or estimated normal vectors.
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2.3 Large Objects

With sub-millimeter precision in range scans [LPC∗00], even a small real-world object can lead to tens
or hundred of millions samples at the end of the acquisition pipeline. Being too bigfor most applications,
it must be simplified to a target resolution fitting hardware and algorithmic capabilities. However, the
simplification process is application-dependent and, for instance, special effects experts have a different
definition of optimality than video games designers: the former use to deal with millions of polygons
per objects, while the latter is expected to keep only few thousands. So, deciding to simplify an object
before processing or editing it may results in loss of features that could beuseful for future applications.

One solution to this problem isout-of-core processing. These techniques allow to process or visualize
an object at its full resolution, using either streaming or external memory management. One popular
example of such methods is simplification itself: too large objects do not fit in memoryand require out-
of-core methods for being simplified [Lin00]. However, out-of-core methods remains limited to slow
offline processing or visualization of static shapes [RL00, CGG∗04] after a long preprocess. One major
contribution of this thesis, stated in Chapter4 is a set of algorithms organized in a streaming system
allowing interactive shape and appearance editing of large objects, keeping full resolution models on the
output and opening a path to size-insensitive computer graphics.

Figure 2.3: The two largest publicly available sampled surfaces, the St Matthew (left) andthe Atlas
(right), are provided by the Digital Michelangelo Project and feature several hundred millions of sam-
ples. While their simple visualization is a already challenge, we will go a step further by allowing their
interactive editing.
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Part I

Processing and Editing of Acquired
Geometry
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Chapter 3

Volume-Surface Geometry Processing

Hierarchical Space Subdivision Schemes (HS3) are ubiquitous in computer graphics, and more par-
ticularly when efficient processing of acquired geometry is mandatory: simplification, reconstruction,
compression, visibility, and many other processing steps are based on trees to partition and structure data
sets. Their simple principle has made them popular: the initial space, often an axis aligned bounding
box, is recursively subdivided until each cell satisfies a given errorcriterion. The root cell of theHS3

can be either globally associated with the whole scene, or locally with each single object. Some of the
most popularHS3 are octrees, kD-Trees and axis-aligned BSP-Trees, which are easyto implement and
to integrate in existing computer graphics frameworks.

Nevertheless, in the case of 3D surfaces, whileHS3 generate satisfying clustering at coarse subdivision
levels, it is obvious that at finer levels, when the cells come closer to the surface, volume-based decom-
position leads to imbalanced clustering in areas where the surface is not aligned with the main directions
of the data structure (see Figure3.1(a)).

(a) Octree clustering (b) VS-Tree clustering

Figure 3.1: Comparison between (a) octree clustering and (b) VS-Tree clustering.The local 2D scheme
used by VS-Trees produces much better alignment of clusters and reduces the total number of clusters
within a given error bound.

In this chapter, we propose an alternativeHS3 which combines a 3D scheme for the first levels of the
tree, and a 2D scheme as soon as the surface can be projected onto a plane without folding. We call
such a tree aVolume-Surface Tree(or VS-Tree, for short). We show that VS-Trees achieve efficient
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and elegant surface-based partitioning that can be applied to a variety ofapplications, such assurface
simplification(Section3.3) andsurface reconstruction(Section3.4).

3.1 Context: Simplification and Reconstruction

Hierarchical Space Subdivision Structures All HS3 are based on a recursive subdivision of a root
cell, as long as some user-specified criterion is not satisfied in every subcell. As outlined above, octrees,
kD-Trees and BSP-Trees are by far the most popularHS3. In the case of BSP Trees [FKN80], the space
subdivision is dyadic, using a simple split plane, often chosen axis-alignedfor the sack of efficiency.
The kD-Tree data structure [Ben75] performs orthogonal space separation and stores additional data
elements at internal nodes. Finally, quadtrees and octrees [JT80, Sam89], or more generally 2d-trees,
express the dimension of the subdivided space directly in their structure: a1-to-4 scheme for quadtrees
in 2D, and a 1-to-8 scheme for octrees in 3D, where an initial bounding cube is recursively subdivided in
8 equal cubes until satisfying a given criterion in each space partition, thiscriterion being related to the
embedded geometry in our case. The very simple construction of the octree,as well as its fast conver-
gence toward the shape of the embedded 3D surface, makes it very popular when geometry processing
methods, such assurface simplificationandsurface reconstruction, need to be scaled toward large data
sets.

Simplification by Clustering The goal of simplification methods is to reduce the resolution of an ob-
ject, while maintaining as much detail as possible from the original shape [HDD∗93, GH97, CSAD04].
Clustering methods are a particular subset of simplification techniques, whichcast the problem as a
partitioning problem, where each partition only keeps one single sample that minimizes the error, in
a given metric [GH97, CSAD04], with the original surface. Hierarchical approaches, such as BSP-
based methods [SG01] or octree-based methods [SW03], provide adaptivity in the surface partitioning.
This adaptivity allows for more accurate simplification of non-uniformly sampledsurfaces than regular
grid partitioning methods [RB93, Lin00], while remaining almost as efficient. Such techniques have
originally been developed for meshes, but they can also be directly appliedon point clouds, when the
sampling density is high enough [PGK02]. In practice, it appears that the quality of the mesh simpli-
fied by hierarchical clustering is strongly related to the subdivision scheme, and we will show how the
local 2D scheme used by VS-Trees offers a much more regular sample decimation than the 3D scheme
induced by octrees (see Section3.3).

Surface Reconstruction To be as generic as possible, surface reconstruction techniques usually start
from a sampling of the original surface in the form of a point cloud. Note that in addition to its position,
each sample may also carry additional information, such as normal vector, that may (or may not) be
exploited during the reconstruction. Since the seminal work of Hoppe et al.[HDD∗92, HDD∗94], various
surface reconstruction methods have been proposed in the literature andit is out of the scope of this
section to perform an exhaustive survey (see Section2.1for a brief summary).

Today’s acquired point sets exhibits a sampling density that challenges reconstructions methods, so we
focus onspeed-basedmethods. Again, hierarchical data structures offer a simple and efficientframe-
workd to break the intrinsic complexity of surface reconstruction from dense point clouds. However,
this induces a “divide-and-conquer” approach, that certainly speeds-up computation but also causes
problems when a set of partial solutions have to be combined in a single surface. Therefore, implicit
surfaces appear as the most suitable representation, since their volumetricdefinition can be easily ob-
tained by simples operations (e.g., constructive solid geometry, polynomial blending) on many volumes.
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For instance, an implicit surface reconstruction can be obtained by splitting the input point cloud with
an octree, computing a separate implicit surface for each leaf of the octree, and finallygluing together
the set of local implicit surfaces by using thePartition Of Unitymethod, where a compactly supported
kernel weights the contributions of the different functions at a given point. This process has been suc-
cessfully used for fast local polynomial fitting in theMulti-Level Partition of Unity Implicits (MPU)
algorithm [OBA∗03] as well as forRadial Basis Functions[TRS04]. Unfortunately, as usual with im-
plicits, an explicit solution has to be provided at the end for processing andrendering purpose and
the reconstructed implicit surface is converted into a mesh, which involves anexpensive tessellation
step [Blo94]. Moreover, the quality of the resulting mesh is generally poor (the grid-surface intersec-
tion involved in 3D contouring cannot output well-shaped triangles) and has to be improved using, for
instance, an additional remeshing step, either based on parameterization [LSS∗98], global optimization
[Bot05] or fitting of subdivision surfaces [EDD∗95, ZSS97, MK04]. Consequently, even if the computa-
tion of the implicit surface is efficient thanks to the space subdivision, the whole reconstruction process
including the generation of an high quality semi-regular mesh becomes rather expensive.

In fact, surface reconstruction remains an ill-posed problem, even with slow global solutions, and we
often resort to a painful try-and-test session. Thus, we propose in Section3.4 a performance-oriented
surface reconstruction technique that takes fully benefit of the volume-surface organization of the VS-
Tree, to generate a semi-regular mesh of arbitrary genus over an unorganized point-cloud, dealing both
with noise and non-uniform sampling. This algorithm is fast enough to be integrated in an acquired
geometry processing pipeline, offering good results in most cases and letting ultimately the choice to
users to switch to a slower techniques in difficult cases (e.g., large holes to fill, under-sampled surfaces).

3.2 Volume-Surface Tree

In this section, we introduce the VS-Tree as an hybrid hierarchical partitioning performing a volume-
surface decomposition in its structure.

3.2.1 Definition

Figure 3.2: The VS-Tree structure. Note in red the T-layer, capturing a 3D-2D interface in the hierarchy.
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A VS-Tree is asurface-based HS3. The basic idea is to combine an octree and a set of quadtrees to
describe a discrete 3D surface. During the recursive split involved in the octree construction, we switch
to a quadtrees as soon as the area of the surface associated with the current node is consistent with a
scalar-valued function over a given ground plane (in other words, aheight field). Figure3.2presents the
three different kinds of VS-Tree nodes:

• Volume Nodes(V-Nodes): comparable to octree nodes. Each V-Node has 0 or 8 children, which
can be V-Nodes or T-Nodes.

• Transition Nodes (T-Nodes): leaves of the 3D hierarchy which also are roots of the 2D hierar-
chies. Each T-Node has 0 or 4 children that are S-Nodes.

• Surface Nodes(S-Nodes): comparable to quadtree nodes. Each S-Node has 0 or 4 children that
are S-Nodes.

Note that each T-Node carries a local frame that is used to align its corresponding sub-quadtree. The
union of all T-Nodes defines the volumetric layer under which it becomes possible to implement 2D
algorithms (see Figure3.2); we call it theTransition-layeror T-layer.

VS-Trees are proposed in order to increase efficiency of geometric processing usually combined with
simple and efficient hierarchical structures such as octrees. In orderto maintain a behavior as similar as
possible to octrees, the ideal structure should have the following properties:

• Purely recursive construction: popular hierarchical structures have the strong advantage to be
instanced through a simple recursive call, which is easy to implement;

• Efficient construction: rigid organization of data, such as the 1-to-8 splitof octrees, allows efficient
traversal and refinement of an hierarchical structure;

• T-layer at low depth: switching to quadtrees as soon as possible reducesthe memory overhead
thanks to the 2 dimensional structure, and speeds-up traversals and tests. Inclusion tests for arbi-
trary points are performed in 2D using the quadtrees placed under the T-layer;

• Graceful degradation: in the worst case of very small or under-sampled topological features, such
as iso-surface extraction from physical simulation, the structure should behave no worse than an
octree.

3.2.2 Construction

There are a large number of possible 3D surface decompositions that leadto a collection of 2.5D pieces.
We propose to use the following simple recursive construction method that is easy to integrate in existing
application software.

Input Let S be the set of samples defining the input surface. Each samplesi of S is defined by a
position pi and a normal vectorni . For dense meshes,S can be chosen, for instance, as the original
vertices of the mesh, or as the barycenters of the polygons.S can also be a point-based surface, with
normals approximated with a Principal Component Analysis (PCA) [HDD∗92, GKS00] if not available.

Clustering The construction of a VS-Tree begins with the computation of a bounding boxB of S
recursively subdivided with a 1-to-8 octree scheme. At each level, the current set of samplesSi associated
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with the bounding boxBi at that level is classified against each child’s bounding box. Letκ be aheight
field indicator, signaling whetherSi is consistent with a height field (i.e., it is 2.5D rather than 3D).
This flag stops the recursive 1-to-8 subdivision process. Whenκ(Si) is true, the current node is set
as a T-Node, and a local coordinate frame is computed. This local frame willstrongly influence the
final quality of the clustering, and must be carefully chosen. While it is generally impossible for a
hierarchical structure to precisely recover all the anisotropic featurespresent in the discrete surface, a
well-aligned sub-hierarchy can often be computed by analyzing the underlying surface and considering
its main directions (see Figure3.1 and Figure3.4). Thus, for constructing this local frame, we use a
PCA onSi , but rather than considering positions of samples [HDD∗92, GKS00], we use their associated
normals, a more relevant information when clustering surfaces [CSAD04].

Since we are looking for directions, we can perform the PCA in the normal space ofSi . The set of
resulting eigenvectors is a good approximation of the tangent frame of the surface. We choose{ni ,ui ,vi}
as a local frame, whereni is the average normal ofSi , while ui andvi are the normalized projections of
the two eigenvectors that minimize the dot product withni onto the planeΠi defined byni andci (the
centroid ofSi).

The set of samplesSi associated with the T-NodeTi is projected onΠi . Finally, a bounding quad is
computed forSi and is recursively subdivided with a 1-to-4 quadtree scheme. The recursion is stopped
when the error, computed overSi , is below a threshold. Figure3.3shows the different steps involved in
this construction. Note that the T-layer becomes independent of the discrete surface resolution when the
sampling density is sufficient: typically, over-tessellating a dense mesh will notchange the depth of the
T-layer.

Height field indicator Evaluating if a piece of surface will exhibit folding during a lower dimensional
projection can be done by numerically integrating the curvature over this area. Nevertheless, such a
test is computationally expensive even in the case of regular meshes, and more complicated for non-
manifold meshes or topology-free representations such as point clouds.In order to make our approach
more general and efficient, various heuristics can be used to define the height field indicatorκ for such a
predicate. Pauly et al. [PG01] propose a normal-cone test for allowing the projection of a set of surfels
using the miniball algorithm. We extend this idea by introducing an additional displacement threshold to
detect scan misalignment in dense acquired point sets. Although a formal proof is not available, since it
would depend on some form of density and/or topology criterion (not available in most practical cases),

(a) (b) (c) (d)

Figure 3.3: Different levels of a VS-Tree. (a) The input discrete surface. (b) Theupper levels of the tree
are three-dimensional (in green). (c) The transition between 3D and 2Dstructure (in blue) is possible
as soon as the surface can be locally expressed as a height field. (d) The lower levels of the VS-Tree are
two-dimensional.
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Models Samples Octree VS-Tree Gain
Feline 49864 0.18s. 0.19s. 18%
Igea 134346 0.33s. 0.34s. 49%
Vase lion 200002 0.83s. 0.80s. 18%
Raptor 1000080 3.50s. 3.11s. 39%
XYZ dragon 3609601 11.82s. 9.88s. 52%
XYZ Statue 5000000 17.82s. 14.90s. 32%

Table 3.1: Computation time to generate the HS3 with L2 error bounded at10−4. The gain is relative
to the final number of partitions.

this indicatorκ gives convincing results in practice. So we defineκ to betruewhen:

∀ j ∈ [0,ki [

{

ni j ·ni > δawith δa ∈ [0,1] and
|(pi j−ci)·ni |

maxki (||piki−ci ||)
< δdwith δd ∈ [0,1]

whereki is the number of samples of the current celli, ni the average normal of the surfels in the cell,
pi j and ni j are the position and the normal of thej th sample of the celli. δa (angle deviation) and
δd (displacement deviation) are user-provided thresholds. In our implement,δa = 0 andδd = 1/6 has
provided satisfying results in all our tests. Note that by increasingδa and decreasingδd, it becomes
harder forκ to be true, and thus the T-layer is conservatively dropped to a lower levelof the hierarchy.

Error metrics As usual withHS3, an error metricL can be be defined to control the recursive subdi-
vision with a simple geometric analysis. Good error functions should be monotonicand decreasing with
the size ofSi . Obviously, any error metrics can be used with VS-Tree. Yet, we use a reduced set of such
metrics, which have proved their qualities. In particular, we use theL2 error function, which ignores
small-scale high-frequency features in the partitioning, and which is discretized on sampled surfaces by:

L2(Si) = ∑
j

||pi j −Πi(pi j )||
2

with Πi(pi j ) the orthogonal projection ofpi j on some average plane related toSi (e.g., least square or
{ci ,ni}). We use also the Quadratic Error Function (QEF) introduced by Garland[GH97] for better
capturing curved smooth surfaces. Last, as normal is a very relevant property of smooth surfaces, we
often use the normal-basedL2,1 metric [CSAD04], which also better captures anisotropy:

L2,1(Si) = ∑
j

||ni j −ni ||
2

More complex combined metrics, such as the Sobolev one, may also be used. In the case of large objects,
simple approximated metrics, such as the local density, may be chosen for efficiency.

3.3 Rapid Simplification

In this section, we show how the VS-Tree structure improves prior surface simplification algorithms
based onhierarchical vertex clustering.
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3.3.1 Balanced clustering

Figure3.1 illustrates the difference of vertex clustering obtained with an octree and a VS-Tree. The
volume-based behavior of octree decomposition frequently leads to very imbalanced clustering, mixing
small clusters (when the surface is located near the corner of the octree cell) and large ones (when
the surface passes near the center of the octree cell). Moreover, thecutsgenerated by the octree cell
boundaries can be clearly identified within the clustering (see Figure3.1(a)). VS-Tree decomposition
strongly reduces both artifacts, as it provides a much better alignment of thecluster boundaries with the
embedded surface (see Figure3.1(b)). A very low variance can be observed in the size of the clusters,
basically because the clustering only depends on the planarity, but not onthe orientation, of the surface
locally associated with each T-Node. For instance, the variance in the numberof samples per cluster
has almost been divided by 2 between Figure3.1(a)and Figure3.1(b). Additionally, an almost regular
quad-like clustering can be observed. The few remaining non-quad clusters primarily come from the
volume-based decomposition created at the top levels of the VS-Tree.

Figure 3.4: Hierarchical mesh simplification with L2 error bounded at2.10−3. Left: Original object
(7M triangles). Middle: Octree simplification (1.75 sec. - 62856 triangles).Right: VS-Tree simplifica-
tion (1.20 sec. - 52024 triangles).

3.3.2 Computation efficiency

In addition to providing more balanced clustering, the VS-Tree is also more efficient than the octree
when computing theHS3. Moreover the advantage of the VS-Tree over the octree increases withthe
size of the input data, as shown on Table3.1. For large objects, a 16% improvement can be observed
in the computation time, as well as a reduction of the number of clusters between 18% and 52% for the
same bounded error. This may appear quite surprising as octree decomposition is generally considered
extremely efficient. In fact, the speedup observed by VS-Tree decomposition comes from two different
properties. First, when the size of the input data increases (e.g., very dense meshes), most of the data
will be represented below the T-layer, and thus 1-to-4 splits will be much morefrequent than 1-to-8
splits. To reach a given error threshold, the octree is thus usually much deeper, with significantly more
empty cells compared to the corresponding VS-Tree. Second, below the T-layer, all the computations
involved in the VS-Tree are done in 2D. When there is a large number of points in the sub-hierarchy of a
given T-Node, these 2D computations more than compensate for the overhead involved in the projection
to the local 2D frame.
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3.3.3 Mesh simplification

We have implemented an hierarchical mesh simplification algorithm based on vertex clustering in the
VS-Tree. The algorithm proceeds as follow:

1. a VS-Tree is computed for the input object,

2. all vertices are classified according to the S-Node they intersect (hierarchical test),

3. a representative vertex is computed for each leaf (centroid or QEF [GH97] origin for instance),

4. triangles that have their three vertices in different S-Node are re-indexed over the relative repre-
sentative, others are discard.

Here again, the more balanced cluster sizes provided by the VS-Tree reduce the mismatch of features
for a given error threshold, without imposing an overly conservative mesh density. Moreover, the local
frame computed independently for each T-Node roughly captures the anisotropy of the underlying mesh,
while the octree completely ignores it. For instance, see the cheek on Figure3.4. As expected, the VS-
Tree introduces fewer clustering artifacts in the mesh topology, and better captures the original geometry
(see near the eye, for instance).

3.4 Fast Surface Reconstruction by Refinement

In this section, we describe a new efficient surface reconstruction algorithm based on the specific
volume-surface decomposition of VS-Trees.

(a) (b) (c)

Figure 3.5: Noise filtering. (a) Input point cloud (137063samples). (b) Reconstruction with VS-Tree L2

error bounded at10−4 (1.758sec, 125K triangles). (c) Reconstruction with VS-Tree L2 error bounded
at 10−3 (0.987sec, 32K triangles).

Obviously, meshes have become the de-facto standard for 3D geometry processing and rendering and we
seek for a robust and efficient point-to-mesh surface reconstructiontechniques. Several properties for
such a reconstruction processes are mandatory: (1) dealing with arbitrary genus; (2) offering intuitive
de-noising control; (3) avoiding final remeshing by directly providing a semi-regular mesh; (4) provid-
ing error controlled output; and, of course, (5) being as efficient as possible. We propose to use the
advantages of the VS-Tree decomposition in order to develop a point-to-mesh reconstruction technique
that fulfills these five properties.
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Intuitively, most of the global topological features of the surface can berecovered at the T-Layer of
the VS-Tree. Thus, the T-Layer helps us to split the problem into two main steps: a coarse mesh
M0 is generated during the first step, and refined during the second step, toaccount for all the details
included in the input point cloud. This second step uses a displacement process driven by the quadtree
corresponding to each T-Node. Algorithm1 summarizes our approach.

Algorithm 1 Surface reconstruction using VS-Trees.

Require: PointSet S, Threshold t
VSTree T← buildVSTree(S)
Mesh M← extractMeshAtTLayer(T)
while error(M, S)> t do

M ← refinePN(M)
M ← displace(M, T)

end while
return M

3.4.1 Base Domain Reconstruction

Globally, we follow the construction process presented in Section3.2. Similar to Pauly et al. [PGK02],
the high frequency noise typically present in scanned data [NRDR05], is directly addressed at thepoint
level by simply specifying anL2 error threshold driving the VS-Tree creation. While more formal noise
removal solutions exist [PG01, SFS05], this simple technique nicely smoothes out the noise, as shown
on Figure3.5, and is intuitive enough to be easily tuned by the user.

Base mesh reconstruction:The remainder of the algorithm will inherit the global topology ofM0, and
in particular its genus. Since the geometry of S-Nodes does not change theglobal topology of the shape,
M0 is created using only the T-Layer (see Figure3.6(a)). However, the set of T-Nodes composing the
T-Layer can be sparse (e.g., large areas with low curvature), which does not allow the use of Delaunay-
based reconstructions for this base-mesh. Moreover, ideally, we wouldlike a watertight 2-manifold,
homomorphic to the input point-based surface. This naturally leads us to choose a simple implicit
surface reconstruction defined, by a functionf : R→ R

3, by just considering the half space defined
by the oriented frame of each T-NodeTi (i.e., a linear polynomial acting as a distance function) and
contouring it in similar fashion to Hoppe et al. [HDD∗92]. However rather than directly contouring
this simple localized distance function with a marching cube algorithm, we rather construct a smooth
implicit surface using aPartition of Unityscheme:

f (p) = ∑
i

φi(p)Qi(p)

with φi(p) aPartition of Unitykernel centered onTi and

Qi(p) = (p−ci) ·ni

the signed distance to its average plane, with{ci ,ni} the support plane ofTi (find usingκ). The octree
structure of the upper levels of the VS-Tree allows consistent generationof overlapping zones that can be
used to blend the local distance functions, in a similar fashion as in the work ofOhtake et al. [OBA∗03]:

φi(p) =
ωi(p)

∑ j ω j(p)
with ωi(p) = h

(

3|p−bi |

2r i

)

with bi the center of theTi cell and r i the radius of its bounding sphere. We replace the quadratic
kernel proposed in the work of Ohtake by an Hermitian one,h(t), for its better vanishing behavior (see
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Section4.4.1). The mesh is then generated by applying a Bloomenthal polygonization [Blo94]. In order
to guarantee that no topological feature of the VS-Tree will be missed, we use a dual contouring grid
and set its resolution to that of the deepest T-Node (see Figure3.6(b)). Note that there is room for
improvement here with the octree countouring methods recently proposed [SJW07, KKDH07]. Finally,
this mesh is simplified by clustering it at the T-Layer level. This leads to the final coarse meshM0, which
contains only one vertex for each T-Node (see Figure3.6(c)).

(a) (b) (c)

Figure 3.6: Coarse mesh generation. (a) Input point cloud (in blue) clustered in a VS-Tree (T-Layer
in orange). (b) Marching cube dual contouring at the resolution of the deepest T-Node (red grid). (d)
Coarse mesh M0 (in green) generated by simplifying the mesh at the T-Layer level.

3.4.2 Mesh Refinement

The goal of this second stage is to iteratively refine the mesh, until the geometric features of the input
point cloud are recovered according to a given error threshold. Fortriangular meshes, the approximating
subdivision scheme proposed by Loop [Loo87] is known to provide high quality mesh refinement. But in
our quest for efficiency, we need to find a trade-off between speed and quality. We have found that local
subdivision based onCurved PN-Triangles[VPBM01] are well suited to our constructive approach.
This leads us to the following efficient two-step refinement technique:

1. each triangle of the meshMi is refined into four sub-triangles and the newly inserted mid-edge
vertices are translated according to the cubic Bezier triangular patch computed by the PN-Triangle
scheme;

2. these three mid-edge vertices are translated to their final position, according to the geometry stored
in the local quadtree (see Figure3.7).

Figure 3.7: Top: vertex insertion comparison. Bottom: VS-Tree refinement and displacement in a
T-Node.
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This displacement procedure is the step that benefits most from the specificproperties of our VS-Tree
decomposition. Instead of having to define a smooth scalar field such as in implicit surface reconstruc-
tion methods, or a robust energy functional such as in dynamic model fitting [DYQS04], we simply
use the quadtree defined at each T-Node to displace the inserted verticesaccordingly. Letv denote an
inserted vertex that has to be displaced. First, we find the highest S-Nodes that only containsv. Then,
we select the leafl exhibiting the highest local variation in the quadtree built ons. Finally, we translatev
toward the average sample carried byl . We markl as locked, and will no more consider it for future dis-
placement steps: as PN-Triangles provide an interpolating scheme, this vertex is now interpolated until
the end of the refinement loop. This simple construction approximates the optimaldisplacement ofv and
avoids the mismatch of high-frequency features that would occur if a simple orthogonal displacement
was performed (see Figure3.7).

At each refinement step, the mesh is maintainedhole-freesince we only translate its vertices. In order
to avoid thesurface aliasingeffect that could occur when many vertices are projected toward the same
leaf, we do not displacev when no more leaf remainsunlockedin the quadtree built ons. After each
displacement pass, newly inserted vertices that have not been displacedare smoothed out according to
the final position of neighbor vertices, using a simple tangential smoothing. Since the PN-refinement
performs a 1-to-4 subdivision, each vertexv has at least two neighbors that have already been processed
at a previous refinement step, and thus have reached their final position.

(a) (b) (c)

Figure 3.8: Reconstruction of the ball-joint model (137062points,1.758sec). (a) Input point set (b)
Coarse mesh generated at the T-layer of the VS-Tree. (c) Final refined mesh.

3.5 Results

Adaptivity to curvature variation In the case of point clouds sampled from a surface that exhibits
large variations of curvature, one may think that an adaptive refinement scheme [ZSS97] would allow a
better capture of the global shape. However, both the efficiency of vertex insertion, as well as the final
semi-regular topology of the mesh, would be lost by such an adaptive refinement. Efficient adaptivity to
curvature variation can be easily included in our scheme by letting the user tune theδa andδd thresholds
used in the height field indicatorκ. Indeed, increasingδa and decreasingδd induces a deeper T-layer
in high-curvature areas and thus, a larger number of T-Nodes. Since,M0 is generated by T-Node clus-
tering, M0 is itself denser, leading to a final mesh with higher resolution in high-curvature areas (see
Figure3.10(a)). Although this solution may break down for some pathological cases, it remains far less
expensive than, for instance, the optimization of theL∞ error [MK04]. Figure 3.5, 3.8, 3.9 and3.11
shows some examples of surface reconstruction obtained with our algorithm.
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(a) (b) (c)

Figure 3.9: Reconstruction of the Igea model. (a) Input point set. (b) Reconstructed surface (c) Close-
up on the semi-regular mesh produced by our algorithm. Note, in the red circle, the limit of our technique
which propagates high-degree vertices generated on M0.

Performances Table3.2 provides some reconstruction timings for various models. The timing pre-
sented includes the VS-tree decomposition, the coarse mesh generation andthe mesh refinement loop.
Globally, this new algorithm is one order of magnitude faster than state-of-the-art fast surface recon-
struction methods [OBA∗03, GKS00], while directly providing a final mesh with semi-regular connec-
tivity without any additional remeshing steps. For large point clouds, the VS-Tree construction becomes
the bottleneck, since this is a non-linear operation. Figure3.10(b)compares the final mesh quality of
[OBA∗03] to ours. In our implementation, the intensive use of pointers limits the size of in-core re-
construction. We are currently exploring out-of-core methods for performing the reconstruction with a
constant and small amount of memory.

The mesh quality obtained by our technique is much higher as the one obtained by applying some octree-
based tessellation on a reconstructed implicit surface (see Figure3.10(b)) and approaches the quality
obtained by mesh beautification techniques. However, they exhibit a few moreextraordinary vertices,
resulting from the initial clustering at the T-Layer level of theM0 (see Figure3.9). Nonetheless, it should
be noted that the refinement processdoes notgenerate additional extraordinary vertices. So, if limiting
the number of such vertices really matters for some specific application, one easy solution would be to
apply mesh beautification on the coarse meshM0, which of course is dramatically faster than applying
remeshing on the final dense mesh.
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(a) (b)

Figure 3.10: (a) Adaptivity by T-Layer constraint. (b) Close-up of the mesh obtained when reconstruct-
ing the ball-joint model with theMultiple Partition of Unity(top) method with our VS-Tree based method
(bottom).

As said previously, even if our reconstruction technique generates high-quality meshes in almost every
tested examples, we have biased each speed vs. quality tradeoff of our algorithm towards computation
efficiency. Consequently, for difficult examples that exhibit poorly sampled areas with high curvature,
slower reconstruction techniques based on implicit surfaces [OBA∗03, TRS04], usually offer better re-
covering of thin features.

3.6 Discussion

Limitations: In spite of its efficient hierarchical analysis, the VS-Tree offers only asub-optimal
height-field decomposition. Its intrinsec 2d-tree structure may impose over-splitting when searching
lower-dimensional clusters. One typical example is the sphere, which will becut in 8 pieces before
switching to a 2D partitioning, while it is well know that the tetrahedron (i.e., 4 clusters) is the smallest
non-degenerated polyhedra onto which a sphere can be projected. Infact, when an optimal height-field
decomposition is mandatory, there is no efficient solution and one would resort to a global analysis,
using for instance Mean Shift or K-Means methods. Nonetheless, there isclearly room for research in
improving aggressive height-field indicators for (point-)sampled surfaces.

Summary: Hierarchical space subdivision schemes are the key ingredient to make efficient geometric
processing methods in a large number of situations. In this chapter, we haveproposed the VS-Tree,
a surface-based partitioning structure combining an octree with local quadtrees. This simple structure
improves the quality of simplified meshes generated by vertex-clustering, whilemaintaining similar
computation time compared to conventional octrees. It can seamlessly replaceoctrees in a variety of
situations, providing better results when dealing with dense surfaces.

We have also proposed an efficient point-to-mesh surface reconstruction algorithm based on the VS-Tree
data structure. This algorithm combines the robustness of an implicit approach, for recovering the global
topology of the surface using the upper levels of the VS-Tree, with the efficiency of an explicit one, for
retrieving local geometric features by a simple and efficient local displacement scheme induced by the
lower levels of the VS-Tree. As a result, manifolds of arbitrary genius canbe reconstructed avoiding the
computationnal effort involved with multiple polynomial fitting of a complex local geometry.
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Perspectives: This structure and these algorithms can take place in in the 3D acquisition pipeline. In
the following chapter, we will discuss the use of the VS-Tree in an out-of-core system for what usually
follows the (semi-)automatic processing of acquired geometry:interactive editing.

Models Samples Our method. MPU.
Bunny 35949 0.852s. 4.272s.
Dino 56195 1.026s. 5.010s.
Santa 75783 1.067s. 7.135s.
Igea 134346 1.813s. 6.890s.
Male 303382 2.798s. 55.008s.
Dragon 437647 5.400s. 60.176s.
Happy Buddha 543652 6.384s. 80.866s.
Youthful 1728305 20.621s. 200.527s.
XYZ Dragon 3609601 41.844s. 480.693s.
XYZ Statue 5000000 53.298s. 475.551s.

Table 3.2: Timing for VS-Tree surface reconstruction (with error set to5.10−4) and MPU (with error
set accordingly).

Figure 3.11: Reconstruction of the XYZ Dragon model (3.6M points -53.298 sec). Close-up on the
semi-regular mesh produced by our algorithm.
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Chapter 4

Size Insensitive Interactive Editing

The previous chapter provides essential tools for semi-automatic processing of acquired surfaces. Com-
bined with filtering tools, such as the MLS projection [ABCO∗01], point clouds and can be simplified
and reconstructed efficiently. However, theground truthprovided by the point sampling may need to be
edited prior to any decision about its simplification and reconstruction. In particular,appearance texture
andshape deformationmay need to be applied. These two operations are the most common ones in
the computer graphics industry, and both share a central constraint: theyrequire an interactive response
from the application.

In fact, interactive editing differs from the kind of algorithms described in Chapter3, because there is
not any a priori result: the user interactively explores the space of possible appearances and shapes,
progressively refining its own idea on the result until obtaining the final 3Dobject, ready for animation
and rendering. In this situation, the whole editing session must remain interactive, with enough frames-
per-second for letting the user focus on his work rather than waiting for the computer. Observing state-
of-the-art software tools, it appears that thiscrucial interactivity cannot be provided for dense surfaces,
such as the ones coming from the acquisition pipeline: even few million polygons represent a bottleneck
for rich surface painting and deformation tools.

Nevertheless, controlling interactively the shape and the appearance ofsurfaces, including acquired
ones, is unavoidable in many computer graphics fields, for being able to adapt or modify real-world
objects for a particular application. So far, the usual solution is to simplify the model, and then to edit
it. In other words, the resolution and the accuracy of 3D surfaces doesno more depend on the quality
of the acquisition devices and its original precision, but depends on the capabilities of the software and
the computer used for editing it. In practice, this means that, as simple has may be the modification
(e.g., bending the arm of a virtual human), the simplification process has to beapplied, loosing features
originally acquired. This explains the difference we can observe between rendering of static shapes and
animated ones for instance: the former have been preserved and finally rendered out-of-core, while the
latter have undergone simplification for texturing and deformation reasons.

In a modern 3D content processing pipeline, we consider that the full scale geometry should be main-
tained as far as possible, being simplified only at the end of the pipeline, if required. Thus, we propose a
new approach to 3D surface manipulation, thesampling-reconstruction method, for editing interactively
both shape and appearance, whatever the size of the input/output object.The key idea behind this system
can be stated as follow:

A modification of the sampling can be considered as a sampling of the modification

In other words, we claim that, for editing the shape and the appearance ofa large object, we can:
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• sample it at a lower resolution,

• edit interactively its shape and appearance,

• reconstruct a function that transfer these modifications to the original object, obtaining an edited
large object.

So formulated, scalability becomes possible: both sampling and reconstructionare performed without-
of-core streamingalgorithms, which makes them scalable to arbitrary object size, the intermediate sam-
pling representing the only memory footprint required.

Our system is able to take either point clouds, polygon soup or manifold meshes as an input, and al-
lows to use a large variety of popular editing method onto large objects (minimal assumption are made
on the interactive editing system used). It issize-insensitive, upon a billion sample in our tests. Our
framework is actually organized as a bracketing system for any interactive editing tool, and is based
on two fundamentalstreamalgorithms: anout-of-core simplification preprocessand anout-of-core
reconstruction post-process. The former extracts a sampling from the original object, while the latter
transfers the modification (color and deformation) undergone by this sampling to the original (large)
model. The size of the sampling is chosen according to workstation capabilities and user demand (see
Figure4.1).

(a) Color Editing

(b) Shape Editing

Figure 4.1: Interactive editing of large objects: the Raptor model (8M triangles). The initial geometry
is adaptively downsampled through a streaming process, to get a simplifiedmeshless version (146k
points) that can be edited interactively with on-demand local refinement (blue snapshots). Afterwards,
a second streaming process performs a color and deformation transfer tothe original geometry.
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4.1 Context: Interactive Manipulation of Large Objects

We focus on the interactive manipulation of the two essential properties of a 3D object: appearance and
shape.

About the former, we propose an interactive painting tool: color informationgained from acquisition is
usually hard to exploit in final images because appearance is a view-dependent property. Note that even if
some scanners provide the color information during the scanning process, this information can rarely be
directly exploited since the captured appearance strongly depends on thelighting conditions. Actually,
similarly to the geometry acquisition pipeline that we discuss in this thesis,appearance acquisition
methodsexist: we refer the reader to the thesis of Goesel [Goe04] for a recent survey. Unfortunately,
such systems are complex and cannot be used in all the situation where 3D scanners are useful. As a
result, appearance (e.g. color texture) has to be partially or completely edited afterwards.

Concerning shape, the 3D acquisition pipeline provides a base shape thatmay need to be modified.
Freeform Deformation (FFD) techniques offers various way to perform this task, but none can handle
large objects. Our approach solves also this problem. In the following paragraphs, we discuss the related
work in these areas.

Appearance Texturing The interactive texturing of 3D objects is a key step in the editing of the final
object appearance in computer graphics productions. As usual with interactive tools, the size of the in-
core model must be kept low since the dynamic information added during the interactive editing process
would break any highly-optimized data-structures, from on-GPU vertex buffer objects to out-of-core
representations of large objects.

Direct interactive texturing of 3D objects has been an issue in computer graphics for many years. One of
the first complete framework for interactive 3D painting was the WYSIWYG painting tool of Hanrahan
and Haeberti [HH90]. Their system allows the user to interactively paint colors and materials directly
on a 3D model, introducing a simple brush metaphor. The authors were alreadypointing the usefulness
of such a system for 3D scanned models.

Recently, the idea that 3D textures could be an interesting alternative to usual 2D textures in a painting
tool has been independently developed by DeBry et al. [gDGPR02] and Benson and Davis [BD02]
who introduced the idea ofoctree textures. The main idea is to set a per-node color at each level of
the octree hierarchy and use it to color an object embedded in its volume. Notethat octree textures
may be interactively constructed or sampled from an existing texture [LHN05], without requiring any
parameterization. This is particularly interesting in the case of acquired surfaces: their poor topological
guarantees coupled with there high density make them hard to unfold in the plane, avoiding the use of
2D textures. Another great advantage of octree textures is their local control, which is not usual with
solid textures, that are often globally defined by some procedural function. For a complete survey on
textures in computer graphics, we refer the reader to the book of Heckbert [Hec86a].

The color texture model that we develop in this chapter, thePoint-Sampled Texture(PST), is volumetric
and even more flexible than octree-texture. It has been inspired by the simple construction of aspace-
to-color function from samples, as introduced with thereaction-diffusionmethod of Turk [Tur91], who
efficiently obtained a color evaluation at a given location using a simple weighted average of the neigh-
boring samples, an idea later used in the Photon Mapping [Jen96]. PST inherits the parameterization-free
nature of point-based techniques, which merge appearance and geometry of samples in the same entity
(i.e. the surfel) [PZvBG00, ZPKG02, AWD∗04].
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Note that several commercial packages propose 3D brushes for texturing and modeling [Ali06, Rig06,
Pix06] but do not address the problem of applying them on huge objects.

For the sake of simplicity, we will essentially discuss here the construction of one single color texture.
But, as usual with texturing tools, complex textures may be built incrementally by assigning different
textures for different material channels, to get more complex shading (appearance composition with
specular, ambient, emissive and/or diffuse textures, see Figure4.12).

Freeform Shape Deformation In the field of geometric modeling, FFD encompasses a large family
of techniques [SP86, Coq90, MJ96] where intuitive constraints are interactively applied to a shape in
order to deform it. Earlier FFD techniques were based on a 3D space deformation induced by a dummy
object (e.g., lattice, curve, mesh): the user moves the vertices of this dummy object, inducing a smooth
space deformation applied to the embedded shape (see [Bec94] for a survey). Such a dummy object is
no longer required with recent FFD techniques, where the deformation is directly defined on the initial
shape: a part of the surface is frozen, another one is moved, and the shape of the remaining part is
smoothly deformed using some fairness constraints. Most recent methods formulate surface deforma-
tion as a global variational optimization problem [BK04, SLCO∗04, YZX ∗04, BPGK06], although the
same interface can be used with space deformation [BK05]. These techniques offer a precise control of
the deformation area (arbitrary boundaries) but remain less efficient than multiresolution editing tools
[ZSS97, LMH00, ZS00]. A comparative presentation of recent deformation techniques can be found in
[Sor06] and [BS07].

All these techniques are powerful and flexible tools for interactive smooth3D shape editing. However,
while interactivity is the key constraint for the usability of such tools, it cannot be maintained when the
complexity either of the 3D model or of the applied deformation exceeds a given workstation-dependent
threshold (the notion of “large” strongly depends on both the workstation and the FFD method used
since even few hundred thousand samples may be too much in some cases). This is somewhat in conflict
with acquired geometries, that may contain several hundreds millions of samples, capturing accurately
extremely fine-scale geometric features. In this chapter, we solve this scalability problem with our
sampling-reconstructionframework, allowing users to define interactively the shape of arbitrarily large
3D models with most FFD tools, at full resolution, without doing any conversion, nor loosing any
sample and opening the use of advanced deformation metaphors to models ranging from million to
billion samples. Our system also offers the ability to work on models that fit in memory but overcome
the capabilities of a given FFD tool.

Handling Large Objects In spite of the continuous growth of hardware capabilities, even the mere
visualization of large models is a complex challenge. Thus, large object management has been essen-
tially studied in the context of static visualization. We will discuss this particular topic in Section6.1.
Concerning appearance, Christensen et al. [CB04] have showed that the irrandiance can be stored with
cache-coherent out-of-core structures. Their system is not intended for interactive manipulation but
already gives some ideas on how to organize appearance data for largemodels. Note also that the spe-
cific issue of terrain visualization takes benefit from out-of-core techniques (see Losasso et al. [LH04]
for a recent survey). Unfortunately, all these systems have been designed for static objects rendering
only and cannot be used in a dynamic context such as texturing and FFD, inducing the simplification
problem discussed earlier. Indeed, many fine-scale features are missed during this resolution reduction
and when dealing with acquired shapes, the benefit offered by an accurate scanning process is partially
wasted, loosing real-world object details which are acquired but not preserved for editing reasons. Sim-
ilar problems arise when very complex synthetic models are created with specific techniques such as
displacement painting(e.g., ZBrush [Pix06]).
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Figure 4.2: Our Sampling-Editing-Reconstruction framework for interactive color and shape editing
of large objects.

4.2 A Sampling-Reconstruction Framework

Editing the color and the shape of large objects imposes one strong constraint on the software archi-
tecture: as the whole object is potentially too large to fit the in-core memory, the only truly generic
and efficient implementation is to performout-of-core data streaming. Moreover, as interactive shape
editing typically involves semi-random access to the database, specific in-core data structures have to be
designed, that allow efficientdialog with the out-of-core object, in the spirit of recent work by Isenburg
et al. [IL05, ILSS06]. However, in order to avoid painful editing sessions, only a reduced number of
streaming passes should be performed, since each pass may take several minutes for large objects.

The key idea developed in this chapter is that the color and the shape of a dense object can be precisely
edited through the interactive modification (i.e., painting and FFD) of a simplified in-core version. Thus,
we propose the three-foldsampling-editing-reconstructionsystem described on Figure4.2:

1. Sampling:an efficient adaptive out-of-core downsampling is performed on the original large ob-
ject PL during a streaming process, to get a simplified versionPS with a size compatible with
interactive texturing and deformation (see Section4.3).

2. Editing: an interactive texturing and deformation session is then applied onPS to obtain a modified
simplified objectP∗S. During this session, local upsampling may be achieved at any time, when
additional precision is required for a given manipulation.

3. Reconstruction:Finally, another streaming process performs an accurate feature preserving color
and deformation transfer fromP∗S to PL, in order to generate the final edited large objectP∗L (see
Section4.4).

This three-fold approach exhibits several features:

Size-independent interactivity: Interactivity is an essential property of any painting or deformation tool
since the target result is not precisely known a priori and is usually reached by interactively exploring
the space of possible shapes and appearances. Our system offers interactivity, for any size of the initial
object, by performing adaptive downsampling to fit the workstation and software capabilities. Both the
sampling and the reconstruction steps work in streaming and only involve localand linear processing,
which guarantees memory and computation efficiency.

Pure meshless processing: as mentioned earlier, efficient 3D acquisition enables only greedy recon-
struction techniques in practice, and it is well known that such algorithms do not provide strong guaran-
tees about the consistency of the resulting topology. To overcome possiblynon-manifold input data, we
have chosen to simply ignore the underlying topology, and only employ meshless techniques [AGP∗04],
which allows our system to process unorganized point clouds, polygon soups or manifold meshes in
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a similar way, both for data input and data output. This also lead us to develop the volumetricPoint-
Sampled Texturesinstead of regular bi-dimensional ones.

Compatibility with arbitrary painting and FFD tools : as recalled in Section4.1, a rich palette of 3D
editing methods has been proposed during the last twenty years; each of them has specific strengths and
weaknesses and each CG designer has her own preferences among them. To preserve this variety, we
do not impose any particular method, but rather propose a surrounding system allowing the use ofany
interactive texturing and deformation tool with large objects. Our system considers the editing step as a
black box betweenPS andP∗S. It only requires a one-to-one correspondence between the samples of the
simplified modelPS and those of its edited versionP∗S, which is trivially provided by most of tools.

On-demand local refinement: One possible weakness of manipulating downsampled geometry is pre-
cision reduction of some deformation or texturing tools (e.g., the user may wantto precisely outline the
frozen area on the original object, before manipulating the deformation handler). Whenever the user
requests an improved precision of a specific area, our system performsefficient local upsampling of the
in-core model by fetching additional samples from the original geometry andtransferring to them the
deformation defined so far.

Having all these features combined, our system can be considered as thefirst interactive out-of-core
multi-scale modeling and texturing system, compatible with a vast repository of existing 3D editing
tools.

4.3 Sampling by Adaptive Out-Of-Core Simplification

The first step of our system aims at efficiently generating a convincing simplification of the original,
possibly gigantic, model during a streaming pre-process. As mentioned earlier, topology inconsistencies
often present in such objects lead us to work in a meshless context. The large size ofPL requires an
efficient simplification algorithm, and the temporary nature ofPS allows a non-optimal geometry. In this
context,vertex clusteringappears as a good choice. Such methods can run out-of-core [RB93, Lin00,
SW03] and can handle non-manifold surfaces. We recall that the idea is to generate a partitioning of the
space embedding the object, and compute one representative sample for each partition, using various
error metrics to control the hierarchy depth. At the end of the process, the set of representative samples
can be considered as a downsampling of the original object.

The adaptivity and the efficiency of vertex-clustering simplification algorithmsstrongly relies on two
key elements:

• thespace partitioning structure(e.g. 3D grid, BSP, octree)

• theerror metric(e.g. QuadricL2, L2.1, etc).

For instance, Schaefer and Warren [SW03] have used octrees combined with aquadric error func-
tion[GH97] defined over the original geometry. Their algorithm can be used with largeobjects thanks to
a dynamic split-collapse function over the octree structure. However, we have shown in Chapter3 that
the Volume-Surface Tree offers a better adaptive vertex clustering thanoctrees, as it requires less sam-
ples for an equivalent error bound. So we propose to extend the VS-Tree vertex clustering algorithm
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Figure 4.3: Multi-structure Out-of-Core Simplification in Streaming.

presented in Section3.3 in order to make it out-of-core, which can be done in two ways:

• External memory managementmaps partially a structure from hard to main-memory, and syn-
chronizes both versions.

• Streaming computationconsiders only a stream of samples which are maintained in main memory
for a limited time, and processed on the fly.

The former allows more flexible data access but may be slow, while the latter is fast, but limited in its
“view” of the object. As our algorithm need to be used on an interactive tool,we seek for efficiency, and
propose aVS-Tree simplification in Streaming(see Figure4.3). Actually, we can take benefit from the
coherency present in large acquired objects, by usingspatial finalization[ILSS06] for maintaining a low
memory footprint. The basic idea ofspatial finalizationis that the order of sample in a streamed geom-
etry mostly corresponds to its acquisition order, which means that two samples with similar locations in
the stream, have similar positions in the space. This induces that clustering the stream spatially produces
a time-coherent partitioning: the first and last sample of a partition have only asmall difference in their
stream rank. Building on this idea, we propose to generate a set of temporary VS-Trees structured in a
coarse 3D grid and use them to locally downsample the surface. This VS-Tree forest avoids the memory
challenge of one global data structure and behaves particularly well with gigantic objects which exhibit
strongacquisition coherency, as mentioned by Isenburg et al. [ILSS06].

Algorithm 2 Streaming VS-Tree Simplification

Require: PL the out-of-core large sampled surface
Require: r the grid resolution andε the error driving the simplification
Require: PS the empty in-core sampling

Grid G←GridElement[r][r][r]
for each samplep streamed fromPL do
{i, j,k}← coordinate ofp in G
G[i][ j][k].count←G[i][ j][k].count+1

end for
for each samplep streamed fromPL do
{i, j,k}← coordinate ofp in G
G[i][ j][k].samples←G[i][ j][k].samples∪ p
G[i][ j][k].count←G[i][ j][k].count−1
if G[i][ j][k].count= 0 then

PS← PS∪ VSTreeSimplification (G[i][ j][k].samples,ε)
free (G[i][ j][k].samples)

end if
end for
return PS
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Figure 4.4: Left: XYZRGB Dragon (7.2M triangles).Middle: Close-up of the eyeball on the original
geometry.Right: Adaptive downsampling by out-of-core VS-Tree clustering.

Algorithm : Our simplification process, described in Algorithm2, uses two streaming passes:

1. First pass:all the samples ofPL are streamed through a coarse 3D gridG. During this pass, each
cell of G simply counts the number of samples falling in it and keeps the counter for the second
pass (a preliminary pass is required if the bounding box is not known).

2. Second pass:all the samples are streamed again throughG. This time, each read sample is stored
in the intersected cellC, and the counter of this cell is decreased. Once the counter ofC drops to
zero, we know that there are no additional samples belonging toC in the remaining stream. So,
we simplify the set of samples stored inC by using VS-Tree clustering (Section3.3).
The resulting set of representative samples is then concatenated toPS, and the content ofC (i.e.
original set of samples and VS-Tree) is discarded. If required by editing tools, a mesh can be
obtained either by reindexing polygons in the case of polygons soup inputs, or using fast meshing
techniques in the case of point clouds or indexed mesh vertices (see Secton 5).

In practice, this algorithm only requires a small fraction of the original surface to be present at the same
time in the main memory. The observed memory footprint ranges from 10% for millionsized objects to
less than 1% for billion sized ones. When the large objects are provided with both positions and normals
for each sample, we can use a product of theL2 andL2.1 error metrics [CSAD04] to drive the VS-Tree
clustering. Otherwise, a simple density measure is used, and an aggressive flatness test replaces the
volume-surface transition predicate. WhenPL is a point-cloud, the normals ofPS are estimated using a
PCA on the local neighborhood [HDD∗92]. The resolution of the coarse gridG is user-defined, ranging
in our tests from 163 to 1283 according to the size ofPL. Usually, a large number of cells speeds up the
simplification process, while a small number improves the adaptivity ofPS (see Section4.6).

Note also that for future local refinement that may be required during the interactive editing session (see
Section4.5), we keep, for each cellC, two values about this pre-processing:

• the starting and ending indices of the samples that belong toC in the input stream; this will enable
partial streaming for local refinement of the cells intersecting the area marked to be refined;

• the VS-Tree structure; this avoids error computation and recursive splitfor levels already tested
during the initial simplification. In order to keep a negligible memory footprint, when the tree is
too deep, it is not cached and will be rebuilt from scratch if upscale is required.

Figure4.4 illustrates the downsampling quality fromPL to PS obtained with our approach. Obviously,
this algorithm inherits the lower-dimensional structure of the VS-Tree and significantly reduces the
number of final representative samples for a given error bound, thusalso reducing the whole processing
time. Compared to octrees, we have observed a gain of 15% to 25% both in time and memory, which
is a significant benefit in the context of gigantic objects. The divide-and-conquer structure offered by
spatial finalizationmakes this algorithm particularly well adapted to multi-core CPUs, which become
more present on current workstations. Finally, when the Spatial Finalization heuristic fails, it can be
replaced by one additional pass to split the input model into a set of files clustered on a per-cell basis.
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4.4 Out-of-Core Attribute Reconstruction

The second out-of-core streaming process of our system takes place after the interactive editing ses-
sion, where the initial point-based simplified geometryPS has been transformed into its textured and
deformed versionP∗S. The goal of this section, is to explain how to efficiently and accurately transfer
these appearance and shape modifications to the original gigantic objectPL, to get the final edited object
P∗L . For each sample with positionp∈PL, we have to extract two functions from{PS,P∗S}: acolorization
function that will define its colorc and adeformationfunction that produced a new positionp∗. As this
attribute reconstruction is performed in streaming, we have developed a local solution, that only requires
the analysis of a small and compact neighborhood. Since we use a point-based representation, we do
not have any explicit neighborhood information. Nevertheless, a conservative set of neighbors can be
collected with thek nearest neighbors[PGK02]:

Nk(p) = {q0, ...,qk−1} with qi ∈ PS

We also consider the associated colorci and deformed positionq∗i , both defined inP∗S during the inter-
active editing session.

This neighborhood must be large enough to offer a correct filtering, but also small enough to remain
accurate in areas of large curvature. In practice, we usek∈ [10,30] according to the density ofPS. Note
that Nk(p) can be efficiently computed using a static kd-tree onPS, generated once for all just before
streamingPL.

Let f A
PS

be the familypoint-sampled functionsdefined over the point setPS and reconstructing the at-
tributeA: fC

PS
(p) gives the corresponding color attribute to stream andf D

PS
(p) states the deformed posi-

tion.

4.4.1 Streaming Colorization

Once the point set has been textured, we propose to consider itself as apoint-sampled 3D textureor PST,
to color its high resolution version in streaming. Thus, the question is: “How to extrapolate the set of
samples in order to use it at a higher definition?”. Actually, this problem frequently arises in the field of
surface reconstruction. In particular,variational implicit surfacesmethods are ubiquitously recognized
as quality approximation methods for a set of samples with attributes [TO02]. Usually, an iso-surface
is finally extracted after fitting a functionf : 3→ to the set of samples. In our case, the problem is
simpler as we do not need iso-surface extraction, and just keep the function defining the implicit surface
as a 3D texture.

Several function basis are available for filling the space with point-sampled attributes. Radial Basis
Functionsor Moving Least Squares[AGP∗04] provide smooth 3D fields and can be evaluated locally.
Unfortunately, in our case, the final evaluation of the function may potentiallybe done several hundred
million times for either coloring the original file or directly shading pixels during ray tracing for instance.
Thus, we rather adopt a simpler and more efficient approach that takes advantage of a very important
feature of our PST: contrary to implicit surfaces used for geometric reconstruction, we do not need a
signed value. In this case, a variation of the seminal idea of Turk for pattern creation [Tur91] can be
adapted to our more general problem.

We define the PSTfC
PS

(p) as anPartition of Unityfiltering process ofPS:

fC
PS

(p) =
∑k

i=1 ω(p,qi) ci

∑k
i=1 ω(p,qi)
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Note that the size of thek-neighborhood influences the support radius of the reconstruction: alarge value
of k will smooth out the so-defined attribute function and can be used as an intuitive globalfiltering
parameter for users (see Figure4.5). In our implementation,k is user-defined. The functionω(p,qi)
is a decayfunction that weights the influence of neighbors samples attributes. It is well-known that a
Gaussian kernel is a good choice forω . Nevertheless, in the context of large object texturing, selecting
a less computationally intensive function is often interesting. We choose the standard uniform cubic
Hermite polynomial, usually recognized as a good and fast approximation of Gaussian-based kernels:

∀t ∈ [0,1] h(t) = 1−3t2 +2t3

The kernel functionω(p,qi) uses the previous polynomial simply adapted toNk(p), and is hence defined
as:

ω(p,qi) := h

(

|p−qi |

argmaxj(|p−q j |)

)

Note that thisHermitian Partition of Unitykernel function is extremely inexpensive, but may filter out
some high frequency details present inPS. When this is an issue,singular weight kernels(i.e., Dirac
behavior near zero) can be used [ABCO∗01, GG07]. Alternative feature-preserving kernels may also be
chosen among the huge set of kernels developed over the years, in the image processing community.

(a) (b) k = 5 (c) k = 16

Figure 4.5: Point-sampled texture filtering. (a) A simple point-sampled texture. (b,c) Color texturing on
a human face. The k-neighborhood used for space-filling intuitively drivesthesmoothnessof the PST.

4.4.2 Streaming Deformation

While colorization can be cast as a filtering process, deformation is a tedioustask: considering thatPL

has been scanned, we want to keep all as much as possible its original geometric features, avoiding the
use of a simple (low-pass) filtering process.

Point Sampled Deformation Function: By manipulating one or several deformation tools during the
interactive editing session, the user implicitly defines a continuous space deformation functionf D

PS
. But,

as the editing step is considered as a black box by our system, the actual function f D
PS

is unknown.
However, the simplified geometryPS and its deformed versionP∗S form a discrete displacement field
{pi , p∗i } which can be interpreted as a point sampling of the continuous functionf D

PS
(see Figure4.6).

Therefore, our goal is to reconstruct the continuous deformation function f D
PS

from the discrete field
{pi , p∗i }. Here, the difference with the colorization of Section4.4.1is that the original geometric feature
carried bypi must me preserved under deformation. Since smooth function reconstruction methods are
slow and too global, which make them prohibited in the context of large objects,we propose a purely
local method, based on anormal displacementrepresentation combined with a new efficient point-based
coordinate system.
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Figure 4.6: Left: Initial in-core geometry obtained by out-of-core VS-Tree clustering.Middle: De-
formed in-core geometry after an interactive FFD session.Right: Discrete displacement field generated
by linking the initial (green extremum) and the final (red extremum) positionof each sample point. This
displacement field performs a sampling of the continuous space deformation function at the scale at
which it has been edited.

Average Plane and Normal Displacement:Reconstruction of a continuous function from point sam-
ples always involves some assumptions about the smoothness of the initial function between the samples.
In our case, the simplified point-based geometryPS has been computed fromPL by VS-Tree clustering
which includes several geometric error bounds to guarantee a reasonable smoothness ofPL between
neighboring samples ofPS. In other words,PS can be considered as a low-pass filtered version encoding
large-scale geometric components ofPL, while the differencePL-PS encodes fine-scale geometric details.
Since the interactive editing tools provideP∗S, we can smoothly reconstruct the deformation function cor-
responding to the low frequency part ofPL: we use again an aggressive interpolation based on Hermitian
filtering. The remaining part is the preservation of the features carried byPL-PS, particularly when rota-
tion is undergone. To relax this constraint, we propose to encode this detailsin the normal direction of
some local average planeH [LSLCO05, KS06]. So each samplep∈ PL can be expressed as:

p = p′+d ·n

wheren is the normal vector ofH, p′ the orthogonal projection ofp onH andd the signed distance from
p to H (see Figure4.7). Note that efficient computation of the average planeH is vital, as it has to be
done for each samplep∈ PL. Moreover, the variation ofH from one sample to its neighbor should be
smooth asp′ is not supposed to include geometric high frequencies.

Similarly to colorization, we propose to computeH using a localpartition of unityfilter weighted by an
Hermitian kernel:

n =
∑k

i=1 ω(p,qi) ni

∑k
i=1 ω(p,qi)

The same kernel is also used to compute the center ofH. The low-pass filtering can be intuitively
controlled by the user, by increasing or decreasing the geometric extent of the kernel.
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Figure 4.7: Projected barycentric coordinates.

Projected barycentric coordinates:Similarly to p∈ PL, any pointp∗ ∈ P∗L can also be expressed as a
normal displacement relative to an average planeH∗:

p∗ = p′∗+d∗ ·n∗ .

Reading this equation backwards provides a simple algorithm to transfer deformation fromp to p∗:

1. computeH from local neighborhood ofp in PS

2. computep′ andd from p according toH

3. reformulatep′ intrinsically in PS

4. reproducep′∗ simply by switching fromPS to P∗S

5. computeH∗ from local neighborhood ofp′∗ in P∗S

6. computed∗ from d, accounting for a possible scale factor

7. finally, computep∗ = p′∗+d∗ ·n∗

Differential representations [SLCO∗04, LSLCO05] provide an elegant solution to obtain rotation-invariant
intrinsic coordinates. Kraevoy and Sheffer [KS06] introduce thepyramidal coordinates, wherep′ is re-
placed by itsmean value coordinates[Flo03] in its 1-ring-neighborhood. However, these solutions
require explicit topology and remain computationally expensive, which makesthem prohibitive in our
context.

We propose an alternative intrinsic encoding which can be considered asan approximation tuned for
efficiency, more suitable in the context of gigantic objects. Let us considera 3-neighborhoodT(p) =
{qi ,q j ,qk} for p and its projectionT ′(p) = {q′i ,q

′
j ,q
′
k} onH. We can use the projected barycentric coor-

dinatesB(p) = {bi ,b j ,bk} of p′ in the triangleT ′(p) as intrinsic coordinates ofp onH (see Figure4.7).
B(p) can be directly computed fromp using the fast evaluation (49 ops) proposed by Heidrich [Hei05].
So the switch fromp′ to p′∗ (step 4 of the algorithm) can simply be expressed as:

p′∗ = T ′∗(p) ·B′(p)
⊤

.

We now have to face a topology problem: how to correctly selectT(p). For symmetry and robustness
reasons,T(p) should be as equilateral as possible, and to ensure fidelity of deformation,it should be
as small as possible. To efficiently fit these constraints, we need to select neighbors according to their
distribution [LP03, GBP05], so we introduce the notion ofangular voting: the first neighborqi ∈ Nk(p)
is selected as the nearest sample top. This neighbor will discard a conical spaceCi starting fromp,
centered in the direction ofqi and with a solid angle 2π/3. The second neighborq j is selected in the
subset ofNk(p) contained inR3\Ci . This neighbor discards another conical subspaceCj . Finally, qk is
selected in the subset ofNk(p) contained inR3\(Ci ∪Cj). If a test fails (for instance, an empty set in the
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remaining space, which is frequent on surface boundaries) the angle isdivided by two and the selection
process is restarted. As a result, this algorithm searches for the smallest triangle centered onp (i.e.,
capturing accurately the deformation) with as large as possible edge angles(i.e., increased robustness
avoiding numerical degeneration in projected barycentric coordinates).

The last element that we need to define is the signed distanced∗ (step 6 of the algorithm). Thanks to the
intrinsic coordinates, the local rotation undergone by the geometric details during the deformation has
been accounted for, but an eventual scaling has not. So we propose tosimply scale the distanced by the
size ratio of the surrounding triangles, before and after deformation:

d∗ = d · r∗/r ,

wherer (resp.r∗) is the circumcircle radius ofT(p) (resp.T∗(p)). By putting all the elements together,
we obtain the final expression for our reconstructed deformation function f D

PS
:

∀p∈ PL p∗ = f D
PS

(p) = T ′∗(p) ·B′(p)
⊤

+d∗ ·n∗ .

Figures4.1, 4.8 and4.14present various examples of the accurate deformation of small features with
our fast deformation function.

Streaming Deformation Reconstruction:Once the kd-tree required for neighborhood queries has been
set up, the purely local behavior of our colorization and deformation functions enable streaming, as each
samplep is processed individually: the position of samples ofPL are read on the input and new position
and color are written on the output. Moreover, these per-sample operations can fully exploit multicore
CPUs. In order to optimize the cache usage when collecting the local set of neighbor candidates inPS,
spatially coherent input buffers can be built by using the structure induced byG again (see Section4.3).

Figure 4.8: Left: Julius Caesar (800k triangles) interactively deformed using a 30k downsampling.
Right: Bumpy Sphere (1.4M triangles) interactively deformed using a 25k downsampling. Note that
both versions exhibits small scale features which are strongly blurred on the simplified version during the
interactive session, but are adequately reintroduced by the deformation reconstruction on the original
geometry.
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4.5 Interactive Out-Of-Core Multi-Scale Editing

Figure 4.9: Out-of-core Multi-Scale texturing.Left: After having roughly painted on it, the user selects
an area (in blue) of the low-res sampled object.Right: A local refinement is performed in streaming,
by up-sampling the selected area from the original large model. Newly inserted samples are textured
according the current PST defined by the in-core point set; the user can now paint smaller features.

One weakness of manipulating downsampled geometry is the possible lack of precision for a particular
color or deformation feature. To avoid this possible issue, our system is able to perform interactive
upsampling, whenever the user requests improved precision on a specificarea for finer editing. This
progressiveinteraction works as follows:

1. The user selects the area which require higher sampling ratio and a set smaller error bound than
the initial sampling;

2. Sub-parts of the original objects, corresponding to the index range of each cell of the gridG (see
Section4.3) intersecting the selection, are streamed.

3. Upscaling is performed by clustering the streams in the cached VS-Trees, set with the new error
bound.

4. Each additional representative samplep is then concatenated toPS, and its corresponding color
c and deformed positionp∗ — computed by applying the colorization and deformation functions
defined so far — is concatenated toP∗S.

When using this procedure, it becomes quite natural to start with a very coarse in-core geometryPS

to define large scale deformation and rough color texture, and then refinesome regions of interest and
define more accurate deformations and finer color features. This principle can be used recursively until
the desired precision is reached, which reproduces a very similar workflow as the one provided by sub-
division surfaces. Figure4.9 illustrate the application of this principle for color editing and Figure4.10
gives an example of multi-scale deformation. This figure also shows anotherproperty of our system:
since it is not method-dependent, several tools can be mixed; here, we first used the global deformation
tool by Pauly et al. [PKKG03], and then, we switched to aninflatingdisplacement tool.
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Figure 4.10: Out-of-core multi-scale FFD on the Hand model (1.5M tri.).Left: Initial coarse sampling
for interactive editing (50k samples).Middle Top: FFD performed at a large scale.Middle Bottom:
Local upsampling of the in-core geometry (green area) with our system: the additional samples fetched
from original geometry are moved according to the deformation performedso far, and FFD is enabled
at a finer scale (125k samples), with the same or another tool.Right: Final multi-scale deformation.

4.6 Results

Implementation: We have implemented our system on a standard workstation (P4 3.4GHz, 1.5GB
RAM, 36GB SCSI and 200GB SATA HD) running GNU Linux 2.6, using C++, OpenGL, POSIX
threads, the GNU Scientific Library and Qt.

Performances:Table4.1presents the timings of both streaming processes (adaptive simplification and
attribute reconstruction) for various models1. In all cases, no memory swapping has been observed,
thanks to the spatial finalization. Since deformation is more expensive than colorization, we report only
the deformation timing. Colorizations exhibit in general two time faster post-processing.

The pre-processing streaming is mostly bottlenecked by the physical capabilities of the I/O device.
Note that, to speed-up processing of very large objects, only vertices are read and streamed: since
ordering is preserved in the stream, the final deformed point set remains compatible with the original
topology (provided by triangle indices) and point-based editing can be used safely [ZPKG02, PKKG03].
Alternatively, triangles can also be streamed, if mesh-based FFD are employed.

The final streaming is more computationally intensive. To exploit multi-core architectures, now widely
available, multiple threads are used to process the I/O buffer. Note also thatthe second pass of the pre-
process benefits from multithreading for largest objects, using a specificthread for each active cell ofG.
In practice, this means that the thread scheduler has to deal with 20 to 200 simultaneous threads.

1The scalability of our system has been intensively tested on the Digital Michelangelo gigantic models. As there are strong
legal restrictions on shape editing for these models, we only present the timings, but not the resulting pictures.
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Figure 4.11: Left: Evolution of memory footprint during out-of-core simplification for various mod-
els (error bounds have been set to obtain about 200k samples).Right: Influence of the coarse grid
resolution on the footprint for the David model (56M triangles).

The k-neighborhood queries, intensively used during the output streaming, are implemented onto a static
kd-tree, built once, just before streamingPL. The typical size ofPS ranges from 20k (after out-of-core
simplification) to 500k (worst case observed after all the local refinementsinvolved in a whole editing
session). This induces a very fast generation of such a tree (less thanone second in all our tests). The
computation workload is essentially concentrated in this attribute reconstruction (see Table4.1) and
more particularly the deformation, which emphasizes the use of our aggressive but efficientprojected
barycentric coordinates.

The main part of the memory footprint during the interactive session is reduced toPS plus P∗S. Note
that makingPS itself out-of-core is actually fairly easy as discussed in the next section. Figure 4.11
measures the evolution of the memory footprint involved throughout the simplification process. The
peak memory usage is reached during the second pass of the simplification preprocess. Fortunately, tt
clearly appears that this footprint is largely independent of the model size(both Lucy and David present
a memory peak about 50MB) and is rather linked to the geometric complexity: forinstance, high surface
genus may require deeper VS-Tree samplers. The influence of the grid resolution is more complex. A
finer resolution forG reduces the global memory footprint, but as there are more simultaneously active
VS-trees, it involves additional over-clustering in areas of low sample density. In practice, we rather

Models
Original Size R/W data Sampling Pre-process Post-

vertices triangles 1st pass 2nd pass process

Julius Caesar 387K 774K 8.8 MB 30K pts 0.35 s 0.43 s 1.70 s
Bumpy Sphere 701K 1.4M 16 MB 25K pts 0.81 s 0.98 s 1.32 s

Hand 773K 1.54M 17.6 MB 50K pts 0.81 s 1.11 s 1.41 s
XYZRGB Dragon 3.6M 7.2M 82.3 MB 160K pts 2.25 s 2.98 s 5.06 s

Raptor 4M 8M 91.5 MB 146K pts 2.07 s 3.07 s 5.94 s
Lucy 14M 28M 320.4 MB 202K pts 7.21 s 10.5 s 37.9 s
David 28M 56M 640.8 MB 209K pts 13.3 s 30.2 s 120 s

St Matthew 186M 360M 2.07 GB 189K pts 60.4 s 122 s 338 s
Double Atlas 500M 1G 5.59 GB 270K pts 143 s 775 s 1121 s

Table 4.1: Pre-process (adaptive simplification) and post-process (deformation transfer) performances
for various models.
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advocate a medium resolution forG, around 643 in our experiments, which nicely balances sampling
quality and reasonable memory consumption.

Many examples provided in the paper have been created using the point-based editing tool proposed by
Zwicker et al. [ZPKG02] and Pauly et al. [PKKG03] in the PointShop 3Denvironment. We have also
experimented our system withBlenderto provide interactive mesh-based out-of-core editing of gigantic
objects (e.g., displacement painting).

Complexity Let l be the size ofPL andm the size ofPS. The theoretical complexity of the post-streaming
is O((l +m) logm), due to kD-Tree construction and k-neighbors queries. In practice, we havem<< l
and the cache coherent access to samples in the stream exhibit an almost linear behavior for the range
of object size we study. The theoretical complexity of the pre-streaming cannot be worst than the one
of a quad-tree clustering which isO(l log4 l): this worst case corresponds to an height-filed directly
detected by theκ predicate. Another “bad” case would be an an objectPL composed of samples with
random location in the volume (no surface coherency), and a spatial finalization grid resolution of one.
In this case, the complexiy is bounded byO(l log8 l) (no surface detection). The practical complexity
is hard to estimate in general, as it is geometry-dependent. Nevertheless, wecan consider a complexity
of O(l log4 l∗), with l∗ << l in the case of large and dense sampled objects: a geometric error function
is used for driving the tree clustering, and it is clear that, in the case of smooth, “sufficiently” sampled
surfaces, an higher sampling ratio does not involve a deeper tree (i.e. a single leaf represents a whole
piece of surface, as soon as it is sufficiently sampled).

Examples: Figure4.1shows a complete out-of-core texturing and FFD session with the Raptor model.
Figure4.12 shows a combination of several color PST applied on various channel (diffuse, specular,
ambient, etc) of the appearance of the Vase Lion model and Figure4.8 illustrates the deformation ob-
tained with mid-sized objects. Multi-scale texturing and modeling are illustrated on Figures4.9 and
4.10. Finally, the absolute scalability of our system, for either shape or appearance modeling of very
large models, is presented on Figures4.13and4.14. Note that in all cases, interactivity has been pre-
served, while on the same workstation, major commercial modeling packages are no longer interactive
above one million triangles, and just fail when trying to load objects around 10millions.

Figure 4.12: Point-sampled texture for high-quality rendering.Top left: Original mesh (6.5M poly-
gons).Bottom left: Multi-channel interactive out-of-core texturing with our system (50k point samples).
Right: Offline rendering of the original mesh (6.5M textured polygons) with our point-sampled textures
(diffuse and specular component).
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(a) Michelangelo’s David (56M polygons) - 200k samples for interactive texturing

(b) Michelangelo’s Atlas (500M polygons) - 278k samples for interactive texturing

Figure 4.13: Interactive texturing of very large models.Left: Original large mesh.Middle: Interactive
multi-scale texturing with our system.Right: Application of the PST to the original model and real-time
out-of-core rendering. Multi-scale editing is used, and textures are composed from photos and stones
patterns.
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Figure 4.14: Interactive freeform deformation of very large models.Top: XYZRGB Dragon (7M
triangles) - 160k samples for interactive deformation.Bottom: Lucy (28M polygons) - 300k samples
for interactive deformation. Interaction snapshots are displayed in grey, red and blue. Each full session
with adaptive simplification, interactive editing and deformation transfer took lessthan 5 minutes.
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4.7 Discussion

Comparison To our knowledge, this is the first system that permits interactive multi-scale feature-
preserving shape texturing and editing of gigantic objects, as well as opening the use of costly editing
method to medium size objects. However, the three pieces of system can be easily compared to existing
methods.

First, we have propose a new out-of-core simplification algorithm, which canbe compared to the octree
method of Schaefer et al. [SW03]. In term of efficiency, our out-of-core VS-Tree simplification reaches
the user-defined error threshold quicker than octrees, generating less samples for the same error. Con-
cerning memory, the spatial finalization allows to discard most of the structure overhead along the time,
which reduces the memory footprint, while the octree method maintains a single complex octree during
all the simplification. This makes also our algorithm easily portable on PC cluster and multi-core/CPU
workstations.

Second, ourpoint-sampled texturesare sampled volumetric textures, and can thus be compared tooctree
textures. Basically, the main advantage of PST over octree textures is to allow the userto interactively
refine directly from the original surface, without being constrained to thegrid topology induced by
octrees (See Figure4.13). Simple point sets allow greater flexibility and very quick variation in the
density of sampling (which are very frequent when the user wants to texture a given area more ac-
curately [gDGPR02]) where a very deep octree would have been necessary. Last but not least, octree
textures cannot efficiently represent fine color features which are not axis-aligned. However, the uniform
structure of octree textures allows efficient on-GPU implementations [LHN05, LKS∗06], which is more
difficult for PST. Of course, in such a situation, our PST can be easily resampled in an octree texture for
real-time shading. But, we rather focus on very large objects, for which the color is usually encoded in
the data-structure, on a per-sample basis, for efficient rendering [RL00, DVS03, GM05].

Third, a variation of our system could be to simplify a model with an arbitrary out-of-core method,
edit it, and stream the original samples through a volumetric variational colorization and deformation
field constructed on the simplified model, such as the one based on radial basis functions by Botsch et
al. [BK05]. Compared to such an approach, our system offers at least two benefits. First, the spatial
finalization structure built during the sampling allows to efficiently and locally upsample the model
during the interactive session. Second, our color and deformation reconstructions are fast, avoiding any
global variational minimization (for which, for instance, local editing with displacement painting may
require too many constraints), while providing visually accurate and plausibleresults: in the context
of large objects, this speed comes as a key property in a time-scheduled professional context. Lastly,
one could consider making a specific or texturing or FFD method size-insensitive . This is possible,
for instance, with volumetric deformation fields. However, we believe that large objects should not
impose a particular modeling method. Our system is generic, which means that not only arbitrary editing
techniques can be used for manipulating the shape and the appearance ofthe large object, but also that
several can bemixed within thesamesession: for instance, by only considering the couple{PS,P∗S}, we
allow the user to start her work by a globally smooth deformation, then to continue with bone skinning
for articulated parts, before ending with displacement painting such as in recent popular 3D tools (e.g.,
ZBrush). This flexibility, and the possibility to upsample on-demand specific areas is the strength of our
system.

Limitations During the development of this system, we have almost systematically traded accuracy
for efficiency. Consequently, at least three limitations can be exhibited. First, our streaming deforma-
tion may cause local self-intersection on highly deformed areas, which is anissue with many existing
multi-scale editing techniques. Second, the quality of the initial downsampling strongly influences the

57



smoothness of the final color and deformation. This is one reason for which we have included on-demand
local refinement, as it is difficult for the user to predict the number of samples ultimately required during
the interactive session. Note also that all geometric prediction (e.g. curvature) can fail why colorization,
since high frequency color variations may not be correlated to the geometry. Finally, the major drawback
of our color editing method is also its strength: this is aparameterization freetool for texturing large
objects, which means flexibility and efficiency as demonstrated throughout this chapter, but which also
implies that its “3D painting metaphor” is slightly different from usual 2D paintingsoftware [Ado06]
and requires for CG designers and artists to change their habits. This is also the reason why 3D paint-
ing is still an active research field: retrieving in 3D the accuracy of popular 2D painting packagesis a
challenge that would also induce new interaction metaphors.

Summary We have proposed asize-insensitive frameworkto interactively apply texturing and FFD
techniques to large objects. By size-insensitive, we mean that the in-core memory footprint does not
depend on the size of the original object, but rather on the complexity of the user-requested modification.

This system features 3 new algorithms:

• an adaptive out-of-core simplification algorithm based onVS-TreesandSpatial Finalization,

• a smooth colorization method providing a fast color transfer between model at different scales
without parameterization,

• a feature preserving deformation, the projected barycentric coordinates, able to transfer a defor-
mation from a simplified model to its original version.

One main advantage of our system is its ability to directly work full resolution meshes and point clouds,
without requiring any (possibly long and feature-missing) conversion to other representations (e.g., sub-
division surfaces). The choice of meshless techniques for both out-of-core streaming processes not only
ensures efficiency but also provides flexibility, as they can be seamlesslyused on point sampled data,
standard manifold meshes, as well as polygon soups (topologically inconsistent shapes made of multiple
disjoint surfaces, that are quite frequent in CG applications for the entertainment industry).

Perspectives Defining a totally scalable system means that the simplified models themselves become
out-of-core. Even though we have not encountered the case, one could imagine that when applying
numerous local refinements,PS andP∗S would ultimately be too large to fit the in-core memory. Thus, we
are working on a system that reuses the spatial finalization to implement a kind of Least-Recently-Used
caching system between the in-core and the out-of-core memory. This mechanism is compliant with the
usual workflow for interactive shape editing: first apply global texturing and deformation on a coarse
in-core model, then recursively refine the model to apply more and more localized modifications, that
does not involve the whole object. Actually, we have already a satisfactorysolution for colorization, as
described in Annex10.

Finally, our system inherits an important limitation of FFD tools: the global topology of the object
cannot be edited. Removing this issue is one of our future research directions: an important step in this
direction has been made in [JZH07].
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(a) Laser Range Scan of the Chateau

(b) Volume-Surface Clustering

(c) Interactive-Out-Of-Core Texturing

Figure 4.15: Application to large scale environnement editing. (a) 7 millions point-samples coming
from the registration of 6 scans of a castle. Each scan has been obtained using a time-of-flight scanner,
suitable for distant and large scale objects. (b) VS-Tree clustering: man-made objects quickly appear
during the clustering. (c) Interactive out-of-core texturing: using several photos and some texture pat-
terns of stone, wood and grass, the environnement model is enhanced with color-information for each
point in a full size-independent stream process.
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Part II

Rendering of Acquired Geometry
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Chapter 5

Point-Based Surface Rendering with
Surfel Strips

Figure 5.1: The Asian Dragon point-based surface can be rendered with surfel stripping at its full
definition of 3.6M points, with antialiased 2D texturing and cube mapping, at 31frames per second at a
display resolution of 1600x1200 pixels.

This chapter addresses the second problem often present in the acquisition pipeline: the visualization of
Point-based Surfaces (PBS). Such surfaces are directly obtained after point-based processing, such as
noise filtering, and requirehole-filling rendering methods due to their possibly high sampling rate. Prior
work in PBS visualization has essentially focused on the design of a new kindof rendering algorithms,
calledpoint-based rendering, which peform an image-space surface reconstruction by consideringthe
surfel as the unique rendering primitive. This class of algorithm has beenextensively studied over the last
few years, and various GPU implementations offer reasonnable results. Unfortunately, such techniques
induce two drawbacks: first, the performances are not competitive with polygonal rendering, due to the
native support of polygons by graphics devices for polygons; and second, since no object-space entities
exist beyond the points, a large part of the huge repository of polygonal rendering techniques is not
compatible with point-based rendering.

In this chapter, we propose a new hardware-friendly approach to the problem of visualization of PBS: a
polygonalapproach. The goal of our work is to efficiently merge 3D models represented as point clouds
in state-of-the-art high quality polygonal 3D renderers, providing an additional layer between point-
based modeling and polygonal rendering.We claim that a polygonal interface can be generated and
maintained efficiently between the point-based surface and the hardware.More precisely, we present
a new technique for fast local meshing and multiresolution rendering of PBScalled Surfel Strippingn
whereSurfel Stripsare topological entities — composed of small triangle strips that interpolate the PBS
— designed for efficient generation and GPU rendering.

Basically, the idea is to generate polygons upon the PBS as efficiently as possible to feed the GPU,
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producing hole-free rendering. There are two major contributions whichbuild upon the general ideas of
fast hierarchical partitioning and lower dimensional geometry processingdefended in this thesis.

First, at loading time, we equip the PBS with a weak topology targeting visualizationonly. This is done
by first generating a set of overlapping small triangular meshes that interpolate the PBS using alower
dimensional Delaunay triangulation. We then remove redundant triangles and finally strip the small
triangular meshes by using a cache-friendly stripping method. All these operations are performed by
using an octree data structure.

Second, we reuse this data structure for providing a multiresolution interactive visualization of the surfel
strips at rendering time. SinceSurfel Strippingis local and very fast, it can be used in a lot of situations
as an object-space alternative to the image-space surface splatting and thus be considered half way be-
tween point-based rendering and surface reconstruction. RenderingSurfel Strips is very efficient since it
neither requires multi-pass rendering nor time-consuming vertex/fragment shaders compared to surface
splatting. We show also how to exploit the locality of the surfel strips for maintaining compatibility with
point-based modeling tools, such as local deformations of surfaces. We finally give some examples of
well known visual enrichments developed for polygons, directly applied toPBS thanks to surfel strips.

5.1 Context: Visualization of Point-based Surfaces

The interest in PBS visualization has grown significantly in recent years in the computer graphics com-
munity. Several authors have already explained the reasons of this popularity [AGP∗04], e.g. the
widespread use of 3D acquisition devices that directly generate PBS, or the riddance of connectivity
management that greatly simplifies many algorithms and/or data structures.

The basic idea to use points as rendering primitives can be attributed to the seminal paper of Levoy and
Whitted [LW85]. However, rendering a sufficiently large amount of points at interactive framerates only
became feasible when an efficient point-based rendering system was presented by Grossman and Dally
[GD98]. Their work initiated a highly growing interest towards point-based graphics, and we refer the
reader to [AGP∗04, KB04] for a complete survey of point-based rendering. It is now widely admitted
that when including additional information at each point [KV03], such as normal vectors, colors or
material properties, and using specific rendering techniques (mainly to efficiently fill the holes that may
appear between the points), PBS can become as flexible as the ubiquitous polygonal surfaces. Following
Pfister et al. [PZvBG00], such enriched points are commonly calledsurfels.

A large variety of rendering techniques for PBS have been presented inthe literature and all have to
solve the central problem of hole filling when points are projected on the screen. They can basically be
classified in three families (see also Figure5.2):

• Surface Splattingwhich runs in the images space by blending ellipsoids centered on points;

• Raytracing which cast rays through pixels, intersecting a continuous approximation ofthe PBS;

• Patchingwhich perform a local object-space reconstruction, enabling direct rasterization.

63



Figure 5.2: Point-based rendering classification.

Surface Splatting Most of point-based rendering methods are based onsplatting, where a reconstruc-
tion kernel (e.g. gaussian convolution) is centered at each projected point to fill the neighboring pixels.
The accumulation of the contributions from all the kernels can be considered as an image-space surface
reconstruction that is generated on the fly. This approach has a lot of advantages, such as filtering and
antialiasing, and thus enables high-quality rendering. Unfortunately splatting also involves a totally dif-
ferent graphics pipeline, compared to the one used in current 3D graphics hardware. As a consequence,
even advanced hardware implementations of splatting techniques [BSK05, GBP06] have to resort to
expensive combinations of vertex shaders, fragment shaders and multi-pass rendering to finally obtain
a surface that could have been rendered directly if its equivalent polygonal expression were available.
Moreover, the intrinsec image-space reconstruction makes harder the scalability of such techniques to
high-definition display.

Surface Splatting methods can be divided in two groups:quality-orientedmethods andefficiency-
orientedmethods.

One of the early papers in the former group is undoubtedly the work by Pfister et al. [PZvBG00], who
first introduce the idea of surfel and local screen filling around screen-projected points (i.e. “splatting”).
This work has then been extended by Zwicker et al. [ZPvBG01, ZRB∗04], with theEWA Surface Splat-
ting, one of the most popular point-based rendering techniques, which is based on the screen space for-
mulation of the Elliptical Weighted Average (EWA) filter, initially proposed by Heckbert for antialiased
texture mapping on polygonal meshes [Hec86b]. EWA splatting enables high-quality anisotropic fil-
tering and EWA splats can be implemented on programmable GPUs [RPZ02, BK03, GP03, BSK04,
BSK05] and even directly as special hardware devices [WHA∗07]. However, surface splatting suffers
from limitations due its image-space accumulation principle. One example of such weakness is the case
of transparent surface rendering requires complex ordering in the drawing calls [YZ06, GBP06]. Sim-
ilarly, depth-of-field [KZB03] and deffered shading [GBP04, BSK05] has to be redesigned for fitting
surface splatting.

Second, there are performance-oriented approaches, which are mainly based on specific data structures
for efficient rendering of very large point sets, such as 3D scannedobjects. The early member of this
family is the QSplat technique developed by Rusinkiewicz et al. [RL00] as part of the Digital Michelan-
gelo Project [LPC∗00]. This kind of technique has also been used in hybrid point-polygon rendering
systems [DVS03, CN01, CAZ01, DH02, CH02, GM05]. Actually, these algorithms do not propose a
solution to the so-called hole filling problem: their basic principle is rather to use apoint-based repre-
sentation to provide an efficient level-of-detail rendering for complex polygonal meshes, than to provide
a true rendering solution for point-based surfaces.
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Ray Tracing Ray tracing of PBS induces the non trivial question of intersecting point cloud with a
line. Obviously, the probability of intersecting a line with a point in a 3D space is infinitely small. The
simplest solution is to replace rays with cones, shafts or cylinders: the surface intersection point would
thus be obtained by considering the closest point to the ray origin in the cone/cylinder/shaft. Unfortu-
nately, this solution produces view-dependent intersections, leading to poor image quality [SJ00].

To overcome this problem, most of PBS ray tracing algorithms locally approximatethe point set with a
continuous surface and consider the intersection with this substituted surface [AA03, Wal05]. Usually,
MLS projection is a good choice for such an approximation [ABCO∗01]. The polynomials basis used
for evaluating the surface can be precomputed and cached in a kD-Tree, then used for maintaining a
logarithmic intersection cost. Alternatively to moving least squares, weighted least square can be used
for deep enough trees (i.e., dense enough PBS). In the case of animatedPBS, the kD-Tree is replaced by
a bounding sphere hierarchy [AKP∗05], allowing a progressive update of pre-cached data.

Patching The algorithm proposed in this chapter can be considered as apatchingprocess. There
is very little work in this field, but the basic idea of generating a set of object-space patches “onto”
the point clouds has several advantages in term of fast rendering. Combined with their introduction
of Point Set Surfacesbased on the MLS approximation, Alexa et al. [ABCO∗01] implemented a first
point-based rendering technique quite related to ours, rendering a PBS as a collection of overlapping
two-dimensional parametric patches that locally approximate the surface. For every patch, a quad mesh
is generated by sampling the parametric domain of the underlying bivariate polynomial. Since the
patches are generated independently, it is obvious that the resulting surface is not evenC0 continuous.
Moreover, as neighboring patches do not share common normal vectorsand colors on their boundaries,
a visual smoothnessfor the rendered surface is only achieved when employing a very large number
of patches, which actually never interpolate exactly the point cloud. Thereafter, Linsen et al. have
proposed the Fan Clouds [LP03], which are triangle fans constructed on surfels k-neighborhoods. This
method is somewhat related to the idea of lower dimensional meshing presented inthe context of surface
reconstruction by Gopi et al. [GKS00]. However, these solutions do not propose a complete rendering
solution for PBS and their k-neighborhood basis avoids a larger area analysis in the lower dimension, as
we will discuss further. More recently, Wicke et al. [WOG05] have proposed a conversion of point-based
surfaces to polygonal surfaces with textures. In a way, this work as a similar goals to ours: providing
an interface to polygon-based software and rendering techniques. Unfortunately, their global approach
requires a heavy preprocess (more than 20 minutes for half a million points).

We propose an efficient object-space patching method based on a set ofsmall pieces of triangulated
surfaces that we callSurfel Strips. Surfel Strips can be quickly generated while loading the PBS either
from a local disk or from some network, and are stored in a specific octree-based data structure, the
Stripping Tree. It is important to notice that, despite the use of triangles for rendering, Surfel Stripping
is not a point-to-mesh reconstruction technique (a complete discussion on thistopic can be found in
Section5.4), since we preserve the integrity of the underlying PBS, by only generating indexed polygons
over it. In other words, the core representation of objects is still the PBS. The Surfel strips are used to
fill quickly the topology naturally required for polygon rasterization, and since they are purely locally
generated, they can be locally updated during some point-based modeling session, where common point-
based tools are used to modify the shape of the 3D object (see Chapter4).
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5.2 Surfel Stripping

Figure 5.3: Overview of the algorithm.

As said above, the basic principle of Surfel Stripping is to convert the initialPBS into a set of rendering
primitives, calledSurfel Strips, indexed onto the PBS. In fact, the rendering of polygonal primitives,
as performed on current graphics hardware, requires two arrays:a geometry buffer, usually defined by
listing the connectivity of vertices, and which can be filled by the PBS in our case, and anindex buffer
(topology), made of polygons in the case of meshes, and by definition missingfor PBS. The goal of
Surfel Stripping is precisely to provide an efficient way to fill the index buffer in the case of PBS.

Definition Sincetriangle strips[ESV96] are the most efficient 3D primitives in current hardware, we
define a Surfel Strip as a small 2-manifold strip of triangles that locally interpolates a subset of a PBS
(see Figure5.4). We recall that a triangle strip is lossless compression of triangle list basedon the local
shared ordering induces by common edges: for instance two adjacent triangles are usually represented
as list of six indices:

{v0,v1,v2, v1,v2,v3}.

Strips exploits the partial duplication that exists in this list for encoding a triangleas the last two indices
plus a single new one, leading in our example to the list:

{v0,v1,v2,v3}.

In order to keep a single reference per surfel strip, we usedegeneratedstrips: two strips can be joined
by duplicating the last index of the first and the first index of the second one, creating a primitive with
empty geometry but enabling a unique list for disjoined pieces of surfaces.

When the original PBS includes additional information at each point, such ascolors or texture coordi-
nates, the Surfel Strip automatically inherits them on a per-vertex basis.

(a) (b) (c)

Figure 5.4: The Surfel Strip principle: (a) small subset of the initial surfel set, (b) local connectivity
information is computed, (c) resulting Surfel Strips rendered with Gouraudshading by using a per-vertex
normal and color.
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This latter behavior is an important characteristic of Surfel Stripping:all the data that exists in the orig-
inal PBS is exactly transmitted to the Surfel Strip structure. In other words, there is no compression or
low-pass filtering as in usual splatting techniques [ZPvBG01, BSK04]. Of course, filteringis sometimes
interesting, mainly when there is some noise in the initial PBS. But in our opinion, itis preferable to
remove noise at the point-based level, with for instance [PG01], rather than spending computational
effort ateachrendering frame to low-pass filter the point set.

In addition to its ability to efficient hardware rasterization, such a localized primitive also provides
a coarser granularity for many aspects of the rendering process: a large amount of operations (e.g.
discarding tests for culling, see Section5.2.5), can be performed at the Surfel Strip level, instead of at
the point level, reducing the number of different tests to perform in a space-coherent fashion.

Once the idea of using local triangle strips for a hardware-friendly visualization of surfels is set, there
are still three fundamental problems to solve to get an efficient and accurate system:

• How to efficiently generate each individual Surfel Strip? This can further be divided into two
sub-problems: the efficient computation of the local connectivity and the efficient generation of
the triangle strip from the connectivity.

• How to guarantee that no holes will be visible between neighboring Surfel Strips? In other words,
we want an object-space hole-filling algorithm, similar to the image-space hole-filling provided
by conventional splatting techniques.

• How to take benefit of the data structures constructed at loading time in orderto propose an
efficient rendering and in order to locally update the “visualization layer” provided by thesurfel
strips.

The next section details the algorithm that we propose to solve these two problems.

(a) (b) (c) (d) (e)

Figure 5.5: The different steps involved in Surfel Stripping: (a) initial surfel set, (b) corresponding
Stripping Tree space-partitioning data structure, (c) a Surfel Strip is generated at each leaf of the Strip-
ping Tree, on aninflated local surfel set, (d) afterdecimation, most of the overlappings have been
discarded, (e) real-time rendering using 3 colored light sources.
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5.2.1 Lower Dimensional Triangulation

TheSurfel Stripperis the core of our system: it can be seen as a blackbox that inputs a small subsetPi of
the initial PBS and outputs a triangle mesh patchSi , the ground topology of an upcoming surfel strip. A
canonical method to create triangles from an unstructured set of points in an n-dimensional space is the
Delaunay triangulation. However, using a true 3D Delaunay triangulation to reconstruct a 2-manifold
in 3D is usually not very efficient, as this process generates a lot of interior (i.e. volume) triangles that
have to be find and removed to keep only the triangles that lie on the surface.This is not triavial in the
case of non uniform point sets and actually a waste of time in our case.

In order to generate only “surface” triangles, we propose to performa 2D Delaunay triangulation by
projectingPi on a lower dimensional object, i.e. an average planeΠi . Indeed, this process greatly
speeds-up the meshing but imposes another constraint in the partitioning:Pi must be consistent with
a height maprepresentation (i.e. each point can be expressed as an elevation along the normal of an
average plane). We will explain latter how to reach this constraint during thehierarchical partitioning.
This 2D approach reduces the generation time by about one order of magnitude (see Figure5.6).

(a) (b) (c) (d) (e)

Figure 5.6: Local surface reconstruction performed by the Surfel Stripper. (a) Initial partition Pi . (b)
Projection ontoΠi . (c) 2D Delaunay triangulation. (d) 3D projection. (e) Surface patch Si indexing Pi .

We defineΠi by the centroid ofPi and a normal vector that can either be obtained by usingPrinciple
Component Analysison the covariance matrix of the surfel positions ofPi (the eigenvector associated
with the minimum eigenvalue), or by simply averaging the normals ofPi when they are available. We use
an adapted version of theIncremental Randomized Delaunay Triangulation[Dev98] on the projection
of Pi (see Algorithm3).

Algorithm 3 Incremental Randomized Delaunay Triangulation

Require: Pi ∈ PBS
Si ← boundingTriangle(Pi)
for eachp randomly choosen inPi do

for eacht ∈ Si do
if p∩circumCircle(t) then

Si ← Si− t
Tp← Tp + t

end if
end for
Ep← all edges inTp∩Si

for eache∈ Ep do
Si ← Si +Triangle(p,e)

end for
end for
return Si

Thanks to the random insertion of samples, this algorithm exhibitsΘ(nlogn) complexity wheren is the
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number of surfels inPi . A typical size ofn in our implementation is between 20 and 40, which offers the
best overall performance for the entire Surfel Stripping process.

The connectivity information generated by this 2D triangulation forms a patchSi indexed overPi . How-
ever, astrict partitioning would lead to a set of disjoint patches, with holes in-between their borders. We
propose aninflate-and-decimateapproach to solve this problem.

5.2.2 Inflate-and-Decimate

The set of surfels submitted to the Surfel Stripper is determined by the initial partitioning that will
be detailed in the next section. In order to avoid holes between Surfel Strips, we improve the local
triangulation by proposing an efficient two pass technique, calledinflate-and-decimate, which reduces
the set of useless triangles while still maintaining a hole-free visualization.

Inflation The inflation pass takes place before the Delaunay triangulation: we extendSi by including
the nearest surfels from neighboring partitions ofPi (see Section5.2.4). The inflation can beconservative
by including all the surfel of the neighboring space partitions, oraggressivewhen a density estimation is
provided. This inflated surfel setPi is then triangulated using a 2D Delaunay algorithm as detailed above.
As a result, obtaining overlapping surface patches, we fill the holes in the object space (see Figure5.7).

(a) (b)

Figure 5.7: Hole filling through overlapping. (a) (a) In yellow, the overlapping zone between the
two neighboring surfaces. (b) From left to right: the original point-based surface, the aggregation of
generated surfaces respectively without and with overlapping. Even under a strong close-up, the visual
continuity is maintained.

Decimation The decimationpass is done after the triangulation: we compare the resulting triangles
of Si with the neighboring patches that have been generated so far and discard useless triangles in over-
lapping zones. This decimation pass is based on a classification of the triangles. In this classification,
established for its low computational cost, a triangle can have one of the fourfollowing states:

• outer: the triangle does not share any surfel with the original surfel set ofPi ,

• redundant: more than one instance of the triangle is present in the overlapping zone (i.e.perfect
overlapping, very frequent thanks to the Delaunay triangulation),

• dual pairs: the triangle forms, with a triangle sharing a common edge, the dual configuration of
two triangles present in a neighborhoring partition,

• valid: in all other cases.
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(a) Overlap (b) outer removal (c) redundant removal (d) dual pairs removal

Figure 5.8: The decimation pass: two overlapping triangulations with shared edges shown in red.

Discardingouter triangles ensures that the overlapping zone will be only a thin band of triangles in the
worst case. An instance of a triangle is removed of the current inspectedcell when it isredundant.
The dual pairsof triangles representing geometrically the same quad have not to be kept to ensure a
hole-free vizualization (see Figure5.3and5.7). Thevalid triangles are maintained and are used for the
rest of the algorithm. This set ofvalid triangles, quickly detected by the use of this classification, does
not certify a watertight triangulation, but considerably reduces the number of overlappings between the
small neighboring triangulations. We have made this choice in order to keep theglobal processing as
fast as possible. A finer classification and an additionnal local remeshingrule could lead to a watertight
triangulation under some sampling criteria, but this is not useful for our visualization purpose and is
also time-consuming. Indeed, one nice property (observed in experiments) of this inflate-and-decimate
process is that it leads to patches with boundaries that match perfectly in more than 99% of the cases.
This surprisingly good result can be explained by the local uniqueness of the Delaunay triangulation, that
resists quite well under projection in medium curvature areas. So, very often, the same set of triangles
are generated in the overlapping zones of two neighboring inflated patches and the decimation process
will then perfectly remove the overlapping triangles. A typical example is shown in Figure5.8.

Note that using “neighboring” Surfel Strips may appear somehow in contradiction with our claim that
we do not generate explicit connectivity between the strips. In fact, thereis no real contradiction here
because we only use the connectivity of the space-partitioning cells and donot explicitly stitch the
strips together. Finally, the only annoying case where the decimation step cannot totally remove the
overlapping, arises when the sampling density vs. curvature rate is too small.In this case, a different
connectivity may be generated for surfels that belong to the overlapping zone of neighboring inflated
strips. This is due to the very different orientation that may occur for the average planes that are com-
puted in two neighboring cells in such high curvature areas. When this casearises, we simply keep the
triangle of the inflated Surfel Strip to maintain a hole free visualization without strong artefacts (see the
close-up view on Figure5.15).

This inflate-and-decimate process is efficient, robust and very easy to implement. The usual approach,
developed in computational geometry [CSD02], to stitch boundaries of partial triangulation by comput-
ing an adjacency graph, is much more complex, requires a precise computation, and has to examine a
large set of configurations to find the case where neighboring triangles must collapse. As we only seek
for a hole free visualization, the proposed technique perfectly fits our requirements.
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(a) (b) (c)

Figure 5.9: The Surfel Stripper: (a) the initial PBS, (b) the collection of Surfel Strips withrandom
colors, almost every overlapping triangles have been discarded (c) the final Gouraud shading does not
suffer from the remaining overlappings.

5.2.3 Fast stripping

In order to speed-up rendering and compress the patch topology overhead, each patch is stored as a
triangle strip rather than individual triangles. Several approaches have recently been proposed to perform
a direct stripping during the Delaunay triangulation [VK03]. Nevertheless, due to the decimation step
involved in our approach, it does not make sense to generate strips before the final set of triangles is
actually known. We have found that the fast-stripping algorithm proposedin [RBA05] works extremely
well to strip our small sets composed of about 50 triangles (e.g., 5.10−5sec. to strip 50 triangles on
a P4 1.8 GHz). For every leaf node of the Stripping Tree, a cache-friendly half-edge data structureis
computed by storing the 3 half-edges at each triangle as a vector. This nicely aligns the half-edges in
memory and reduces each half-edge access to one pointer de-referencing. The stripping is then done
in a similar way to STRIPE [ESV96]. Note that since the strips are computed separately in each leaf,
they are constrained to the local space-partition of the leaf. Of course, this makes the strips smaller and
so less optimal concerning data overhead, but as a result the strips will bemore “culling-friendly” than
usual long strips which may be visible from many viewpoints and thus limit the ability of the rendering
system to perform a tight hierarchical back-face and frustum culling (see Section5.2.5).

(a) (b) (c)

Figure 5.10: The Stripping Tree structure: (a) the partitioning of the input surfel set, (b) the adaptive
tree with the Surfel Strips on its leaves. (c) a Surfel Strip is generated for each cell (with a random color
for each cell).
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5.2.4 The Stripping Tree

After having detailed the Surfel Strip primitive and the Surfel Stripper algorithm, the last component
to focus on is theStripping Treedata structure that is used to efficiently subdivide the initial PBS in a
way that it is consistent with the constraints required by the Surfel Stripper. Actually, almost any usual
space partitioning technique (bounding sphere hierarchy, BSP-tree, kD-tree, octree) may be used, as
long as a consistent split criterion can be defined. In our current implementation, we use an octree-based
bounding box hierarchy. Each internal node of this hierarchy contains:

• the bounding box of the whole set of surfels belonging to its subtree,

• the average position, normal and color of its subtree,

• a cone of normal vectors used for fast culling,

• 2 to 8 references to its children nodes

Each leaf node contains a Surfel Strip (see Figure5.10).

The generation of the Stripping Tree for the PBS is based on the main constraint of the Surfel Stripper:
a Surfel Strip can only represent a height field. Consequently, we have to partition the PBS into a
collection of height fields. The recursive construction is based on this local property. A node with an
associated surfel set that does not satisfy this property is subdividedinto 8 new nodes. We use the same
criterion as the one described in Section3.2.2. Note that a VS-Tree can perfectly be substituted to the
octree here, preserving the remainder of this chapter unchanged.

The described construction has the advantage to quickly converge towards the PBS since the local height
field property is reached after less subdivision steps compared to when using BSP trees or bounding
spheres hierarchies. As explained in Section5.2.1, the inflate-and-decimate process used by the Surfel
Stripper implies the availability of neighboring space-partitioning cells. Insteadof using a topological
approach based on the tree to find the neighboring cells, we have found itmore efficient to simply use a
geometric predicate: the epsilon box-collisions with the current cell (i.e. a test whether the box distance
is smaller than epsilon) are computed between other cells in a top-down process. Then any leaf cell that
passes the test is added to the list of neighbors of the current cell, and its surfels are added to the inflated
surfel list. To speed-up the process, a distance threshold may be employed to add only neighboring
surfels that are close enough to the current cell either using an input density estimation or a heuristic. In
our implementation, the distance threshold is set to 25% of the cell diameter.

In order to guarantee a good performance of the Surfel Stripper, the space-partitioning must also ensure
that each leaf of the Stripping Tree does not have to handle too many surfels. This means that in addition
to the height field criterion, we also include apopulation criterionthat ensures that no leaf node contains
more thank surfels. We have determined experimentally that constrainingk∈ [20,40] provides a good
trade-off for the whole preprocessing step on almost every tested model,a tradeoff between:

• too large surfel strips, which are expensive to compute as the complexity of2D Delaunay triangu-
lation is not linear and does not provide good hierarchical culling, and

• too small surfel strips, which would lead to bad memory performance and too much overlapping
proportionnaly to Surfel Strips size.

In the case of quite uniformly sampled PBS, this population criterion also constrains the geometric extent
of all resulting Surfel Strips to be very similar, as can be seen in the randomcolor visualizations (Figures
5.5, 5.9and5.11). This feature also offers some good properties for downsampling and LODs as will be
discussed in section5.2.6.
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5.2.5 Rendering Surfel Strips

The Surfel Strip collection can be directly submitted to standard graphics APIs without the use of spe-
cific vertex/fragment shaders or multipass rendering. During the rendering step, the Stripping Tree is
traversed top-down, and the per-node normal cone and bounding boxare used for hierarchical back-
face and view-frustum culling according to QSplat [RL00]. As illustrated in Figure5.11, hierarchical
backface culling can reduce the number of rendered Surfel Strips by almost 50%, even performed at the
surfel strip resolution. In other words, we test the leaves (Surfels Strips), which are the finer entities for
our hierarchical culling and never test the triangles individually.

(a) (b) (c)

Figure 5.11: Hierarchical culling of the Surfel Strips: (a) the initial surfel set, (b) the Surfel Strip
rendering, (c) the actual subset of Surfel Strips that has been used (i.e. non-culled) for the rendering
done in (b).

5.2.6 Multiresolution Levels-Of-Detail

The main strength of Surfel Stripping is to be able to display complex point clouds on very high reso-
lution displays while providing interactive framerates, which is of major importance in many different
application fields like, for instance, precise archeological studies of scanned artefacts, or model valida-
tion in reverse engineering. So considered, there is currently no competitive point rendering technique
that would be able to display the full resolution 3.6M antialiased textured and environment mapped point
model presented in Figure5.1 at 31fps on a 1600x1200 display (see discussion in Section 5). On the
other hand, having only one high resolution representation of a given PBS is sometimes wasteful. Con-
sequently, being able to switch between several levels-of-detail (LODs)would be a valuable extension
of Surfel Stripping. In this section we present two different approaches for including multiresolution in
the surfel stripping system.
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(a) 40881 surfels (b) 10656 surfels (c) 2993 surfels

Figure 5.12: Surfel stripping for a PBS at different levels of details.

Multi-resolution at generation time One of the main adavantages of point-based surfaces is their
ability to quickly produce different levels of details of a shape. Rather thanconstructing a set of discrete
levels of detail starting from the surfel strips at full resolution, one couldprefer to take advantage of this
good property of PBS by constructing a set of LOD directly on the point cloud, and then using the surfel
stripping for each of these discrete levels. Near-optimal levels can be constructed using the different
techniques presented in [PGK02]. Nevertheless, in order to speed up this process, we use a hierarchical
simplification based on the stripping tree constructed at full resolution, by clustering points in a similar
fashion to the algorithm described in Section3.3. This fast approach offers convincing results in usual
cases (see Figure5.12). Its only weakness is that the preprocessing time and the memory footprint is
increased by about 33% as with usual mip-mapping (each inner level contains approximatively 1/4th
of the strips of its child level). As usual with discrete LOD, the selection of the current level is simply
based on a distance criteria.

This solution does not involve any modification in the Surfel Strips rendering. However, being performed
at generation time, it cannot provide a true view-dependent adaptivitiy.

Multi-resolution at rendering time Following [RL00] and [DVS03], we have integrated a multires-
olution rendering scheme in the hierarchical traversal of our structure,performing a hybrid viewpoint-
dependent point-strip rendering. This avoids unusefulcompletedrawing of too small or too far surfel
strips and does not require any additional preprocessing.

As described previously, each internal node of the stripping tree carries arepresentative surfel— with
position, normal and material attributes computed as an average of its children— and a bounding sphere
enclosing all its leaves. During the depth-first traversal of the stripping tree, we compute the projected
size of the bounding sphere of each of the nodes. When this size is less orequal to a pixel, we draw the
representative surfelas a single shaded point, otherwise we continue to traverse the structure top-down,
performing culling as mentioned above (see Figure5.13).
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Figure 5.13: Hybrid point-strip Multiresolution Rendering. Top row: the surfel strip and internal nodes
drawn as simple point are displayed in red. Bottow row: final rendering,the aliasing is reduced thanks
to the average color and normal used for representative surfels of internal nodes.

Our experiments have shown that performing too expensive tests to decidevery precisely when we have
to render a single point (i.e. a pixel) or a rasterized primitive (i.e. a triangle strip) cannot offer the same
framerates than our approach, because of the highly optimized renderingpipeline present in today’s
GPU, with which it is sometimes more efficient to render a small object than to decide whether we have
to render it. Our approach represent a good trade-off, since:

• the tests performed will never reach the triangle level, but will be limited, in the worst case, to test
if a wholesurfel strip leaf partition (e.g. about 50 triangles) has to be fully rendered, or has to be
simply replaced by a point; this induces a sub-linear complexity, even in the worst case;

• thepopulationcriterion mentioned above ensures a fine enough selection in practice.

While we do not perform the selection on the GPU, our mixed point-strip rendering reaches high framer-
ates in practice (see Figure5.1), preserving a low CPU workload and letting the vertex shader instruction
set free for other tasks.

5.2.7 Interactive surface deformation

The ability of surfel strips to be generated considering only a small local set of surfels makes it pos-
sible to incrementally update the collection of surfel strips. For instance, this allows local point-based
freeform deformations. Let us consider the Figure5.14: on the right, the Santa model (75 783 surfels)
has been loaded and a stripping tree has been constructed on-the-fly to provide a direct rendering of the
model.

By using conventional point-based modeling tools [PKKG03], we have locally deformed and up-sampled
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the top of the model, such as shown on the right of the figure. In order to keep an interactive framerate,
we keep all the surfel strips which have not been modified, and recomputethe surfel strips only for
the top of the model. During the interactive deformation, the modified points are classified against the
stripping tree, according to the following process for each modified point:

1. Each leaf cell containing the point is marked.

2. When the height children of a node are marked, we propagate this information bottom-up in the
tree and the node is marked.

This allows to reduce the number of full traversals of the tree: during the classification of a given point
in the stripping tree, we stop the top-down traversal as soon as a marked node is encountered. After
having processed all the modified points, we recompute the cells marked as modified, and update in a
bottom-up fashion therepresentative surfels, normal cones and bounding spheres of internal nodes.

A slight modification of the original stripping tree generation (Section5.2.4) is necessary for allowing
the user to enlarge some part of the model: the original bounding box used for the octree-based de-
composition of the point cloud must be over-scaled, and we ensure that allthe deformations applied to
the model fit inside this enlarged bounding box. Note also that during the deformation, some points can
move to “empty” space. In this case, the stripping tree will be refined in locationwhere, at the beginning,
no cells were present.

The updating time is 0.18 seconds in the example of Figure5.14, and the original surfel stripping per-
formed at loading time has taken 2.67 seconds. Note that, even if it is possible,we havenot stretched the
original surfel strips of the deformed zone, but completly recomputed them.This incremental update of
the stripping tree reduces the computation in the case of freeform deformations. Of course, for particu-
larly well identified deformations, such as bone-based skinning of characters, more efficient approaches
can be used to limit the number of local surfel strip regenerations. Finally, the global interactivity, during
the user freeform deformation, can be increased: following [PKKG03], a lazy update of our structure
can be performed when deforming the object (in our case by simply “stretching” the strips for instance),
and thetrueupdate is performed only once the deformation is finished.

(a) 75783 surfels (b) 78726 surfels

Figure 5.14: Interactive deformation of the underlying point-based surface.(a) Original Surfel Strip-
ping. (b) Local update.
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5.3 Results

We have implemented our visualization system under Linux with OpenGL. Running times and framer-
ates are given for an Intel P4, 3.4 GHz with an nVidia Quadro FX 4400 GPU. All tests have been done
by using vertex buffers.

(a) (b)

Figure 5.15: Comparison of the visual quality. (a) The high quality EWA rendering (notethe strong
EWA artefacts on close-up views: lack of continuity for silhouettes and visible splat boundaries). (b)
The same object at the same resolution rendered with Surfel Strips.

Visual Quality As pointed out by Botsch et al. [BSK04], Zwicker et al.’s EWA splatting [ZPvBG02]
can be compared to Gouraud shading of polygons in terms of quality, since both techniques only blend
colors and do not use per-pixel normal interpolation. As far as signal theory is concerned, it is true that
both shading techniques have the same limit when the number of surfels/vertices grows to infinity, but
actually the convergence rate is quite different: for a given number of surfels/vertices, Gouraud shading
is closer to the limit shading than EWA splatting. This appears clearly on the left part of Figure5.15:
for the same number of points, EWA applies a stronger low-pass filtering andthus cancels much more
details than the Gouraud shading provided by Surfel Stripping. Moreover, for close-up views, strong
visual artefacts such as silhouette discontinuities and visible splat boundaries appear very often with
EWA splatting (see the eyeball and the eyebrows on the right part of Figure 5.15). Although we did not
perform comparison, this argument should remain true when comparing with Phong shading for both
techniques [BSK05].

Another advantage of Surfel Stripping over EWA splatting appears whenrendering non-uniform point
clouds: Surfel Stripping takes benefit of the Stripping Tree to perform an adaptive reconstruction in
undersampled areas, and generates a hole free surface with well distributed triangles, thanks to the
underlying Delaunay triangulation. On the contrary, the hole filling approach of EWA splatting is based
on an adaptive per-vertex radius. So, in order to be conservative, alarge radius has to be used in
undersampled areas, which produces a strong bluring effect in transition zones between undersampled
and well-sampled areas.

In terms of quality of PBS rendering, Surfel Stripping should also be compared to Phong splatting
[BSK04], as both techniques propose to generate a meso-structure for the rendering of a small set of
surfels. A Phong splat strongly reduces its underlying surfel set by averaging the color information and
by encoding the normal variation wih a quadratic function over the splat. Surfel Stripping offers much
more flexibility as it interpolates (and thus preserves)all the position/orientation/color details included in
the original point cloud, which is desirable in many applications. Furthermore, Surfel Stripping always
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Model Face David Bouddha Asian Dragon
Points 40881 258332 543654 3609601

Surfel Strips 1612 17861 28757 89356
Preprocess 2 s 12 s 26 s 131 s

FPS >200 167 121 31

Table 5.1: Preprocessing time and rendering framerate for various models (rendering is done with
antialiased 2D texture, cube mapping and 3 light sources, on a 1600x1200 screen resolution)

keeps the true geometry of its surfel set, resulting in a better silhouettes preserving behavior.

However, splatting methods offers an high quality filtering when several surfels belongs to the same
pixel. In particular, this reduces this aliasing effect. Considering that the Surfel Stripping is a polygonal
method, the only alternative is to use super-sampling, which may significantly shrink the framerate and
cannot offer competitive filtering with EWA splatting.

Finally, both approach can benefit from Phong interpolation and deffered shading [BSK05] when rich
and expensive fragment shaders are used.

Performance We achieved two different kinds of performance measurements: first, thepreprocess-
ing time required by the Stripping Tree and the generation of Surfel Strips bythe Surfel Stripper, and
second, the framerate that is obtained during the rendering by including thehierarchical culling and
multiresolution rendering.

We performed tests on many different models up to a few millions surfels (only in-core models are
allowed with our current implementation) and the frameratenever fall below 31fps on a 1600x1200
resolution, even when simultaneously activating antialiased 2D texturing, cube mapping and 3 lights
sources (see Table5.1and Figure5.18).

The critical step for the preprocessing is the Delaunay triangulation. Initially, we thought that the pop-
ular Fortune’s algorithm[For87] would provide better results than the incremental randomized one, but
for small surfel sets, better performance cannot be clearly established. The choice of an incremental
triangulation also allows progressive visualization combined with progressive data transmission.

Figure5.18 illustrates the robustness of Surfel Stripping for various PBS, with different densities and
complex features. Our experiments have realized avisuallyperfect, crack-free and hole-free rendering
for every tested model.
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(a) Cube mapping (b) Polygonal toon shading (c) 3D texturing

Figure 5.16: Surfel Strips can naturallydirectly benefit from the rich collection of polygonal rendering
techniques, with many hardware-supported ones.

Polygonal Rendering Techniques Modern graphics hardware offers various extensions for specific
rendering tasks. As Surfel Stripping is a pure object-space approach, all these specific hardware render-
ing techniques are automatically available. Figure5.16(a)shows the reflection produced by using cube
environment mapping when rendering the strips. Figure5.16(c)illustrates another hardware-supported
feature offered to PBS with of Surfel Stripping: volumetric textures which have a density distribution
unlinked to the PBS one. This is an interesting propery when large flat parts(that can be represented
geometrically with few surfels) require a higher definition for the appearance.

Note also that the framerate does not suffer from these additional effects, since they are hardware-
supported and mainly take place in the rasterization unit of the GPU. Our approach also enables a
large variety of alternative polygonal rendering techniques, such as non photo-realistic ones (see Figure
5.16(b)).

A last advantage of Surfel Stripping compared to image-based techniquesis to be perfectly adapted for
an easy integration of PBS in current rendering engines. Figure5.17shows the direct use of shadow
maps with antialiasedPhong Shadingin scenes that combines polygonal models, spline models and
point-based models.

Figure 5.17: Surfel Stripping enables direct use of PBS in standard polygonal rendering engines.
Here, two examples of antialiased Phong shading with shadow maps, merging PBS, meshes and spline
surfaces.
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(a) Stanford Dragon with per-surfel color and cube-mapping
(437 646 points).

(b) Woman face (309 737 points)

(c) Man body (146 616 points)

(d) Man face (303 382 points)

Figure 5.18: Realtime OpenGL rendering of surfel strips (right) converted from colored point clouds
(left). The artefacts in shoulders are not produced by the surfel stripping, they were already present in
the input data.

80



(a) Other Examples

(b) Raytracing Surfel Strips
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5.4 Discussion

The Surfel Stripping is somewhere inbetween point-based rendering andsurface reconstruction tech-
niques. On one side, it allows to quickly obtain a mesh indexed over a point-cloud by considering the
strip topology. Even if there is no guarantee on the watertight nature of the resulting set of manifolds,
this can represent a good enough results for many applications (e.g. entertainment industry). On the
otehr side, Surfel Stripping provide a minimum (i.e visually continuous) topology for submitting a point
cloud to the polygonal graphics pipeline, without adding or removing points.Furthermore, its intrincsec
hierarchical principle offers at no cost a simple and efficient view-dependent adaptive rendering.

To our knowledge, there are at least two previous papers that include asimilar idea of local (non water-
tight) triangulations: the visualization system proposed for point set surfaces by Alexa et al. [ABCO∗01],
andFan Cloudsintroduced by Linsen and Prautzsch’s [LP03]. Compared to the former, the rendering
quality offered by Surfel Stripping is much higher, as it uses the position, normal and color information
that exists at every single surfel, which is not the case for Alexa’s technique, where theC−1 boundaries
of the patches are apparent, since neighboring patches do not share common attributes such as normal
information. Compared to the latter, both the rendering speed and the rendering quality offered by surfel
stripping is higher: first, triangle strips offer better caching better triangle fans in the hardware graph-
ics pipeline, second, fan clouds do not propose any hierarchical structure to generate efficient culling
and third, the local Delaunay triangulation is more robust and respect better the geometry than a simple
k-neighborhood fan construction, reducing the final number of overlappings to get hole-free rendering..

Scalability and GPU Friendliness The standard pipeline used in 3D graphics hardware has been
developed to scale efficiently when the screen resolution is increased. Thanks to the incremental com-
putation involved in triangle rasterization, the framerate that can be achievedby hardware rendering is
only slightly affected when switching from, say, 800x600 to 1600x1200. Unfortunately, the complex
per-pixel operations involved in image-space splatting techniques, such as EWA splatting, break this
nice property. This means that the user has to systematically find a trade-offbetween high-resolution
rendering at low framerates and low-resolution rendering at high framerates.

This is not the case by using our approach, since it is totally based on the standard triangle rasterization,
and very high framerates are obtained even for high resolutions (typically120 fps at 1600x1200 for a
PBS with 400k surfels). Another major feature of our approach, thanksto the standard pipeline, is that
the rendering time of a single frame is relatively view-independent for a given number of surfels. The
only component that can speed-up or slow-down the rendering time in that case, is the culling step that
may discard a significantly different number of Surfel Strips from one frame to the others.

But as already said above, the main advantage of Surfel Stripping compared to standard point-based
rendering is its GPU friendliness. The process only requires one standard rendering pass, which frees
graphics hardware resources to include additional visual effects by using popular multi-pass rendering
effects, such asshadow maps, motion blur, depth of field, etc. Actually, this was our initial goal when we
developed our approach: be able to smoothly merge the rendering of PBS incurrent high performance
3D engines, such as the one developed for video games, with as little specificprocessing as possible.
Finally, the Surfel Stripping is somehow for PBS what marching cube si forimplicits and blobs, what
recursive sampling is for subdivision surfaces and what parameter iteration is for NURBS: afast tessel-
lator for rendering.

Limitations Essentially, the Surfel Stripping fails in two situations:

82



• very non-uniform sampling of the surface: in this case, the surfel stripping will not be able to fill
too large holes,

• very dynamic surfaces, such as fluid simulations: in this case, the very frequent updates of the
strips can lead to a complete regeneration of theSurfels Strippingstructure.

In our opinion, the first case is a sampling problem, and belong to geometric preprocessing, even with
conventional splatting. The second limitation is still the big advantage of usual point-based rendering
(see Keiser et al. [KAG∗05]), even if ther per-surfel radius (for splatting) or the continuous approximaion
(for ray tracing [AKP∗05]) update belongs to some local neighborhood analysis and/or caching to ensure
and fast hole-free visualization.

Summary In this chapter, we have presented both a fast stripping method for Point-Based Surfaces
and a rendering system tuned for hardware rendering at interactive framerates. Our system provides an
additional object-space layer between point-based surface and polygonal rendering, represented as small
triangular strips, theSurfel Strips, organized in an efficient hierarchical structure. The main advantage
of this system is its ability to be locally generated and updated, the natural preservation of the surfel
properties such as position, normal and color, and the direct reuse of conventional polygonal rendering
methods.

We have shown that, in various cases, Surfel Stripping represents an efficient alternative to existing high
quality rendering of PBS that have been developed in recent years, since it neither requires a specific
multi-pass rendering process, nor some expensive combination of vertex/fragment shaders. Basically,
our combination of hierarchical culling, multiresolution rendering and strip-based rasterization provides,
at high screen resolution, a significant speed-up of the rendering framerate, compared to current state-
of-the-art high quality point rendering techniques.

Surfel Stripping can also be seen as an alternative to complete point-to-meshsurface reconstruction
offering a fast solution to import colored PBS into standard 3D applications.

The Stripping Tree has been developed to quickly space-partition a PBS and offers an efficient access
to neighboring cells. At rendering time, it provides an efficient hierarchical multiresolution rendering,
particularly interesting for models made of more than one million surfels. Surfel Stripping is currently
not the best solution for highly dynamic surfaces, such as fluid simulation, but a convincing solution in
all other cases.

Perspectives In spite of its various optimizations and trade-offs, the Surfel Stripping remains limited
to in-core models and the size of models coming straight from the acquisition pipeline can exceed its
capabilities. Therefore, in order to provide an efficient visualization ofhugepoint-based surfaces, we
explain in the following chapter how to perform an efficient out-of-core appearance preserving conver-
sion of such large sampled models, outputtingnormal-mapped surfel strips.
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Chapter 6

Appearance Preserving Rendering of
Large Point-Based Surfaces

Very dense point-based surfaces, composed of hundreds millions of samples, are more and more frequent
and tend to become the typical output of modern geometry acquisition pipelines [LPC∗00]. Offering an
interactive visualization of such objects is fundamental in various situations,including preview at high
screen resolution, merging in polygonal 3D engines and 3D databases browsing. Indeed, many of these
applications share a common context: the rendering has to be performed in real-time and to remain
as visually plausible as possible. Considering the rich surface descriptionprovided by large models,
appearance-preserving methodsare particularly well adapted: these techniques perform a conversion
from high resolution geometries to lower resolutions ones, equipped with high-resolution normal and
color maps. They often provide a very similar rendering to the original models,while their low poly-
gon count ensures high framerates at high screen resolution. Unfortunately, such methods usually rely
either on a global parameterization of the object or a full resolution mesh representation, which are
both incompatible with direct visualization of large sampled surfaces. In this chapter, we address the
lack of efficient visualization techniques for large sampled surfaces without preliminary full-resolution
reconstruction.

We propose a fast processing pipeline enabling real-time appearance-preserving polygonal rendering
of large point-based surfaces. Our goal is to reduce the time-slot required between a point set made
of hundred of millions samples and a high resolution visualization taking benefitof modern graphics
hardware, tuned for normal mapping of polygons. Our approach can be divided in two steps:

1. We starts with a combination of two elements already presented in this thesis: theout-of-oore sim-
plification in streaming presented in Section4.3and the Surfel Stripping discussed in Chapter5,
for providing a polygonal rendering of a lower resolution version of thelarge object.

2. Therefore, the resulting coarse geometric representation is enrichedby applying a set of maps
which capture the high frequency features of the original data set. We choose as an example the
normal component of samples for these maps, since normal maps provide efficiently an accurate
local illumination. We call the resulting rendering primitive aNormal Surfel Strip. Nevertheless
our approach supports straightforwardly other surface attributes, such as color.

The main contribution takes place in the second step, during which we efficiently reconstruct the normal
maps from a stream of sampled normals. Sampling issues of the maps are addressed using an efficient
diffusion algorithm in two dimensions. As a result, we obtain a set of enrichedSurfel Strips, recovering
the essential part of the original feature wealth present in the large data.This out-of-core process is
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able to directly handle large unorganized point-based surfaces without the time-consuming full resolu-
tion meshing or parameterization steps, required by current state-of-the-art high resolution visualization
methods. Contrary to pure point-based methods, our approach takes fullybenefit from the hardware
graphics pipeline, particularly efficient with normal mapping. One of the main advantages is to express
most of the fine features present in the original large point clouds as textures in the huge video memory
usually provided by graphics devices, using only a lazy local parameterization. Our technique has been
tested on various very detailed scanned objects and statues, for which aninteractive visualization has
been obtained with a global preprocessing time that represents only a couple of minutes.

6.1 Context: Large Object Rendering

Visualization systems designed for large 3D objects (tens or hundreds of millions samples) can be di-
vided in two categories: mesh-based and point-based systems. We refer the reader to [Tol99, Lin03] for
an introduction to out-of-core methods and visualization.

Mesh-based system These systems require two specific preprocesses: first, the point cloudhas to be
reconstructed at full resolution, which can require upon days of computations, and second, they have
to be converted in an out-of-core format allowing fast disk-to-GPU updates. For instance, the Adaptive
Tetra-Puzzles of Cignoni et al. [CGG∗04] propose to construct a diamond-based hierarchy over a large
mesh, storing on disk set of geometric attributes directly in the GPU format, and fetching them on
demand during the interactive visualization which can even be real-time (60 FPS) with models like the
David (56M triangles). Since we rather seek for a system able to handle directly the point-based surfaces,
we refer the reader to this paper for additional references.

It is interesting to note that even if working in a mesh context, several systemstake benefit from the point
primitive for saving rendering workload. For instance, since many neighboring samples of a gigantic
object are often rendered over a single pixel, Gobetti et al. [GM05] have developed theFar-Voxelsystem,
a hybrid mesh-point rendering system, where a cluster of polygons can be rendered as a single point,
with a specific shader approximating the appearance of the underlying surface area. Raytracing has also
been used for interactive exploration, but it often requires a cluster ofcomputers [WDS04] or a very long
preprocess for out-of-core level-of-details construction [YLM06]. Whatever the case, the framerate is
not competitive with rasterization, and the main benefit of raytracing, such has advanced visual effects
produced by secondary rays, restricts inevitably both framerates and screen resolution.

Point-based system QSplat [RL00] was the very first system designed for rendering large data set
coming from 3D scanners. The algorithm starts by clustering the input set of samples in a bounding
sphere hierarchy, which is a binary tree carrying a representative surfel, a bounding sphere and a visi-
bility cone on each of its nodes. The nodes attributes are quantized in a multiresolution fashion over a
32 bits word (48 bits with color), and stored on-disk in a cache coherent order. Then, at rendering time,
sub-parts of the tree are loaded according to the point-of-view and drawn using OpenGL point primi-
tives. According to the computer capabilities, the tree is more or less refined at interactive framerates,
offering a surfel for each single pixel after few seconds. Note that the idea of compressed point format
for rendering has then inspired several systems, using octree [BWK02, DD04], hexagonal [KSW05] or
wavelet [GM04] quantization.

The main advantage of the QSplat algorithm is its scalability, since even an object composed of several
hundreds of millions nodes can be visualized at interactive framerate on almost any computer. However,
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its main drawback is its highly dynamic nature, not easily amenable to a good GPU support. In fact,
apart of the final point drawing, QSplat is intrinsically a software/CPU rendering system. As a result,
even on a powerful computer, the rendering quality remains poor when moving the viewpoint, and the
user has to stop its interaction for obtaining an high resolution rendering after several refinements.

To overcome a part of this problem, Dachsbacher et al [DVS03] have introduced the Sequential Point
Tree, which performs most of the hierarchical culling on the GPU. Unfortunately, since all the infor-
mation is kept at the original format, the size of the object is restricted to in-core models. Therefore,
Wimmer and Scheiblauer [WS06] have proposed an out-of-core implementation, using a nested octree
for managing an out-of-core forest of enhanced Sequential Point Trees, able to perform rendering with-
out the normal information.

These GPU rendering systems clearly outperform the original QSplat rendering, but inherits its main
weakness: their pure tree-based multi-resolution rendering does not allows the GPU to run in an optimal
context, leading to either poor framerates or visible temporal artifacts.

Appearance-Preserving methods In the case of objects exhibiting an important surface coherency
such as human bodies, statues, cars, and so on (a tree with a low sampling rate being a perfect counter
example), it is possible to perform a local analysis for converting the sampled geometry into a more
GPU-friendly format: anappearance-preservingrepresentation. Contrary to previous rendering tech-
niques, appearance-preserving methods [COM98, CMRS98] do not try to render the whole original
geometry. Instead, the object is dramatically simplified, and the features whichare lost in this process
are reintroduced in a set of high resolution normal maps, which will offer avery similar shading to
the original object. This principle can be applied directly on a single simplified object, or combined
with a multi-resolution structure, such as theProgressive Meshes[Hop96, SSGH01], for enhancing the
different level-of-details.

Nowadays, the main advantage of appearance-preserving methods is their GPU-support: considering the
fragment shader level [TCS03], the only thing to do to use normal maps is to fetch normal fragment from
on-board texture memory and to use it for shading the fragment instead of the interpolated Gouraud value
or Phong vector. Concerning adaptivity, normal map rendering offerstwo advantages: 2D normal maps
can be compressed more efficiently than 3D geometries, using for instance the differential encoding
proposed by Munkberg et al. [MAMS06] or their fixed rate compression scheme [MOSAM07], and
multiresolution filtering can be cast as a simple mip-mapping process. Of course, using normal mapping
involves meshes and some kind of parameterization, two notions present at the other extreme of the
spectrum when dealing with PBS. In this chapter we fill this gap in a matter of minutes for scanned
objects composed of several hundred millions samples.
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Figure 6.1: Overview of our approach for interactive visualization of large models. The usual expensive
step, themeshing, is only performed on a very reduced point cloud, and is no more the bottleneck. Most
of the fine details are expressed through the normal maps, generated on a per-surfel strip basis with2D
diffusion, a faster process than 3D geometric reconstruction.

6.2 Appearance Preserving Surfel Stripping

6.2.1 Overview

Our algorithm is described on Figure6.1and runs out-of-core with the following two-passes sequence:

• pass 1:Out-of-core simplification and fast meshing

1. we perform an out-of-core simplification of the huge model using vertexclustering

2. the resulting simplified point based surface is quickly converted intoSurfel Strips, organized
in aStripping Tree, following the fast lower dimensional meshing of Chapter5.

• pass 2:Normal field streaming and reconstruction

1. all the points of the original model arestreamedthrough the stripping tree and distributed
to their corresponding leaves, where the point normal is projected onto a quad texture asso-
ciated to each Surfel Strip (see Section6.2.3). This streaming process is the key step of our
technique, as its output sensitivity allows us to handle large models with limited memory.
At the end of this step, each leaf of the Stripping Tree contains a low resolution Surfel Strips
and a high resolutionsparsenormal map

2. the holes present in sparse normal maps are filled by adiffusionalgorithm, reconstructing
a continuous normal fields which interpolates the original normals of the largepoint-based
surface (see Section6.2.4).

The resulting rendering primitive, present on each leaf, is calledNormal Surfel Strip(i.e a coarse piece
of mesh plus a high resolution continuous normal map) and is rendered in a similar fashion to usual
surfel strips, with an additional fragment shader for exploiting the normalmap.

6.2.2 Out-of-Core Simplification and fast meshing

Out-of-core simplification has already been discussed in Section4.3. After many experiments, we have
found that two algorithms can be used in the present context:

• when the input topology is simple and the sampling density uniform enough, a grid-based clus-
tering, similar to the work of Borrel [RB93] and Lindstrom [Lin00], offers a convincing enough
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result. This is the fastest simplification and it is known that it results sometimes in a poor quality.
However, this not a problem in our case, since the resulting sampling is not used “as-is” but is
then enriched with normal maps, which will be responsible for most of the final appearance

• when the input PBS has a more complex topology and density distribution or when an higher
quality is mandatory, an adaptive sampling performs better, although in a longer time, and we
reuse the simplification algorithm presented in Section4.3 (VS-Tree forest built using spatial
finalization).

Actually, a precise down-sampling is not mandatory in our particular case: we are not looking for the
n bestpoints to represent a given large model, we just need a point cloud capturing reasonably the
original shape of the large PBS and which can be quickly tessellated with Surfel Stripping. So, we use
mainly grid-based simplification, for which we have determined that a grid resolution of 2⌊log10(n)⌋, with
n the total number of points, offers good results in practice and is extremely fast, as it processes up to 5
millions points per second on our workstation.

Note that in all the cases, we maintain a counter of the original point samples that have intersected a
given cell: this information will then be used for choosing a normal map resolution in the second pass.

Finally, the resulting simplified point-based surface is augmented with Surfel Strips, distributed on the
leaves of a Stripping Tree (see Figure6.2).

(a) (b) (c)

Figure 6.2: First pass of our appearance preserving surfel stripping process.(a) The simplified PBS
obtained after the out-of-core simplification. (b) The set of local meshes quickly generated thanks to the
Stripping Tree partitioning (in green). Each colored patch correspondsto a surfel strip, locally gener-
ated in 2D. (c) The coarse polygonal representation obtained, made oflocal triangle strips interpolating
the input points.

6.2.3 Streaming Normals

At this point, the Stripping Tree of the down-sampled point-based surface isavailable, and can be visu-
alized as a coarse representation of the original model (see Figure6.2). In order to recover the original
appearance of the large model, anormal mapwill be associated to each Surfel Strip. These normal maps
are generated during anormal streamingprocess, where all points of the initial large object are streamed
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through the Stripping Tree, performing an hierarchical classification to quickly find the set of Surfels
Strips they belong to. This second streaming of the large model is purely local,dealing with one single
point sample at the same time in the main memory.

One key idea in this part is that we generate localdisjoint normal maps (one for each Surfel Strip),
and ensure avisualcontinuity by enlarging their support: similarly to theinflate-and-decimateprocess
used in the surfel stripping, we consider, for each leaf partition, aninflatednormal field, made of all
the normals belonging to the considered leaf, plus some normals belonging to neighboring clusters. In
practice, we actually use onlyaggressiveinflations, by just scaling leaf bounding boxes until embracing
their whole associated Surfel Strip, including the overlaps with neighbors.Consequently, a single normal
vector may belong to more than one Surfel Strip. Latter, at rendering time, theZ-buffer tests will
selects one instance of this vector in overlapping zones for shading the corresponding pixel. As can be
observed in Section6.3, the thousand pixels coming from these overlapping areas do not sufferfrom
visual artifacts. Algorithm4 summarizes the normal streaming:

Algorithm 4 Normal Streaming

Require: T the stripping tree at low resolution
Require: {p,n} a sample from the input stream

Leaf nodecp← depthFirstTraversal (p, T)
Projectn oncp normal map
for each Leaf nodeci

p in theε-neighborhood ofcp do
if p∩ in f latedBBox(ci

p) then
Projectn onci

p normal map
end if

end for

Normal maps For each intersected leaf, the local parameterization of the point relative toits Surfel
Strip is computed by projecting the point on the average plane used for creating the strip (see Sec-
tion 5.2.1). Actually, we parameterize the projected point according to a bounding quad of the inflated
partition and aligned to the two eigen vectors associated to the two highest eigenvalues of the covari-
ance matrix, previously computed and stored on leaves during Surfel Stripping. This parameterization is
used to fill the relative pixel value of the associated normal map with the normalvector of the streamed
surfel. We use floating point textures, so if more than one normal is projected onto the same pixel, we
just add the normal vector value to the existing pixel, and normalize all the normal maps after having
processed all the points of the original model. This also prevents from aliasing artifacts that may occur.
We refer the reader to the frequency analysis of Han et al. [HSRG07] for a discussion on better choices
than average normals.

The resolution of each normal map is proportional tom the counter mentioned earlier and stored on each
leaf, but is also rescaled according to the user-specified texture memory budgetT. We define the average
side resolutions for a texture map as:

s=

√

m
n
·T

with n the total number of samples. Similarly, its aspect ratioar is equivalent to the bounding rectangle
of its Surfel Strip, leading to the final resolutionw×h:

w = s·ar andh =
s
ar

Using a flat parameterization of a non-flat Surfel Strip may generate some distortions, especially in areas
of high curvature that would result in a global loss of details. Nevertheless, in practice, the constraints
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imposed during the construction of the stripping tree lead to close to planar Surfel Strips, which limit dis-
tortion and no artifacts were visible in our experiments. Since the normal maps are generated on a quad
basis, they are easily packed into few large textures, eventually compressed [MAMS06, MOSAM07]
and stored in the graphics card memory.

(a) Surfel strips (b) Sparse normal map

Figure 6.3: After the normal streaming step, a sparse normal map is attached to each Surfel Strip.
(a) Coarse topology computed from the sub-sampled point cloud. (b) Color visualization of the spare
normal map: pixels color is set with the XYZ coordinates of the normals. Black points corresponds to
pixels of the normal map where no surfel as been projected.

6.2.4 Normal Map Reconstruction

After the normal streaming process, each surfel strip is enriched with a sparse normal map since several
pixels may not have been filled by projected normals (as shown in Figure6.3). For using this map as a
texture for our coarse surfel strips, holes need to be filled (black pixelsin Figure6.3). Many approaches
have been developed over the years to fill holes in an image, which is a basicoperation for image
repairing. Exploration-based approaches such as [BWG03] directly compute an illumination value for a
pixel given by exploring its neighborhood. On the other hand, iterative PDE-based approaches such as
[PGB03], spread existing color in the image using PDEs such as Poisson equation, or diffusion equation.
We use the PDE-based diffusion technique presented in [XP98], for its guarantees of continuity and
smoothness. The implementation is based on a multigrid resolution scheme that firstsolves the problem
at a coarser resolution, and then uses this coarse result to initialize the algorithm at finer resolution:

Solve (h,Axh = b)

1. Pre-smoothing steps:Ax= b

2. Downsample:xh−1 = Dxh

3. Solve (h-1,Axh−1 = b)

4. Upsample:xh = Uxh−1

5. Post-smoothing steps:Ax= b

whereAx= b corresponds to the matrix formulation of discrete diffusion equation with finite differences,
andh corresponds to the quadtree level associated with the resolution of the processed image (see also
the Push-Pull algorithm in [GGSC96]).

The approach of [PG01] corresponds to a multigrid iteration with no pre-smoothing step, a single post-
smoothing step and a specific down-sampling algorithm that only takes into account existing samples.
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We inspire from [PG01] by skipping the pre-smoothing, and only using existing samples for down-
sampling, but run the post-smoothing iterations until the convergence criterion is met. Indeed, with-
out these extra iterations, some blocky interpolations are present in the texture we obtained, especially
around holes.

The multigrid resolution algorithm proved to be very efficient in practice (seeTable6.5), only a few
iterations (e.g. 5) were needed for convergence with 10−3 error bounds in most cases. Note that the
same approach can be used to create maps for other scalar or vectorial sampled values, like colors or
displacement vectors.

Figure6.4 shows the resulting set of high resolution normal maps attached to the coarsesurfel strips.
Our reconstruction-by-diffusion process provides normal maps that express the essential part of the
original large model appearance. These maps are stored as textures in the GPU memory, and benefit
from theautomatic filtering provided by the hardware mip-mapping. This property is quite interesting,
since it can be interpreted as both an anti-aliasing process and an hardware supported multiresolution
rendering, thanks to the different levels of the mip-mapping. Again, the recent studies in the frequency
domain [HSRG07] open a higher fidelity filtering to normal maps.
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(a)

(b)

Figure 6.4: Diffused normal map rendering. (a) The Omphalos model (11 664 466points). (b) Close-
up. Left: coarse surfel strips quickly generated after the out-of-core decimation of the large point
cloud (random per surfel strip color). Right: real-time rendering, with per-pixel illumination using the
reconstructed normal maps. Note the nice automatic filtering of the model appearance, thanks to the
intrinsic hardware mipmapping of the normal maps.
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6.3 Results

We have implemented our system under Linux on an Intel PIV 3.2 GHz, 1GB RAM, 160GB UDMA
HD, NVidia Quadro FX 4400. We use C++ and the OpenGL Shading Language (for normal mapping).
We consider input binary files where points are encoded as an unorganized list of chunks of 6 floats (3
for the position and 3 for the normal). Table6.5 summarizes the preprocessing times of our system.
Figures6.6, 6.10 and 6.12 shows the real-time rendering obtained on various large objects with our
approach.

Models Omphalos Column Dancers St Matthew Atlas
Num. of points 11 664 466 22 877 845 31 620 449 186 810 938 250 000 000

TIMINGS

Simplification 5 s 10 s 14 s 61 s 81 s
Surfel stripping 2 s 4 s 5 s 7 s 7 s
Normal streaming 45 s 151 s 213 s 667 s 890 s
Normal reconstruction 35 s 35 s 34 s 152 s 170 s
Total 100 s 201 s 274 s 887 s 1148 s

RENDERING

Num. of Surfel Strips 1602 1721 2013 2457 2516
Num. of triangles 45 504 51 012 66780 79030 79967
Textures memory (MB) 68 71 94 185 201
Frames per second > 200 > 200 198 165 164

Figure 6.5: Preprocessing time and rendering framerate for various large models. The total timing
represents all the steps needed for the preprocessing, starting from an unorganized point cloud on disk
up to a ready-to-render data structure in memory. The framerates are given for 1600x1200 screen
resolution.

It appears that the normal map initialization is the main bottleneck. Obviously, tree-traversal and lo-
cal projections involved in this out-of-core streaming remain costly since theyare performed for each
sample of the large model. Nevertheless, all the different stages involved inour approach are highly par-
allelizable (each point sample is treated separately), and can take benefit from recent multi-core CPUs
(an improvement factor of 1.5 can reasonably be considered for dual-core CPUs). Note also that we use
a pointer-based implementation of the Stripping Tree, which could be enhanced. Our resolution criteria
for the normal maps works quiet well in most of the cases. Actually, even when a high density variation
occurs inside a leaf of the tree, aliasing is prevented in the normal map thanksto the iterative diffusion
step (see Figure6.7). Note that the memory usage for textures is measured without compression.The
hard-drive latency strongly influences the performances ofnormal streamingandsimplificationpasses
(we measure performances with the grid-based simplification, we refer to Section 4.6 for the adaptive
case) . Better performances can be reached by using high-speed hard-drives (U-SCSI) and a dedicated
workstation, where useless processes are stopped (usually between 20 and 30 on our Linux system).

The excellent framerates given in Table6.5are reached thanks to the highly optimized polygonal hard-
ware graphics pipeline, particularly adapted to display low resolution polygonal models with high defi-
nition textures at high screen resolution.
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(a) Column (22 877 845 points)

(b) Dancers (31 620 449 points)

Figure 6.6: Visual quality for various large models. Antialiased rendering with 3 color light sources
on a 1600x1200 screen resolution.Left: the sub-sampled point cloud decimated at the first out-of-
core reading pass.Middle: the coarse Surfel Strip collection.Right: the interactive rendering of this
collection, enhanced with normal map expressing the fine details, generated during the second reading
pass of the point cloud (models courtesy EDF).
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6.4 Discussion

Comparison The critical point in our work was to reduce as much as possible the pre-process time
needed for obtaining a convincing visualization of large point clouds. Compared toQSplat[RL00], our
preprocessing is faster (one order of magnitude in the worst experimental case) and it does not require
a previous surface reconstruction (huge additional processing time). Compared to theLayered Point
Clouds[GM04], although we did not implement it, our preprocessing seems to be about ten times faster,
according to the paper timings. Of course, these multiresolution methods are conservative, and do not
perform a low pass filtering on the geometry such as ours, but from the visualization point of view, we
keep the essential appearance thanks to high resolution normal maps reconstructed in 2D (see Figure
6.10).

Figure 6.7: Upper part of the St Matthew model with our method rendered at 165 FPS, without (left)
and with (right) the normal maps. The maps are recreateddirectly from the point cloud, providing
a convincing appearance, while using less than 80k triangles (left image).Most of the “appearance”
information carried by the original point cloud is directly stored through these normal textures on the
GPU memory (185 MB) and used for the per-pixel lighting.

Note also that our system provides apolygonal rendering, highly optimized on today’s GPU. This
allows us to reach high framerates at high resolution. Clearly, our approach provides results that also
confirm [PGK02]: performing decimation on the point cloud and then applying reconstruction methods
is definitely more efficient than meshing and optimizing the full resolution point cloud, at least for our
visualization purpose.

Finally, the diffusion process of normal maps can be seen as a kind of surface reconstruction, where
not the geometry, but the normal field is reconstructed from points, in the lower dimension (the average
plane of the leaf node). Figure6.8 shows our normal mapping reconstructed directly from original
samples: the same order of visual quality is reached when comparing to priorart methods where a full
resolution surface reconstruction and parameterization were necessary before performing the appearance
preserving simplification.
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Figure 6.8: Left: Surfel Strips rendering.Right: Normal Surfel Strips rendering. High frequency
details of large scans models are preserved, using detailed normal textures instead of huge polygons
sets. Globally, our approach provides similar results to usual appearance preserving methods that
require full resolution tessellation, parameterization and simplification, while we deal only with the
point samples.

Limitations We have made the choice to use a very simple a grid simplification scheme in most
cases at the beginning of our algorithm. This choice has been made after various experiments with
real data sets, which show essentially that most of the time, large scans are dense enough to support, in
the particular case of appearance-preserving conversion, thisregular decimation, allowing a faster pre-
process. Nevertheless, complex topologies and highly varying density distributions require to switch to
an adaptive simplification, such as the one we proposed in Section4.3, which usually means a much
longer pre-process (upon twice longer in our experiments).

The reader must also note that our approach is still a “simplification” one, which exhibits drawbacks and
advantages. On one hand, even if most of the fine visual details are keptthanks to the high resolution
normal maps (see Figure6.9), a slight shrink effect can appear in silhouettes because of the coarse mesh
definition. This is the price for reducing the time preprocessing and improvingthe rendering framerate
compared to “multiresolution” approaches such as QSplat or Sequential Point Trees. On the other hand,
this low-pass filtering has frequently removed theregistration noisepresent in our examples. Figure
6.9 shows the rendering of the St Matthew model with the publicly available QSplat software. We
can observe that our method provides a globally equivalent appearance, with a much higher framerate,
even under a strong close-up. Note that we have compared with QSplat because it is the only publicly
available software for large dataset.

Note also that QSplat is not tuned for recent graphics hardware, whichexplains the poor framerate
obtained. One of our future experiments will be to compare our results with a combination of the
DuoDecim compression scheme of Krueger et al. [KSW05] and the GPU splatting of Botsch et al.
[BSK05], which should be the state-of-the-art large point-based surface rendering system.

Finally, our algorithm works for objects which exhibit an important surfacecoherency, for which a single
normal map can be shared by numerous neighboring sample for capturing the normal field they defined.
For instance, our approach is not adapted for complex objects poorly sampled, like trees, for which our
method would require several hundreds of samples by leaf for running correctly.
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Figure 6.9: Eye of the St Matthew. Visual quality comparison between our approach at 165 FPS (left)
and the QSplat rendering (right), obtained at 0.3 FPS. Even under a strong close-up, our method keeps
the fine visual details as well as the QSplat system, but with a much higher framerate.

Figure 6.10: Real-time visualization of the St Matthew model (186 810 938 points).Left: the sub-
sampled model.Middle left: the coarse polygonal representation generated in the leaves of the Strip-
ping Tree (in green).Middle right: final Normal Surfel Stripping under one white light source.Right:
under 3 colored light sources.
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Applications Our method has been intensively used on scanned archaeological artifacts, as shown all
along this chapter. Their high resolution and need for quick interactive visualization represent a typical
application of our system (see Figure6.11). However, although originally designed for appearance
preserving visualization of large point-based surfaces, we have oftenexperiments alternative uses:

• Appearance preserving visualization of large meshes:our algorithm performs very well by
considering the set of vertices of a large mesh as the input point cloud. Inthe case of a polygon
soup, triangles can be reindexed over the simplified point cloud for generating the Surfel Strips
connectivity in place of the Delaunay triangulation. Consequently, we obtaina fast way to convert
large meshes to coarse ones with normal maps.

• Color preserving visualization: when a per-sample color is provided, we reconstruct color maps
on top of normal maps, and this represent a convenient way to obtain low-resolution textured
models from large scans.

• Conversion for interactive applications: obviously, Normal Surfel Strips succeed as well as
original Surfel Strips in merging acquired objects in interactive applicationsand polygonal ren-
dering engines. In particular, by specifying a fixed amount of authorized memory, our conversion
process is output sensitive, and can fulfill the constrains of a particularapplication, ranging from
preview on mobile devices toward high-quality offline rendering on PC clusters. Our system can
also offer a fast transition to common mesh-based software, by keeping just the connectivity of
Surfel Strips as a mesh and exporting normal textures. Finally, our method can fully run in stream-
ing, including the progressive output of normal maps, using final spatialization for establishing as
soon as possible when a given normal map can be reconstructed and streamed on the output (i.e.,
no more sample coming). This solution entitles a low memory footprint, is highly parallelizable
and can be seen as tweak of thesampling-reconstructionprinciple presented in Chapter4.

Figure 6.11: Application to archaeological visualization: interactive inspection of the Naxian Sphinx,
originally captured with 15M point samples (model courtesy Ausonius).
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Summary We have proposed an efficient conversion process to obtain an interactive appearance-
preserving visualization of large 3D objects represented by point cloudswhich exhibit a surface co-
herency. The main advantages of our technique are:

• Direct processing of unorganized point clouds, avoiding any kind of surface reconstruction of the
large model.

• No complex data structure or complex processing is needed on the large model.

• The idea of inflated support for normal map reconstruction allows consistent overlapping and
avoids global parameterization of the model, enabling appearance preserving normal map conver-
sion of large point-based surfaces and (non-manifold) meshes.

• The pre-process is very fast as it basically only requires two out-of-core passes, which makes it
usable in various applications where quick preview is mandatory

• The final in-core model is entirely stored on the GPU memory, large enough on today graphics
devices to handle efficiently appearance attributes of hundred millions of samples, through, for
instance, normal textures.

• Since all details are stored as normal maps, the rendering takes automatically benefit of the hard-
ware mip-mapping for filtering details at a given screen resolution.

• The output sensitive nature of our approach, as well as its polygonal approach, allows to tailor
precisely the size of the final appearance-preserving representation, which allows to rule correctly
the inclusion of scanned objects in interactive applications.

The whole pipeline is easy to implement, and has provided very convincing results when applied on
a large variety of acquired point-based surfaces. We hope that it can become a good complement to
existing high quality but slower visualization methods of large models.

Figure 6.12: Our largest data set, the Atlas, featuring half a billion samples, demonstratesthe scala-
bility of our appearance preserving method for large objects.

99



Perspectives As mentioned in the limitations, our approach still performs a simplification on the orig-
inal data. In fact, normal maps offer convincing shading and are adapted to modern GPUs, but the ul-
timate rendering solution for large objects would be to perform an adaptivegeometry synthesisprior to
rendering, performed on the fly according to the various rendering parameters (geometry, point-fo-view,
hardware capabilities, semantic, etc...). This would be possible with our systemby replacing normal
maps by displacement maps, for truly recovering the geometry, and obtainingprecise silhouettes and
shadows. Our reconstruction by diffusion supports such attributes, bysimply storing the vectors from
the projected to the original points in the textures. Unfortunately, one fundamental problem remains: if
we want to keep a coarse polygonal representation, we have to perform a real-time mesh refinement.
We address this problem and its applications from a more general point of view in the last part of the
this thesis.
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Part III

Toward Real-time Geometry Synthesis
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After having developed new efficient solutions for processing, editing andrendering large sampled
models, it appeared that the next step in the understanding and use of automatically acquired 3D shapes
wasGeometry Synthesis. Looking back to our appearance preserving conversion, the extraction of a
displacement map is straightforward. But its use is not. In fact, the main challenge is related toreal-
time mesh refinementand is more general than the precise topic of this thesis. Thus, we have decided
to address directly this general problem, and our results are stated in this third part.
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Chapter 7

Generic Mesh Refinement

(a) CPU (b) GPU

Figure 7.1: By using only a dynamic coarse mesh (1246 triangles) animated on the CPU(left), our
GPU kernel generates an adaptive frame-by-frame tessellation and displacement (right), and provides
an extremely detailed rendering (1.1M triangles at 263 FPS).

For the wide range of applications discussed in this thesis and beyond, imagesynthesis techniques
leverage the amount of information required for creating realistic animated pictures. In particular, for
real-time rendering, the application has just to provide a set of polygons describing the geometry of a
scene, and the graphics hardware will automatically produce a coherentgrid of pixels through the usual
rasterization pipeline. However,flat descriptions of surface, such as surfel lists or polygons meshes,
quickly exceed the capabilities of the rendering hardware, since each single frame requires to browse
and display the whole list. In the two previous chapters, we have shown howa multi-resolution struc-
ture can be generated and enriched with high-resolution textures, to display efficiently large sampled
surfaces. Now, going further in the direction of high-quality interactive shape reproduction, we believe
that recovering not only the appearance, but also the geometry of largemodels at rendering time is a
key problem. The is even a more general problem than the precise contextof this thesis: the geometry
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of a model may not be static, and the bandwidth bottleneck between the application and the graphics
hardware limits the size of geometric description that can be transmitted for real-time rendering, and
thus also limits the realism of the rendered pictures.

On-the-fly geometry synthesis addresses this issue by allowing an additional level of abstraction in the
graphics pipeline. For interactive applications, geometry synthesis is usually cast as amesh refinement
process. Rather than enumerating the huge number of polygons that would be required to get an accurate
discrete approximation of a complex shape, mesh refinement techniques splitthe surface representation
into a coarse polygonal mesh combined with a continuous displacement function. Then, at rendering
time, mesh refinement basically performs two successive operations on the coarse mesh: atessellation
step followed by adisplacementone.

During the first step, a refined mesh topology is generated at a target level-of-detail, simply by splitting
each coarse polygon into a set of finer ones, without any actual geometric modification. Then, during
the second step, each newly inserted vertex is translated to its final position,obtained by sampling
the continuous displacement function. Many existing computer graphics techniques can be expressed
under this paradigm, such as spline-based or wavelet-based surface representation, subdivision surfaces,
hierarchical height fields, etc. The key feature that makes this processwork well, is that the continuous
displacement function can usually be defined by providing a smaller amount ofdata compared to the
size of the huge refined mesh. Examples of such additional data include subdivision masks for smooth
surface generation, bitmap textures for displaced meshes, or a bunch ofnumerical data for procedural
geometry synthesis.

However, performing a full GPU implementation of this two-step process remains a problem with current
devices. While graphics hardware offers a flexiblevertex shaderstage that allows an efficient implemen-
tation of the displacement step, the lack of geometry creation on GPU makes the implementation of the
tessellation step really tricky. Last generation devices, launched at the end of 2006, embed ageometry
shaderstage [Bly06] which has been specifically designed for geometry upscale. Unfortunately, even
if the geometry shader clearly represents a step in the right direction, it does not provide the ultimate
high-level flexible solution demanded by many applications. One of its main limitation,is that the ge-
ometry shader cannot output (i.e. generate) more than a fixed amount of floating point numbers (1024
in the original specification), which means that only about 2 or 3 levels of refinement can be applied on
each coarse triangle. If deeper refinement is required, multi-pass geometry shading has to be employed,
which obviously reduces overall performances.

The lack of flexible geometry synthesis on GPU, has led some researchersto cast the mesh refinement
problem as a general purpose computation problem, using a GP-GPU approach [GPG06]: by converting
the coarse mesh as a standard rectangular image, the tessellation step becomes a simple image upscaling
operator, and the displacement step can be implemented in thefragment shaderstage. However, such an
approach induces several strong restrictions. First, it requires an additional preprocessing step to convert
the mesh into an adapted image format. Second, it involves intensive use of multi-pass rendering and
fragment shading, while the vertex shading stage is greatly under-exploited, as it only has to process a
few full-screen quads. Third, the whole process has potentially to be restarted for each frame in the case
of dynamic meshes. Fourth, additional hardware pipelines (e.g. physics simulation hardware) are not
directly compatible with such an approach, since no object space geometry isreally produced. And last,
multiresolution and adaptivity cannot be easily handled by such a process.

In this chapter, we propose an alternative approach calledadaptive refinement kernel(ARK ), based on
three key features. First, a flexible control of the adaptive level-of-detail is obtained by a simple and
genericdepth-tagging process. Second, a set ofadaptive refinement patterns(ARP) is employed to
allow crack-free adaptive multiresolution refinement. And third, a specific single-pass vertex program,
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calledadaptive refinement shader(ARS), performs both tessellation and displacement steps involved in
mesh refinement. By combining all three ingredients, we obtain a flexible kernel for adaptive on-the-fly
mesh refinement on GPU.

This kernel does not involve any preprocessing of input coarse meshes, as it directly processes the basic
mesh representation used in low-level APIs, such as polygon soups or indexed triangle sets, without
requiring additional high-level data structures (e.g. half-edge representation). With our kernel, the final
mesh is never generated on the CPU, never transmitted on the graphics bus,and even never explicitly
stored on the GPU. All the refinement is performed by our single-pass generic vertex program, which
totally frees the fragment shaders for including additional visual enrichments. This kernel offers a flexi-
ble way to perform geometry synthesis based on displacement maps extracted from acquired geometry.
It is also particularly well-suited for dynamic meshes which are deformed on aframe-to-frame basis
(animation of characters, physics simulation, etc.) and for procedural shapes that usually include high
frequency features and require fine tessellation at rendering time.

7.1 Context: Real-time Mesh Refinement

Existing mesh refinement methods can basically be divided in two main categories: either direct or
indirect refinement.

Direct Refinement This first category includes pure geometry synthesis approaches, where the in-
put coarse mesh is directly refined in object-space, without additional conversion steps. Multi-scale
rendering of numerical models of terrains are maybe the most classical examples of on-the-fly direct re-
finement [AH05], but the involved algorithms are usually limited to height-field configurations. Another
well-studied topic includes all the techniques that target an efficient GPU implementation of subdivision
surfaces [ZS00], as pioneered by Pulli and Segal [PS96]. They introduced a memory-efficient depth-first
algorithm for refining an arbitrary triangle mesh toward the subdivision surface it defines. They usepre-
computed tables of basis functionsfor a prefixed refinement depth, one for each possible configuration
of the one-ring neighborhood. At rendering time, these tables are used for each coarse triangle according
to its one-ring neighborhood. A uniform triangle refinement at a prefixeddepth is then performed, and
the generated vertices are projected on the limit surface. Such a refinement is specific to each subdivi-
sion scheme, and can benefit from low level implementations, using either SIMD instructions of modern
CPUs[BS02] or programmable GPUs [BS03]. Unfortunately, thesedirect approaches are limited by
the the set of precomputed tables, restricted in term of topology and does not address the problem of
tessellation (pre-tessellated coarse meshes are usually stored on graphics memory). Specific hardware
has also been proposed in order to reduce the bandwidth between CPU and GPU [BKS00, dRBAB02].

Alternatively to true subdivision surfaces, Vlachos et al. [VPBM01] have proposedCurved PN Trian-
gles, a fast spline-based mesh smoothing based on the 3 positions and normals ofa triangle. We will
show in the next chapter how Curved PN Triangles can be implemented with ourkernel, and how they
can be controlled by scalar tags.

Indirect Refinement This second approach casts mesh refinement as a kind of image processing al-
gorithm [BW06]. Before the introduction of recent unified architectures, fragment processing was much
more flexible than vertex processing. Thus, several algorithms have been proposed, again mostly fo-
cused on subdivision surfaces, which consider meshes as textures rather than geometry. Basically, these
methods work in three steps: first the input mesh is converted on CPU to an image-based representation.
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For instance, Shiue et al.[SJP05] start with a two-step subdivision of the initial mesh on the CPU (basi-
cally to sufficiently separate vertices with extraordinary valence), and then, unfold each original vertex
with its two-ring neighborhood in a 1D texture. Similarly, Bunnell [Bun05] breaks the original surface
into small pieces, projecting them on 2D textures which provides a limited GPU support for displaced
subdivision surface [LMH00]. With such an approach, the ”geometric” texture can then be upscaled,
by applying scaling and filtering operations (multi-pass rendering) corresponding to the usual tessella-
tion and averaging steps in subdivision [Kob00, WS04], which is implemented using a render-to-texture
function and replacing the usual image filtering kernel by the mesh subdivision one. This is done recur-
sively until reaching a given depth or an error bound. Finally, upscaled images are converted back to
geometry, rasterized and rendered on screen. These algorithms workswell for small refinement depths,
but inherit the intrinsic limitations of GP-GPU approaches: they require a conversion of the input model
to a specific format and employ intensive multi-pass rendering. When the input is not a mesh but an
object with a global parameterization, such as NURBS or T-Spline surfaces, the indirect method pro-
posed by Guthe et al. [GBK05, GBK06] is more efficient, as the parameterization already acts as image
coordinates. Note that theunified shader architectureof recent GPUs, that offers efficient vertex texture
fetch, coupled with the additional topology information provided by recent APIs [Bly06] now permits
to process geometry directly at vertex/geometry shader level, without any mesh-to-image conversion.

Adaptivity and Local Control Including adaptivity within mesh refinement can strongly improve
the overall performance, by reducing the number of polygons in areas classified as less important (e.g.
flat areas, far areas, partially hidden areas). Multiresolution mesh representation [Hop96] is based on
this notion. K̈ahler et al. [KHS03] have proposed an interesting curvature-based approach for CPU
adaptive mesh tessellation. Nevertheless, adaptive refinement methods are not easily amenable to GPU
implementation, due to their highly dynamic adjacency information.

Local control of a given mesh refinement process has been frequently solved by including additional
per-[vertex/edge/face] boolean or scalar tags, which can be used to edit the shape (e.g. crease, tension,
bias, etc) of the refined surface around the tagged simplex [BS95, BMZB01]. Here, we introduce a
similar tagging scheme, but this one is not intended to control the geometry but rather the topology
of the refined mesh. This per-vertex tagging scheme is then used to select adaptive tessellation in the
parametric domain (barycentric coordinates of the triangles), “mapping” it implicitly onto each original
polygon.
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7.2 Adaptive Refinement Kernel

Figure 7.2: Architecture of our adaptive refinement kernel (ARK). For each coarse polygon to refine,
we first transmit its geometric attributes as well as the displacement function attributes to the adaptive
refinement shader (ARS). Second, a drawing call is performed, thatselects the correct adaptive refine-
ment pattern (ARP) according to the desired level-of-detail. All the trianglesincluded in the selected
ARP (implemented as a vertex buffer object) are then translated by barycentric interpolation from the
polygon attributes, and warped according the displacement attributes. Finally, the set of so-mapped
refined triangles are rasterized and passed to the fragment shaders forrendering on screen.

7.2.1 Overview

TheAdaptive Refinement Kernel(ARK) presented in this chapter offers the following properties:

• Standard geometry structures used by rendering APIs (polygon soupsor indexed triangle sets)
can be employed as-is, without any preprocessing (e.g. global or localparameterization) nor any
additional data structures often required by refinement techniques (e.g.half-edge structure).

• Only the coarse mesh is transmitted from the CPU to the GPU. The only required additional data
is a simple per-vertex scalar attribute, calleddepth-tag, that indicates the level-of-detail desired in
the vicinity of each vertex. Note that this depth-tagging may be generated either automatically or
under user supervision.

• As mesh refinement is performed on-the-fly, on a frame-by-frame and triangle-by-triangle basis,
arbitrary level-of-detail can be obtained, even for animated meshes.

• The whole two-stage adaptive mesh refinement (tessellation and displacement) is performed on
the GPU, by a single-pass vertex program, which totally frees the fragmentshaders for additional
visual enrichments.

The workflow architecture used by our ARK is described in Figure7.2. The key idea is to precompute
all the possible refinement configurations of one single triangle, for various per-vertex depth-tags, and
encode them using barycentric coordinates. Each possible configuration is called anadaptive refinement
pattern(ARP) and is stored, once for all on the GPU, as a vertex buffer object. Then, at rendering time,
the attributes of each polygon of the coarse mesh, as well as the attributes ofthe displacement function
are uploaded to the GPU and the adequate ARP is chosen according to the depth-tags. Finally, the vertex
program simultaneously interpolates the vertices of the current coarse polygon, and the displacement
function, by using the barycentric coordinates stored at each node of the ARP to “map” the refined
connectivity on the coarse one. The first interpolation generates the position of the node on the polygon
(i.e. tessellation step) and the second one translates it to its final position (i.e. displacement step).
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Figure 7.3: Examples of depth-tag configurations (color code) and adaptive refined topology generated
on the GPU.Left: Initial coarse mesh transmitted from CPU to GPU.Middle: Adaptive refinement
using distance-based depth-tagging.Right: Adaptive refinement using curvature-based depth-tagging.

7.2.2 Topology Control with Depth-tagging

On the CPU-side, the application specifies the usual per-vertex attributes of the mesh (position, normal,
color, etc) as well as a specific one: thevertex depth-tagthat indicates the level-of-detail desired in the
vicinity of each vertex. The depth-tagging process can either be performed once for all for static meshes,
or dynamically recomputed at each frame for animated meshes.

Once this vertex depth-tagging has been set, it is employed at rendering time toadaptively refined each
coarse polygon, according to a set of precomputed configurations. More precisely, the depth-tags will
be used for selecting a per-edge tessellation rate. To ensure crack-free refinement, the tessellation must
be consistent on the two sides of a given edge. Thus a consistentedge depth-tagis computed by simply
taking the arithmetic mean of the two adjacent vertex depth-tags. Moreover, toeasily manage general
non-triangulated meshes, a centroid split is performed for each coarse polygon withn vertices to get a
set ofn triangles. The depth-tag of the centroid, calledface depth-tagis computed as the mean of then
surrounding edge depth-tags.

Such a tagging approach is very generic, as the tag values can be set according to any metric. In this
article, we do not propose new metrics, but rather show how to set the depth-tag according to any
existing one. For instance, Figure7.3 shows a static tagging generated by using a modified version of
the curvature estimator proposed by Rusinkiewicz [Rus04], as well as a dynamic tagging generated by
using a simple camera-to-vertex distance metric.
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7.2.3 Refinement Patterns

Figure 7.4: Principle of Uniform Refinement Patterns. (a) Coarse mesh stored on CPU. (b) Uni-
form Refinement Pattern (URP) stored as a vertex buffer object on GPU,where each node is stored as
barycentric coordinates. (c) Final refined mesh rendered on screen. The URP is used to tessellate all
triangles at a uniform level-of-detail. In this example, the URP is a tessellated triangle encoded as a
single degenerated strip, composed of 8 different regular parts (eachpart has a different color).

According to the classification of Shiue et al. [SJP05], our technique can be considered as a patch-based
refinement. We start by explaining the principle in the uniform case and then give a generalization to
adaptive refinement.

Uniform Refinement Patterns (URP) In the case of uniform tessellation rate, our approach useone
singleUniform Refinement Pattern for the whole mesh. This refinement pattern is transmitted once for
all, from the CPU to the GPU, as a vertex buffer containing a few strips (seeFigure7.4).

Let AT be the set of attributes of a coarse triangleT. Typically AT contains the 3 vertex positions, 3
vertex normals, 3 vertex colors, and 3 texture coordinates. We proposeto render the refined mesh with
the following algorithm:

� �

GLuint URP;

void precomputeURP () {

generateAndStripURP (URP);

sendURPVertexBufferToGPU ();

bindVertexBuffer ();

sendURPIndexBuffersToGPU (URP);

bindIndex (URP);

}

void render (Mesh M) {

for each CoarseTriangle T of M do {

sendToGPU (A(T));

drawElement ();

}

}
� �

Basically, at rendering time, the attributes of each coarse triangle are uploaded to the GPU and the URP
is drawninstead of the coarse polygon. The barycentric coordinates stored at each nodeof the URP
are used to interpolate the per-vertex attributes (e.g. positions, normals) ofthe coarse triangle, and to
output each refined vertex in thegraphic contextof the currently processed coarse triangle. This virtually
generates vertices on GPU and can be seen as a proceduralinstanciationmethod for refinement purpose.
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Another way to see this method is to consider that the URP is “mapped” onto eachcoarse polygons,
enriching their connectivity.

More formally, let suppose that a functionalfAT : [0,1]2→ R3 can be constructed overAT , the simplest
case being the identity function, i.e. linear refinement, without displacement and corresponding to the
tessellation. To evaluatefAT at each vertexV of URP, we have to recover its parameterization{u,v}
ontoT. Actually, we need to know the position of a refined vertex “relatively” to theoriginal triangle.
Since theURP is only used for the topological storage of the tessellation, we propose to use to encode
the usebarycentric coordinatesof V as its position vector:Vxyz := {w,u,v} wherew = 1−u−v.

Now, during the vertex shading pass, the GPU can clearly identify the parameterization{u,v} for each
vertexV of RP, and thus evaluate its functional valuefAT (u,v). Of course, each attribute in the setAT

may eventually be interpolated by a different functional.

Let us consider the position attributes{P0,P1,P2} of the current coarse triangle drawn and the parame-
terization{w,u,v} (encoded as the position of inner vertices) of each vertexV of RP. In order to perform
the tessellation, we just have to interpolate between{P0,P1,P2} to obtain the output positionVxyz of V:

Vxyz := wP0 +uP1 +vP2 = VxP0 +VyP1 +VzP2

The URP technique strongly reduces the CPU-GPU bottleneck, as only the coarse mesh is transmitted,
while the GPU synthesizes the high-resolution mesh on a per-triangle basis. This approach is particularly
well-suited for dynamic objects that cannot be refined and stored on the GPU once for all, as well as for
procedural displacement textures, that usually require highly tessellatedmeshes. In this case, the URP
technique enables to stream more geometry toward the screen than could even be stored on the CPU or
the GPU.

Unfortunately, providing only uniform refinement is a major drawback formost applications, as it is
almost impossible to avoid either over-tessellated or under-tessellated meshes, even in the easy case of
a moving camera in a static scene. Therefore, we propose to extend this approach by generating a set of
Adaptive Refinement Patterns(ARP).
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Adaptive Refinement Patterns (ARP) Basically, the idea of ARP is to precompute all the different
topological configurations of a refined polygon both for regular and irregular situations, still encoding
the nodes in the plane parametric space with barycentric coordinates. Then, at rendering time, the low-
level API can select the correct ARP, according to the depth-tag configuration of the coarse polygon.

Figure 7.5: Left: The matrix (or pool) of adaptive refinement patterns, in the barycentric coordinates
system, stored as vertex buffer objects on GPU, with its 3 dimensions corresponding to the 3 depths tags
of a coarse triangle.Right: Two different ARPs with different support sizes for the adaptive topology
of a triangle. The largest support offers better transitions between the different edge resolutions, but
requires more vertices.

ARP for Triangular Meshes For triangular meshes, it is possible to encode all configurations up to an
upper bound of the refinement depth. Since different tessellation rates may appear for different edges of
a triangle, the set of ARPs is implemented as a matrix ofl3 patterns, withl being the deepest refinement
level allowed (left part of Figure7.5). This matrix is precomputed and uploaded to the GPU once for all.
The quality ofadaptivityfor a given refinement scheme is usually rated with its support size [Kob00].
The larger is the support, the “smoother” will be the transition between two different tessellation rates,
but additional vertices are required (see right part Figure7.5). The pseudo-code of the algorithm used
on the CPU-side for triangular meshes is presented below:

� �

GLuint ARPPool[MaxDepth][MaxDepth][MaxDepth];

void precomputeARPs () {

generateAndStripARPs (ARPPool);

sendARPVertexBufferToGPU ();

bindVertexBuffer ();

sendARPIndexBuffersToGPU (ARPPool);

}

void render (Mesh M) {

if (dynamic)

for each Vertex V of M do

V.tag = computeRefinementDepth (V);

for each CoarseTriangle T of M do {

sendToGPU (A(T));

bindIndex(ARPPool[T.v0.tag][T.v1.tag][T.v2.tag]);

drawElement ();

}

}
� �
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Our system thus allows any kind of adaptive transition, as soon as its support fits in the area of the coarse
triangle. Possible adaptive refined topologies range fromborder-split patterns tovariational angle-
maximizingone. In most cases, simpleborder-split topologies as the one presented at the upper-right
corner of Figure7.5 offer good results. Note that the APRs might be harder to convert into triangles
strips (lossless topology compression) than regular ones. Thus, an automatic stripping is performed
using the STRIPE algorithm [ESV96, RBA05]. Algorithm 5 gives a border-spliter adaptive tessellation.

Algorithm 5 Border-splitter Adaptive Refinement Generation

Require: input triangleT = {[0,0], [1,0], [0,1]} // barycentric coordinates
Require: mandatory refinement edge depth{de

0,d
e
1,d

e
2}

dmin = min(de
0,d

e
1,d

e
2)

Tr ← uniform refinement ofT at depthdmin

for each edgei do
r i ← de

i −dmin

for each refined trianglet on edgei do
Tr ← Tr − t
Tr ← split t r i times along edgei

end for
end for
return Tr

ARP for General Polygonal Meshes While the memory footprint remains low when storing refine-
ment patterns for triangles, it becomes a problem for more general polygons. If no care is taken, the
number of different configurations to store may quickly become impractical when the tessellation levelℓ
increases. Indeed, as each edge of the polygon includes its own tessellation rate defined by its depth-tag,
the number of different tessellation patterns isℓ3 for a triangle,ℓ4 for a quadrangle and more generally
ℓn for a polygon withn vertices or edges. One possibility which strongly reduces the total number of
configurations is to useconstrained depth-tagging, for which the variation among the depth-tags for
each polygon is clamped to one level up or one level down. Unfortunately,constrained depth-tagging
requires additional non-trivial work on the CPU-side, which may have to be repeated for each frame, in
the case of dynamic tagging.

We propose a alternative solution for efficient encoding and processing of the set of ARP without requir-
ing any limitation on the vertex depth-tag configurations, and only involving very limited CPU overhead.
This solution is illustrated on Figure7.6. Let us take the general case where the CPU has to manage
a polygon withn vertices. First, each couple of adjacent vertex depth-tag(δk,δk+1) is converted into
an average edge depth-taḡδk by computing the arithmetic mean. An average face depth-tagδ̄ is also
computed from the set of̄δk. This double averaging acts as smoothing process of the initial vertex
depth-tags, which will naturally soften abrupt variations of the tessellation rate. Second, the polygon
is split into a set ofn triangles by linking each pair of adjacent vertices to the centroid of the polygon.
The depth-tag of each inner edge of these triangles is set toδ̄ . This guarantees that each triangle only
contains two similar depth-tags̄δ and δ̄k because they have been smoothed by double averaging. The
inner part of the triangle (green area on Figure7.6) will be uniformly tessellated at the rate provided
by the face depth-taḡδ , while the outer part strip will generate a crack-free junction between level δ̄
and levelδ̄k. All the (very reduced) number of possible configurations for this adaptive triangle strip are
concatenated at the end of the uniform tessellation of the inner part of the triangle, and the whole data is
stored on the GPU as a single index buffer. Each specific configuration can thus be simply retrieved by
providing an offset in that buffer.
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Basically, with our solution, one single strip of tessellated triangles at the outlineof the initial coarse
polygon is used to manage the crack-free junction between different adaptive levels, while most area
of the polygon is tessellated according to the face depth-tag. In other words, we solve the adaptivity
problem on a per-polygon basis, which can thus be done without complex high-level data structures to
encode the neighboring topology for each polygon. For pathological cases wherēδ and δ̄k differ too
much, two border strips instead of one may be employed to create smoother transition between coarse
and fine tessellation, and thus better avoid elongated triangles. Finally, note that since all ARPs are
precomputed and uploaded once for all on the GPU, rendering one polygon with uniform tessellation,
and one with adaptive tessellation, takes exactly the same time, for a equivalent tessellation rate. This is
far from being true with existing adaptive mesh refinement techniques.

Figure 7.6: ARP factorization for non-triangular patterns.
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7.2.4 Adaptive Refinement Shaders

Our kernel uses a specific single-pass vertex program calledAdaptive Refinement Shaders(ARS), that
successively performs the tessellation and the displacement steps. Duringthe tessellation step, the co-
ordinates of the currentARPare used to generate a barycentric interpolation of the standard per-vertex
attributes (position, normal, etc). Then, during the displacement step, the resulting vertices are displaced
using additional attributes (e.g. textures for displacement mapping).

Note that since all ARPs are encoded in the barycentric space, refinement shaders are totally independent
of the topology of the patterns. So, the same shader is used, whatever the given ARP. Here is an example
in GLSL [KBR04] of a refinement (vertex) shader which performs a simple procedural refinement with
linear tessellation:

� �

const uniform vec3 p0, p1, p2, n0, n1, n2;

float displace (vec3 p) {...}

void main (void) {

// Tessellation by barycentric interpolation

float u = gl_Vertex.y;

float v = gl_Vertex.z;

float w = gl_Vertex.x; // 1-u-v

gl_Vertex = vec4 (p0*w + p1*u + p2*v, gl_Vertex.w);

gl_Normal = n0*w + n1*u + n2*v;

// User Defined Displacement

float d = displace (gl_Vertex.xyz);

gl_Vertex += d * gl_Normal;

// Shading and Output

...

}
� �

Note that the barycentric coordinates may be used for non-linear interpolation (e.g. quadratic interpola-
tion for normals [VPBM01]). Moreover, in addition to vertex displacement, the same process can further
be used to interpolate any other per-vertex attribute during the refinement process. Finally, as the refine-
ment is totally performed on a per-polygon basis, meshes with arbitrary genius and even non-manifold
can be directly processed (see Figure7.7).

Figure 7.7: Adaptive refinement of a deformable genius-4 shape. The refinementprovided by the ARK
is not restricted to a particular topology, nor manifold conditions.
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7.3 Refinement Zoo

In this section, we present various examples of on-the-fly mesh refinement algorithms which have been
implemented with our kernel.

7.3.1 B́ezier Smoothing

Figure 7.8: Left: Coarse mesh (1246 triangles on CPU).Middle: Adaptive interpolated smoothing
by Curved PN Triangles (1.1M generated triangles on GPU).Right: Sharp features, tension and bias
control with Scalar Tagged PN Triangles (similar number of generated triangles on GPU).

Curved PN Triangles [VPBM01] are an efficient alternative to usual subdivision surfaces. This method
generates an interpolated “visually” smooth refinement over an arbitrary mesh just by taking into account
positions and normals stored at each triangle vertex. The basic idea is to define a cubic displacement
field and a quadratic normal field, each of them being defined by a simple triangular B́ezier patch. Scalar
Tagged PN Triangles, presented in Chapter8, improve this scheme by allowing accurate control of sharp
creases, local tension and bias with additional vertex attributes. The computation of the corresponding
Bézier control points can be done on CPU and transmitted to the GPU as additional vertex attributes.
But, as the involved computation is very light and does not involve specific data structures, the whole
process can be implemented on the vertex shader. Figure7.8shows two results obtained with our GPU
implementation of these techniques. It should be noted that compared to benchmarks provided by our
graphics device manufacturer, the framerates we obtain for deep refinement show that the ARK saturates
the GPU vertex processing horsepower, which means that no bottleneck appears neither on CPU nor on
the graphics bus.
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7.3.2 Full GPU Displacement Mapping

Figure 7.9: Real-time displacement mapping.Top Left: Coarse mesh streamed from CPU (1914
polygons).Bottom Left: Displacement map stored on GPU.Right: Displaced Adaptive PN Triangles,
generated on the fly in real-time by our GPU Kernel (3.6M polygons). Thisfinal rendering (58 FPS)
includes the use of displacement map with our kernel on the vertex shader, as well as normal, color and
shadow maps on the fragment shader (data courtesy Cyberware).

Recent graphics hardware allows vertex-texture fetches [Fer05]. This means thatdisplaced subdivision
surfaces[LMH00] can be easily implemented by storing the displacement in a floating point texture,
and accessing it in the second stage of the refinement shader. However, GPU evaluation of subdivision
surfaces can be expensive on the vertex shader because it requires complex computation for vertices
with high valence (we address this particular problem in Chapter9). Fortunately, in the work of Lee
et al. [LMH00], the subdivision process is only used for smoothly sampling a base domain for vertex
displacement, while the final geometric continuity is expressed by the displacement and not the subdivi-
sion. In this case, Curved PN Triangles [VPBM01] can provide a smooth enough base domain in many
cases compared to genuine subdivision surfaces, with the additional benefit that no local neighborhood
has to be transmitted to the vertex shader to achieve the refinement of a givencoarse triangle. Figure7.9
gives an example of the rendering of suchDisplaced PN Triangles.
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7.3.3 Procedural Refinement

Figure 7.10: Few examples of complex shapes defined by a simple mesh with an high frequency proce-
dural displacement. Deep refinement can be reached efficiently.

Geometry synthesis by procedural refinement is clearly one of the best examples that enlightens the
strength of our ARK. These techniques often define a very coarse mesh, with complex displacement
functions, potentially requiring a very high tessellation rate to correctly sampleall high frequency fea-
tures. Figure7.10shows several examples of such refinement, which only require to transmita small set
of user-defined parameters to define the corresponding proceduraldisplacement function.

7.3.4 Adaptive Terrain Rendering

Figure 7.11: This terrain has been rendered at an average framerate of 44 FPS (6Mtri.), by using a sin-
gle height-map texture to displace the refined tessellation. The refinement isdriven by a view-dependent
depth-tagging.Left top: Topology for input ground.Left middle: uniform on-the-fly refinement with
the URPs.Left bottom: adaptive on-the-fly refinement with the ARPs.Right: Final adaptive real-time
rendering.

While dedicated systems exists for efficiently adaptive rendering of terrains [AH05, LC03], the ARK
allows very simple adaptive refinement of height-field models. We use a basicground made of few
hundreds polygons as a coarse mesh, and upload an high resolution height-field as a floating point
texture to the GPU memory. Then, at rendering time, we tag the vertices of the coarse ground using a
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view-dependent distance metric. Finally, the coarse ground is adaptivelytessellated on-the-fly by the
ARK and displaced using vertex texture fetch from the height-field texture (see Figure7.11).

7.3.5 Animated Mesh Refinement

Figure 7.12: Dynamic refinement of an animated mesh.Left: Frame 1. Right: Frame 12. The
coarse mesh is animated on the CPU, and the GPU maintains an adaptive refinement driven by dynamic
tracking of curvature modifications.

Animated meshes are another important application that could significantly benefit from our ARK. In-
deed, as mesh refinement is performed on-the-fly, without storage and without specific per-object pre-
computation, an animated mesh just requires a frame-by-frame update of its depth-tag configuration,
in addition to usual vertex position update by the application. An adequate adaptive refinement will
then be generated at each frame. Figure7.12presents two frames of a face animation sequence with
dynamic adaptive refinement. The depth-tagging is based on a local curvature estimation performed
frame-by-frame, while the refinement process uses smoothing by CurvedPN Triangles over the coarse
mesh.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  200  400  600  800  1000  1200  1400  1600  1800

F
P

S

Input Coarse Mesh Triangles

Uniform Refinement
Adaptive Refinement

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  200  400  600  800  1000  1200  1400  1600  1800

F
P

S

Input Coarse Mesh Triangles

Uniform Refinement
Adaptive Refinement

Figure 7.13: Comparison between the frame rate obtained with uniform mesh refinement (URP) and
our new adaptive refinement (ARP). For the largest coarse meshes (1800 on-CPU triangles), more than
two million triangles are generated on-the-fly by the vertex shader. Note that our method is between one
and three orders of magnitude faster than the equivalent CPU-based adaptive refinement.
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7.4 Implementation and Performance

Our implementation runs under Linux, using OpenGL and GLSL. All tests havebeen performed on an
nVidia GeForce 8800 GTX with 768MB of memory, on an Intel P4 2.4GHz with 1GB of memory.

GPU Implementation of ARP: The ARP is the central structure of our system. In order to tightly
reach the maximum performance at rasterization time, the ARP is encoded as anindexed vertex bufferof
degenerated triangle strips [SWND05], directly on the GPU memory. Moreover, because we use dyadic
refinement, each refinement level is actually a superset of the previous one, so we can further reduce the
global memory footprint by separating the geometry from the topology. Avertex bufferis used to encode
all the geometry by storing the set of barycentric coordinates for the nodes that belong to the deepest
uniform ARP. Then the topology of any given ARP is encoded by using anindex buffer, as an indexed
strip over this maximum configuration. So, at rendering time, when the application selects a given
ARP for refining a coarse triangle, the only action performed by the API is tobind the corresponding
index buffer and set the correct offset, while always keeping the samevertex buffer, which guarantees
cache-friendly access.

Regarding memory usage, on the CPU side, the only memory overhead comes from the storage of the
set of ARP identifiers. This overhead is extremely small and totally independent of the current 3D
scene. For instance, if the maximum refinement level is set to 10 (which offers a maximum refinement
of 1024x1024 sub-triangles for each coarse triangle), the precomputation (all ARP generation) time is
less than half a second and the main memory overhead is less than 4kB. On GPUside, the memory
overhead required to store the set of ARP at this resolution is about 26MB.

For either uniform or adaptive refinement patterns, we have observedthat in the case of deep refinements,
rendering performances were very close to the one obtained with static meshes (i.e refined during a
preprocessing step and stored on the GPU one time for all). This can be explained by the small memory
requirement of our method, which maintains a good cache coherency.

Note that in restricted conditions, with 16-bit precision (e.g. PDAs), our ARP encoding allows a max-
imum refinement level of 256× 256 for each coarse triangle. At the other extreme, with a modern
GPU and very high resolution displays, we have experimented real-time performance when using up to
2048×2048 tessellation for each coarse triangle. Even higher resolutions can easily be reached, since
the ARK fully runs in object space.

Figure7.13presents the rendering frame rate obtained for various models. The measure integrates the
tessellation step and a simple procedural displacement step for an animated mesh. A dynamic adaptive
refinement has been performed frame-by-frame, based on an approximated local curvature estimation,
combined with a view-dependent refinement bound. Compared to our URP technique, our ARP scheme
offers a gain ranging from 250 to 460% depending on the model, while providing the same final image
quality. This can be explained by a finer gradation of the tessellation, avoiding rendering of unnecessary
small triangles (e.g. flat areas, far areas). In many cases, the quality is even better, since the aliasing
of over-tessellated meshes (more than one triangle for a pixel) is strongly reduced. In extreme cases,
the gain can even reach one order of magnitude, when the depth-tagging isstatic and the input mesh
is very coarse (see Figure7.10, for instance). Compared to our optimized CPU implementation of
adaptive refinement, our GPU refinement kernel improves the frame rate between one and three orders
of magnitude, depending on the overall complexity of the refinement.

Figure7.14shows the frame rate obtained for a target refined mesh made of 1M triangles, under var-
ious input size vs refinement depthratios. It clearly appears that coarse meshes with high refinement
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depth totally outperforms medium meshes with low refinement depth, for the same total number of tri-
angles. This comes from the fact that for the latter, transmission of input polygons attributes becomes a
bottleneck on the graphics bus. At the other extreme of the spectrum, when the target shape can be de-
scribed by a very coarse mesh with deep refinement, the ARK runs in an optimal context and completely
saturates the GPU vertex processing horsepower.

Figure 7.14: This diagram shows frame rate measures for a target refined mesh resolution of 1M
triangles under various input size vs refinement depth ratio.

7.5 Discussion

Limitations The technique presented here has essentially two main limitations. First, the refinement
depth must be sufficient to avoid the bottleneck involved in the transfer of theper-vertex attributes.
Second, on elder graphics hardware, vertex texture fetch is slow, which limits applications such as
terrain rendering and displacement mapping. Fortunately, this restriction has recently disappeared with
the introduction ofunified shader architectureson graphics hardware. For instance, the terrain render
application at Figure7.11, which uses intensively texture access from vertex shader, runs at about 2 FPS
on an nVidia Geforce 6800 and 44 FPS on an nVidia Geforce 8800 (unified shader architecture), for an
average refinement depth of 8, which produces about 6M polygons.

Another concern may be the question whether the depth tagging should be better performed on the GPU
instead of the CPU. This could be done by using a preliminary rendering pass that would store vertex
depth-tags in a texture. However, this would involve a strong limitation on the kindof depth-tagging
that can be implemented, as many useful information may only be available for theapplication running
on the CPU. Moreover, as the depth-tagging is performed on the coarse mesh, the computation overhead
remains negligible, particularly in the case of deep refinements.

Refinement Kernel vs. Geometry Shader DirectX 10 technology [Bly06] has introduced a new
geometry shader(GS) stage in the hardware rendering pipeline. The first graphics devices including
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these functionalities have been launched at the end of 2006. Even if the GScan obviously be used to
perform mesh refinement, its features are quite different from the way wehave structured our ARK. The
main limitation when using the GS to perform mesh refinement is that the level of geometry upsampling
is hardware limited and fixed. For instance, only 1024 floating point numberscan be output with current
specifications [Bly06]. This is far from being able to tessellate up to 2048×2048 triangles per coarse
polygon for instance, as with our ARK. Multi-pass GS rendering may be employed to reach deeper
refinement, but it would obviously strongly reduce overall performance. In practice, as mentioned by
hardware manufacturer [Gre06], it is not even possible to reach the single pass upper bound, without
observing a huge performance degradation.

Even without the limit of geometry upsampling, implementing adaptive mesh refinement with the GS
would also require to correctly manage crack-free junctions between different tessellation rates. With
our precomputed ARPs, this problem is solved once for all and stored, while the GS would have to
generate consistent topologies on-the-fly and thus require complex shader code. Notice that, as the
GS implements a superset of the vertex shader functionalities, the solution provided by the ARPs can
straightforwardly be implemented on the GS.

Actually, we consider that the GS stage represents a complement to the ARK, rather than an alternative.
By combining both approaches, one may generate more complex refinement ina two stage process.
First, at the VS stage, the ARK tessellates and displaces a base domain (e.g. apply Bézier smoothing
on very coarse meshes) and then additional vertices are inserted at the GS stage (e.g. local extrusion to
create hairy objects). We can also imagine using the GS for low refinement depth where the ARK is less
efficient, and then switch to ARK to get high refinement depth when needed.

Low level API extensions The presented kernel can be integrated at the driver level, in any standard
graphics API such as OpenGL, without any additional hardware capabilities. In this case, the control
interface is a reduced set of functions:

• glARKinit(GLuint maxLevel): builds the set of ARP (special indexed vertex buffers) on GPU,
and stores the corresponding identifiers, indexed by depth-tags.

• glEnable(GL ARK): when activated, the ARK refinement will replace any triangle drawing call
by the corresponding ARP.

• glDisable(GL ARK): restore usual OpenGL behavior;

• glDepthTag1i(GLuint d): set the current vertex depth-tag state (for upcoming vertices).

The fixed pipeline would provide a simple linear refinement, which can then be tuned by setting user
specific adaptive refinement shaders. With this set of functions plus someadditional commodity call-
backs, the use of the ARK is totally transparent to programmers (direct port of existing source code).
Alternatively, finer control of refinement can be provided through specific functions (drawARP() for
instance) in order to mix refined and regular drawing calls without switching the mode.

Summary We have presented a simple and efficient GPU kernel foradaptive geometry synthesis by
mesh refinementbased on a generic depth-tagging process, that makes it suitable for anyrefinement
control that can be expressed on a per-vertex basis (e.g. curvature, view-dependent LOD, area of inter-
est penalty, local estimation of displacement variation, etc). We have introduced Adaptive Refinement
PatternsandAdaptive Refinement Shaders, and have shown that their combination allows the imple-
mentation of various kind of dynamic refinement, with almost no modification of the rendering loop at
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application level. The CPU processing is reduced to the transmission of (dynamic) coarse meshes to the
GPU, eventually combined with additional dynamic data for driving the refinement.

The kernel allows very deep adaptive refinement, using a single-pass vertex program. It does not impose
any conversion of input mesh (such as local or global parameterization)and allows further on-GPU
geometric processing, since it consistently performs geometry synthesis in object space. The solution
is more efficient and even more flexible than prior software-based methods. In practice, the benefit of
the ARK is proportional to the depth of the adaptive refinement. The kernelpermits to “saturate” the
GPU with geometry to draw, and with its intrinsic CPU-to-GPU streaming principle, itis possible to
draw a refined surface almost independently of the amount of available memory, either on CPU or GPU
(the ultimate limitation is represented by the storage on GPU of the set of ARP required for the chosen
depth).

Our refinement kernel exhibits an interesting collaboration between the CPUand GPU (the global anal-
ysis at coarse resolution is let to the CPU for depth-tagging, while local fast refinement is performed
on the GPU, driven by these tags). This corresponds to the idea of shared rendering workload between
powerful multi-core CPUs and GPUs, as stated by Pharr [Pha06]. Future graphics hardware and API
developers seek for refinement methods based on generic barycentricinterpolation, as mentioned by
Sloan [Slo06]. Thus our kernel can also be considered as a first step, performinga software emulation
of such future on-boardrefinement shaderstage.

Perspectives: With this kernel in hand, we can address various applications of geometry synthesis.
First, we have shown how easy and efficient can be the PN triangle refinement with the ARK, so we
will discuss the local control that can be performed on that kind of surface in Chapter8. Second,
one important mesh refinement method that need to be developed for interactive application is mesh
subdivision.

Figure 7.15: Refinement of Loop subdivision surface with the ARK. From left to right: the input coarse
triangle (with its neighbors in dashed lines), the synthetized piece of subdivision surface at depth 2 (1-16
refinement) and 4 (1-256).

As already mentioned above, genuine subdivision surfaces are very different to mesh smoothing tech-
niques based on B́ezier patches, as the refinement of each coarse polygon is usually implemented in a
recursive procedure depending on its one-ring (or even two-ring neighborhood). We have studied two
single-pass approaches to this problem:

• exactsubdivision surface rendering: as stated by Stam [Sta99], an exact evaluation of limit sur-
faces at arbitrary parameter is possible by tilling the parameter values domain ina set of triangular
patches and performing an eigen analysis of the so-defined parameterization. Unfortunately, in the
case of a triangle indexing an extraordinary vertex, the implementation requires a huge amount
of additional data for each triangle, which is no more compatible with efficient rendering. So,
we have tried to develop a hybrid CPU-GPU implementation which delays a large part of the
computation on the ARK, keeping the horsepower of modern multi-core CPUs for non regular
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cases. Figure7.15gives a preliminary example of our current work on a Loop subdivision with
our kernel. However, this solution is still development, and seems to not be competitive with the
second one.

• approximate subdivision surface rendering: we have developed an approximation of subdivision
surfaces for interactive applications, which can be implemented efficiently with the ARK, reaching
real-time performances for millions of polygons output while being visually very similar to exact
subdivision surfaces.

We discuss this application in the Chapter9.
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Chapter 8

Controllable Mesh Smoothing with
Scalar-Tagged PN Triangles

This chapter presents a new fast mesh enhancement technique based onsmoothing by refinement. This
technique can be applied on the simplified geometry obtained at the end of the acquisition pipeline for
improvingon-the-flythe surface quality for rendering. We improve the principle proposed by Vlachos
et al. in their “Curved PN-Triangles”. The key idea is to assign to each meshvertex, a set ofthree
scalar tagsthat act as shape controllers. These scalar tags (called sharpness, bias, and tension) are used
to compute a procedural displacement map that enriches the geometry, and aprocedural normal map
that enriches the shading. The resulting technique offers two majors features: first, it can be applied
on meshes of arbitrary topology while always generating surfaces with consistent behaviors across edge
and vertex boundaries, second, it only involves operations that are purely local to each polygon, which
means that it is very well suited for GPU implementation, with for instance the ARK presented in the
previous chapter.

8.1 Curved PN Triangles

Compared to true subdivision schemes [ZS00] or mesh smoothing techniques,Curved PN-Triangles, a
totally local refinement scheme introduced by Vlachos et al. [VPBM01], is much better suited to hard-
ware implementation, since no adjacency information between triangles has to bestored and managed.
More precisely, starting from an input coarse mesh equipped with vertex normals, an interpolating re-
fined mesh is generated on-the-fly at rendering time by replacing each coarse triangle with a B́ezier patch
driven by the 3 positions and normal of the triangles vertices. The most innovative idea of PN-Triangles,
compared to previous work, is to relax the constraint of high-order geometric continuity, and to show
that a simplevisual smoothnessis sufficient for several applications. This visual smoothness is obtained
by computing, simultaneously but independently, a displacement field, defined as a cubic B́ezier patch,
used to enrich the geometry of each triangle, and a procedural normal field, defined as a quadratic Bézier
patch, used to enrich its shading. Note that an hardware implementation can beeasily designed for such
an empirical local smoothing method [CK03b, CK03a]. In order to offer a greater control on the initial
coarse mesh, this chapter proposes to assign to each vertex of this coarse mesh, a set ofthree scalar
tagsthat act as intuitive shape controllers, namely sharpness, tension and bias. The area of influence of
these shape controllers is very local but is sufficient to guarantee consistent local surface features, such
as curvature values around vertices or tangent plane discontinuities across edges.
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8.2 Description of Scalar Tags

8.2.1 Local surface analysis

Indexed faces sets have become the most common data structure to store polygonal meshes, as it avoids
the duplication of the vertex coordinates. But it has also one major consequence: the only adjacency
relationship stored in the data structure are the indices of common vertices shared by two neighboring
polygons. Thus the only way to get a consistent behavior of the surfaceacross polygon boundaries
is to store the shape parameters on a per vertex basis and to ensure that theinfluence of all the shape
parameters is strongly localized around each vertex.

Unfortunately, if a per-vertex storage is well-adapted to per-vertex shape parameters such as local tangent
plane or local curvature, it is much less adapted to per-edge features that may exist in the geometry, such
as creases or straight lines. So, to be able to correctly account for per-edge features, we impose some
constraints on theone-ringneighborhood of each vertex. Let us consider Figure8.1: a crease passes
through the vertexO and cuts the underlying triangle fan in two sub-fans. An average normal vector
N+ andN− can be computed for each sub-fan, by simply averaging the normal vectors of the included
triangles. The sharp crease is then implicitly defined by the three tagged vertices A, O and B. The
corresponding normal discontinuity can be simply encoded, by applying a kind of Haar filtering on the
two normal vectorsN+ andN−: we store the average normal vectorN = N+ +N− (which is normalized
to unit length) and a difference vector∆ = N+−N−. So ∆ = 0 corresponds to a smooth vertex. In
the remainder of the chapter, we will use the word “tagged” to specify a vertex with a non-null∆ and
the word “untagged” otherwise. To be able to always keep a local decision about per-edge features, we

O

N

A

B

∆
+N

N−

(a) (b)

Figure 8.1: (a) At the vertex level, the green sharp crease can be encoded by a simple vector∆. (b) This
additional per-vertex data locally controls the underlaying per-triangle smooth surface generation.

impose the following restriction on the local configuration:

1. A tagged vertex can have 2 tagged neighbors at most.

2. A triangle can have 2 tagged vertices at most.

The first restriction ensures that only one crease passes through a given vertex. If not, this would mean
that we need more than one vector∆ to encode the normal discontinuity at this vertex. As an extension,
encoding several vectors∆ would allow to represent multiple sharp creases, but at the price of a more
important per-vertex data set. The second restriction make unambiguous thedifference between two
distinct creases that are separated by only one triangle, and a crease that loops around a single triangle.
Note that some simple local remeshing step can remove this limitation (split for instance).
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8.2.2 Shape parameters through scalar tags

Compared to the original PN-Triangle model, the inclusion of the normal discontinuity vector∆ allows
us to generate different displacement fields and normal fields on both sides of a crease edge. We propose
now to define additional per-vertex scalar values (i.e.scalar tags) to offer an even more accurate control
of the local geometry. We have selected three shape parameters that are particularly well adapted to the
control of sharp creases. We first describe these three shape parameters independently of the underlying
refinement technique.

The first scalar tagσ ∈ [0,∞[ is calledsharpness: it defines the divergence of normal vectors across
the two sides of the crease, by interpolating between totally smooth (σ = 0) and totally sharp (σ = ∞)
configurations (see Figure8.2(a)).

The second scalar tagθ ∈ [−1,1] is calledtension: it corresponds to the usual tension parameter that
has been defined in the spline literature [BB83, Far02]. It is used to locally control the curvature of all
Bézier boundary curves that are starting from on a given tagged vertex(see Figure8.2(b)), and allows to
interpolate between three different configurations: tensed Bézier (θ > 0), standard B́ezier (θ = 0) and
relaxed B́ezier (θ < 0).

The third scalar tagβ ∈ [−1,1] is calledbias: it also corresponds to the usual bias parameter that has
been defined in the spline literature [BB83, Far02]. It is used to locally control the direction of all
Bézier boundary curves that are starting from a given tagged vertex (see Figure8.2(c)). Here again three
different configurations are interpolated: bias towardN+ (β > 0), no bias (β = 0) and bias towardN−

(β < 0).

O

N+N−

σ∆

O

N+N−

σ∆

(a) Sharpness

N+N− N+N−

O O

(b) Tension

O

N−

σ∆

N+

N+

N− σ∆

O

(c) Bias

Figure 8.2: The role of scalar tags. (a) Sharpness controls the normal deviation onsharp creases.
(b) Tension controls the curvature of boundary curves in the vertex neighborhood. (c) Bias controls the
direction of boundary curves in the vertex neighborhood.

These three scalar tags are used as shape controllers and they completelydrive the mesh refinement. Our
experiments have shown that these values, defined by the user, are very intuitive and predictable, even
for users not familiar with geometric modeling software.

To sum up, an enriched coarse mesh (ST Meshin the remainder) can be defined by using a set of two
tablesV andT. Each line of tableV stores all the data relative to a vertex: the positionP, the average
normal vectorN, the normal discontinuity vector∆, and the three scalar tagsσ , θ , andβ . Similarly,
each line of tableT stores only the three vertex indices(i, j,k) relative to a triangle.

8.3 Mesh generation

8.3.1 Combining shading and smoothing

As said above, our technique is strongly based on the PN-triangles presented by Vlachos et al. The
reader unfamiliar with this work may refer to [VPBM01] for details on the construction of PN-triangles.
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In order to obtain a coherent effect of the shape parameters defined above, their influence has to be
accounted both for the shading and the geometry of the surface generated during the rendering process.
As shown in Figure8.3, in the case of a sharp crease, this approach ensures a coherent behavior, both on
the silhouette and at the interior of the object.

(a) (b) (c) (d)

Figure 8.3: (a) Coarse mesh with a ring of vertices tagged as sharp (σ = 0.7). (b) Result obtained with
standard PN-Triangles. (c) Result with sharpness only in shading. (d)Result with sharpness both in
shading and geometry.

The shape factors described in the previous section can now be used to efficiently generate a surface
with sharp features. Globally, we can make a distinction between:

• the sharpness valueσ which mainly acts on the shading,

• the biasβ and the tensionθ which mainly act on the silhouette of the object, and so on the
underlying geometry.

We propose to generate a coherent shading for ST-Meshes with aprocedural normal mapconstructed
with the modified normals, and a smoothing algorithm for the geometry that can be formulated as a
procedural displacement map. Both of them are computed with one triangular Bézier patch, similarly
to PN-Triangles. The combination of these two procedural maps producesa real-time piecewise smooth
visualization that is accurately controlled by the simple per-vertex scalar tagsof the ST-Mesh.

8.3.2 Generation of the normal field

The normal field constructed across a triangle has to be smooth in the interior of the triangle, continuous
across an untagged edge (i.e. without normal discontinuity) and consistent to the discontinuity encoded
by theσ values of tagged vertices.

To account for tagged vertices, the three original normal vectors are modified in the following way:
since∆i represents the direction of the discontinuity at vertexi, we defineN ′+i (resp. N ′−i ), by N′+i =
(Ni + σi∆i)/‖(Ni + σi∆i)‖ (resp.N ′−i = (Ni−σi∆i)/‖(Ni−σi∆i)‖). The choice ofN ′+i or N ′−i is made
according to the classification of the triangle against the triangle-fan split introduced by a sharp crease
(see Figure8.1). A linear or quadratic (B́ezier) interpolation between these normals can produce a
visual smoothness over the refined mesh [VPBM01]. In the remainder of the chapter, we will noteN ′i ,
the normal of thecurrentside of a crease for vertexi.
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8.3.3 Generation of the displacement field

As proposed by Vlachos et al., the displacement field will be computed by defining a triangular B́ezier
patch. But the shape modifications generated by the scalar tags at each vertex have to be accounted for,
when generating the displacement field, so the process has to be slightly modified.

A set of 10 B́ezier control points have to be computed to define a cubic triangular patch (see Figure8.4),
to define the displacement fieldb(u,v):

b(u,v) = b300w3 +b030u3 +b003v3

+3b210w2u+3b120wu2 +3b201w2v
+3b021u2v+3b102wv2 +3b012uv2

+6b111wuv

(8.1)

To simplify the upcoming notations, we propose to decompose each control point as:

bi = di +ei (8.2)

wheredi corresponds to the position of the control point when the patch is in a flat configuration (i.e.
all control points are lying in the plane) andei is the displacement vector whendi is projected onto the
plane defined by the normal and the position of the closest vertex. As in [VPBM01], we classify the
control points into 3 main categories:

• vertex coefficients: b300, b030, b003

• tangent coefficients: b210, b120, b021, b012, b102, b201,

• center coefficients: b111 is procedurally obtained by the formulation proposed by Farin to ensure
quadratic precision [Far02].

b300

b030

b003

b012

b021

b201

b102

b

b210
V1

V2

V3

d210

120210e

Figure 8.4: A cubic triangular B́ezier patch replaces each input triangle. Each control point of this patch
can be decomposed in a parameter position di and a displacement ei , defined using vertex positions and
normals, and in our case, additional scalars tags.

The scalar tags should neither affect the vertex coefficients (as we always want an interpolating surface)
nor the center coefficient (as Farin’s formulation always maintains a nice shape for the interior of the
patch). So, we propose to reduce the geometric expression of the scalartags only through the tangent
coefficients. Moreover, to preserve coherence across triangle boundaries, the scalar tags carried by a
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vertex will only affect the two nearest tangent coefficients. For example, the scalar tags ofV1 will only
affect the coefficientsb210 andb201.

In the remainder of this section, we consider the case of a coefficientbi , which is computed using the
scalar tags ofVj = (Pj ,Nj ,∆ j ,σ j ,θ j ,β j), and the position of the opposite edge vertexPk. We have also
to determinate whether the coefficient is on a sharp edge or not. For this, weuse a predicateδi which is
true if the two relative edge vertices are tagged.

Let Π(p,n,q) =−n.(q− p) be the signed distance operator of projection ofq onto the plane defined by
the pointp and the normaln. We can write the Equation8.2as:

bi = di +Π(Pj ,Nj ,di)Nj

with di = Pj +(Pk−Pj)/3.

For instance, with the coefficientb210 of Figure8.4, we havej = 1 andk = 2; δ210 will be true ifV1 and
V2 are tagged, false otherwise. The formulation of this coefficient becomes:

b210 = d210+Π(P1,N1,d210)N1

with d210 = P1 +(P2−P1)/3. Let us now describe how to modify the geometric definition for a tangent
coefficientbi associated with a tagged vertexVj .

(a) (b) (c) (d) (e) (f)

Figure 8.5: Transmission of the scalar tags of two vertices to adjacent Bézier patches.(a) σ = 0.2,
θ = 0, β = 0 (b) σ = 1, θ = 0, β = 0 (c) σ = 0.2, θ = 0.2, β = 0 (d) σ = 0.2, θ = −0.6, β = 0 (e)
σ = 0.2, θ = 0, β =−1, (f) σ = 0.2, θ = 0, β = 1

Sharpness:To get a consistent silhouette for the refined surface, we have to transmitthe sharpness value
σ of a vertex to its relative tangent coefficients. This means thatbi has to express the “flatness” of the
Bézier patch near the sharp crease (see Figure8.5(a)and8.5(b)), which is actually the only important
aspect for its perception. So, we just have to act on the projection, by constrainingbi to the plane of the
“sharp” normal, according toσ , with the following formulation:

ei = (1−δi)Π(Pj ,Xj ,di)Xj with Xj =
(1−σ j)Nj +σ jN′j
‖(1−σ j)Nj +σ jN′j‖

If σ j = 0 we are in the “smooth” case. Otherwise, the modified normal will flatten the patch near the
tagged edge by reducing the elevation produced byei .

Tension: As usual in tensed B́ezier splines, the tension around a vertexVj will be controlled by the
distance between its associated tangent coefficientsbi and its positionPj (see Figure8.5(c)and8.5(d)).
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With our formulation, this leads to simply translatedi before evaluating the projectionei . We want the
tension to be maximal whendi = Pj , so the tangent coefficient will simply be computed by:

di = Pj +
(1−θ j)

3
(Pk−Pj)

Bias: The bias factor is independent of the crease side: two triangles sharing acommon vertexVj of a
sharp crease have to conform their Bézier patches in the same direction, defined by the∆ j (see Figure
8.5(e)and8.5(f)). This time, we want the bias to be expressed only for sharp edges, and we propose to
act again onei , by using a projection direction that directly takes into account∆ j . We obtain:

ei = δiΠ(Pj ,Nj ,di)Yj with Yj =
Nj +β j∆ j

‖Nj +β j∆ j‖

By stitching all together, we obtain the following final formulation for the tangent coefficients:

bi = di +ei

di = Pj +
(1−θ j )

3 (Pk−Pj)
ei = (1−δi)Π(Pj ,Xj ,di)Xj +δiΠ(Pj ,Nj ,di)Yj

(8.3)

The remainder of the process is totally similar to the one used with PN-triangles: the 10 B́ezier control
points do totally define the continuous displacement field. This field, and the associated normal field,
can thus be directly sampled in real-time by the ARK (Chapter7).

8.4 Summary

In this chapter, we have shown how to easily control some useful local surface singularities through a
reduced set of scalar shape parameters encoded in a per-vertex basis. This work enriches the original
PN-Triangle model, and allows the user to design more complex shapes at a coarse level that will be
dynamically refined preserving these shape parameters, which is an interesting property for real-time
applications and compression. For instance, the models obtained after the various simplification algo-
rithms proposed in the first chapters of this thesis can be enhanced easily.

However, PN triangles remain en empiric approach to surface refinement: inparticular, the final quality
is not competitive with true subdivisions surfaces [ZS00]. In the following chapter, we propose a new
mesh refinement process which approximates true subdivision surfaces, producing convincing, visually
plausible, rendering and very fast to compute once implemented on GPU with theARK.
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Figure 8.6: Original meshes (left) and realtime refinement (right) expressing the scalar tag configura-
tion.
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Chapter 9

Real-time Quadratic Approximation of
Subdivision Surfaces

Subdivision surfaces are undoubtedly the most flexible smooth geometric representation. By only ma-
nipulating a carefully designed low-resolution mesh, an high-resolution smooth version is automatically
generated using a set of local recursive rules applied on each input coarse polygon. However, while
being intensively used in CAD and SFX industries, they have not yet gained a significant interest for
interactive and real-time applications. In fact, their recursive definition imposes a non-trivial CPU over-
head, difficult to hide in interactive applications. We propose to avoid this recursion by introducing an
efficient approximation of subdivision surfaces which offers a very close appearance compared to the
true subdivision surface, while providing at least one order of magnitude faster rendering. Our technique
uses enriched polygons, equipped with edge vertices, and replaces them on-the-fly with low degree poly-
nomials for interpolating positions and normals. By systematically projecting the vertices of input mesh
at their limit position on the subdivision surface, the visual quality of the approximation is good enough
for imposing only a single “true” subdivision step, allowing real-time performances even for million
polygons output. Additionally, the parametric nature of the approximation allowsan efficient adaptive
sampling for polynomial adaptive rendering and displacement mapping.

9.1 Context: Subdivision Surfaces for interactive rendering

Subdivision Schemes:A subdivision scheme[ZS00] defines a smooth surface using a coarse meshM0

and a subdivision operatorS, that combines various refinement rules (odd vertex, even vertex, border,
crease, etc). For most of subdivision schemes such as Loop [Loo87] or Catmull-Clark [CC78], these
rules are local, and only require the one-ring-neighborhood for subdividing each polygon of the coarse
mesh, quickly converging to the limit surface. Thus, the application of the refinement rules is done
recursively, generating a set of mesh{M0,M1, ...,Mn} with Mk+1 = S(Mk) until the chosen depthn. The
linear combination of neighboring vertices for computing the next position of agiven vertex are usually
illustrated with a subdivision mask. For stationary schemes, limit masks exist thatdirectly provide the
projection of a vertex on the limit surface.

Efficient Rendering of Subdivision Surfaces:Since a decade, subdivision surfaces have been inten-
sively used for offline rendering and high end modeling, and have progressively replaced NURBS in
many areas, as they are able to represent smooth shapes with arbitrary topology. With the increasing
demand in realism for interactive applications, efficient rendering of subdivision surfaces has become
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a major research area in recent years. However, the lack of geometry generation on GPU, as well as
the reduced knowledge about local neighborhood allowed in the graphics hardware pipeline have led
researchers to tackle efficient rendering of subdivision surfaces with two different approaches. We have
already stated the main classification of refinement methods in Chapter7, and according to this classifi-
cation, direct real-time synthesis of subdivision surfaces is done withprecomputed tables of basis func-
tions[PS96, BS02, BS03], while indirect synthesis is done usingimages-based methods[SJP05, Bun05].
These methods are able to reproduce exactly subdivision surfaces butremains slow.

In Chapter8, we have discussed how avisually smoothrefinement can be tailored at low cost by using
triangular B́ezier patches locally generated on triangles. This kind of refinement is very efficient and
purely local but its empirical generation only provides poor to average visual quality.

The method we propose in this chapter combines a low computationnal cost, even better than PN Tri-
angles, with a visually plausible approximation of true subdivision, offeringa very similar rendering
quality compared to exact subdivision schemes [Loo87], far better than PN refinements. We use limit
projections for driving a local polynomial approximation of the surface, which allows a direct evaluation
at arbitrary location without recursion, in the spirit of the work done by Stam [Sta98, Sta99], but efficient
enough to be done in real-time. In fact, by considering both positions and normals, we produce a visu-
ally smooth rendering adapted to interactive applications using simple quadraticBézier patches, which
makes adaptive sampling straightforward. We call our approximation “QAS”for “Quadratic patches for
Approximation of Subdivision surfaces”.

Figure 9.1: . Left: Coarse mesh (546 triangles).Middle Our real-time GPU approximation of the
subdivision surface (527 FPS - depth 5 - 500k triangles).Right: True Loop subdivision performed on
CPU at same depth.
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Figure 9.2: Approximation principle.Left: Coarse triangle T of M0. Middle: Enriched hexagon HT

sampled on M∞. Right: Final smooth patches{PT ,NT} generated on GPU.

9.2 Approximated Subdivision

9.2.1 Principle

The very first subdivision step provides a crucial information on the target smooth surface, particularly
when usinglimit rules: it indicates in which direction the surface will converge for all its edges. By
studying the different subdivision schemes developed over the years,we can observe that the variation
they produce on edges is a good indicator of their smoothness and curvature quality. This information is
even more accurate with limits masks (i.e. when projecting each vertex at its limit position).. We propose
to use this initial guess of the first subdivision step performed on the CPU to compute a local quadratic
Bézier approximation on the GPU. Instead of using an empirical estimation [VPBM01] of the Bézier
coefficients for producing thevisual continuity, we fit two Bézier patches on the limit positions (resp.
normals) provided by the single subdivision step with projection on the limit surfaceM∞ (see Figure
9.2). With these two patches in hand, we can sample (uniformly or adaptively) thepiece of subdivision
surface belonging to each input coarse triangles using either thevertex shaderwith our ARK (Chapter7)
or thegeometry shader[Bly06].

9.2.2 CPU Support

The algorithm starts by applying a single subdivision step using limit masks. Each triangleT is thus
split into 4 sub-triangles, with vertices on the limit surface. These sub-triangles share 6 vertices (Figure
9.2) and the sub-mesh can thus be organized in an hexagonal shapeHT = {v0,v1,v2,ve

0,v
e
1,v

e
2} with

vi = {pi ,ni} being the limit positions and normals (using tangent masks for instance) at this location.
This structure is adapted to recent graphics hardware including a geometry shader stage, which allows to
transmit triangles with edge neighbors: here we transmit edge vertices inserted by the subdivision pass
instead. Note that we focus on triangle meshes, since they are ubiquitous in interactive applications.
Thus, we use the Loop scheme [Loo87] as a basis QAS. The Modified Butterfly scheme [ZSS96] can
be used when the interpolation of the coarse mesh is mandatory. We performthis step on CPU in our
implementation. However, a GPU implementation can be considered.

9.2.3 GPU Polynomial Approximation

OnceHT is transmitted to the GPU, a shader (either vertex shader on old devices or geometry shader on
recent ones) automatically fits 2triangular Bézier patchesto HT : PT(u,v) for positions andNT(u,v) for
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Figure 9.3: Adaptive Subdivision Rendering.Left: Input coarse mesh (703 triangles).Middle Left:
View-dependent distance-based adaptive depth tag.Middle Right: Underlying adaptive topology pro-
duced on-the-fly (620k triangles at 499 FPS)Right: Final rendering.

normals. In other words, we produce aprocedural displacement mapand aprocedural normal mapthat
approximate the variation of the limit subdivision surface. Both patches are defined by:

Q(u,v,w) = ∑
i+ j+k=2

b2
i jk(u,v,w)ci jk

with

b2
i jk =

2!
i! j!k!

uiv jwi and w = 1−u−v

In practice,ci jk is replaced bypi jk or ni jk (see Figure9.2). We use quadratic patches as they provide a
good trade-off between curvature reproduction and computational cost.

Now, we have to define the 6 control points required by both Bézier patches, such as they interpolate the
limit vertices (either positions or normals). These control points are organized as an hexagon (middle
part of Figure9.2): three of them correspond to the original vertices{v0,v1,v2} projected at the limit
and are naturally interpolated by the triangular Bézier patches at control points{c200,c020,c002}, while
{c110,c011,c101} correspond to edge vertices{ve

0,v
e
1,v

e
2} and arenot interpolated. So, we need to de-

fine them such as the actual geometry defined byPT (resp. NT) interpolates the edge positions (resp.
normals). Actually, a linear collocation is possible in this case. For instance, considering the first edge
vertexpe

0, we have to solve:

P

(

1
2
,
1
2
,0

)

=
1
4

(p0 + p1 +2p110) = pe
0

which implies that

p110 =
1
2

(4pe
0− p0− p1)

Other edge coefficients are simply obtained in a similar fashion, and the same principle is used for
computing the B́ezier patch for normals. Separating the position field and normal field defined for
each patch allows a local computation of the approximation (on a per-hexagon basis), without dealing
with high order cross-edge continuity [VPBM01]. By interpolation, the normal field defined byNT is
guaranteed to beC0 on edges, which produces a visually smooth shading.
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9.2.4 Adaptive Rendering

By substituting recursive rules with Bézier patches, we can directly evaluate the surface approximation
at arbitrary parameter values. So not only uniform tessellation is done without recursion, but adaptive
refinement is also made easier. This adaptivity can be performed by setting aper-vertex subdivision
depth, either on CPU or GPU, using for instance a view-dependent metric (e.g. coarse triangle to camera
distance) or a view-independent one (e.g. curvature approximation). Then, adaptive tessellation can be
obtained with either two implementations:

• Geometry Shader: HT can be directly transmitted to the GS using the DX10 pipeline [Bly06].
A simple loop evaluates points and normals usingPT andNT and output a stream of triangles.
Unfortunately, this solution only holds for low subdivision depth, as the sizeof the GS output is
hardware limited.

• Vertex Shader: For higher subdivision depth (3 and more), the adaptive refinement kernel intro-
duced in Chapter7 offers an efficient way to render our subdivision surface appriximation. Note
that the transfer cost ofHT is not a bottleneck for deep subdivision levels.

Figure 9.3 gives an example of an adaptive on-the-fly QAS rendering. In the following listing, we
provide a generic GPU implementation of QAS in GLSL for on-the-fly Bézier patch fitting and adaptive
sampling. This simple shader runs on any GPU equipped with vertex shading capabilities:

� �

const uniform vec3 n0, n1, n2, p0, p1, p2;

const uniform vec3 ne0, ne1, ne2, pe0, pe1, pe2;

vec3 edgeCP (vec3 e, vec3 p0, vec3 p1) {

return (e * 4.0 - p0 - p1) * 0.5;

}

vec3 Q (float u, float v, float w,

vec3 p0, vec3 p1, vec3 p2, vec3 e0, vec3 e1, vec3 e2) {

vec3 n200 = p0, n020 = p1, n002 = p2;

vec3 n110 = edgeCP (e0, p0, p1);

vec3 n101 = edgeCP (e2, p0, p2);

vec3 n011 = edgeCP (e1, p1, p2);

return w * (n200*w + n110*2*u) +

u * (n020*u + n011*2*v) +

v * (n002*v + n101*2*w);

}

vec3 P (float u, float v, float w) {

return Q (u, v, w, p0, p1, p2, pe0, pe2, pe2);

}

vec3 N (float u, float v, float w) {

return Q (u, v, w, n0, n1, n2, ne0, ne2, ne2);

}

void main(void) {

float u = gl_Vertex.x; // barycentric coordinates

float v = gl_Vertex.y; // as position in the

float w = 1.0 - u - v; // RP drawn

gl_Vertex.xyz = P (u, v, w);

gl_Normal = normalize (N (u, v, w));

[...] // Shading

}
� �
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Property Shiue’s kernel QAS

CPU Preprocess (Subdivision) 2 passes (1x16) 1 pass (1x4)
GPU Input process (CPU) 2-ring unfold none
Number of Rendering pass depth× num. of tri. 1
GPU Workload FS VS/GS
Reproduction Exact Approximate
Adaptive Refinement Difficult Trivial
Type of Coarse Polygons All All with pre-tessellation
Subdivision Scheme All Dyadic with limit masks
Performances (4k tri., depth 5) Interactive Real-Time

Table 9.1: Comparison of QAS with Shiue’s kernel [SJP05] for the subdivision of a dynamic mesh.

9.3 Results

We have implemented QAS on an AMD Athlon 3500, with 2GB of memory and an nVidiaGeforce 8800
GTX, using C++, OpenGL and GLSL. While being geometrically onlyC0, the resulting surface has an
appearance almost indistinguishable from the equivalent true subdivision surface (see Figure9.4). This
is due to the combined fitting of positions and normals, which ensures both a smooth shading and curved
silhouettes. Considering performances, our technique outperforms existing solutions [BS03, SJP05] for
three reasons: we only perform a single true subdivision pass on CPU,we use a single rendering pass on
GPU whatever the depth (i.e., constant processing cost per-vertex) and there is no geometry-to-texture
conversion. Note also that the mesh is always synthesized on-the-fly, either using Geometry or Refine-
ment Shaders, without storing the topology of the high resolution mesh. As a result we obtain real-time
performances (more than 120 FPS) for objects composed of several thousands of coarse polygons, subdi-
vided at depth 5 (more than 2.5M tessellated triangles). Performances degrade linearly with the number
of triangles created and transmitted at CPU level. As a limitation, note that the higher is the vertex va-
lence, the less accurate becomes QAS. However, this can be prevented by performing remeshing. Last,
the direct adaptive rendering allowed by our technique, combined with its lowCPU overhead makes
this approximation particularly suitable for high quality interactive applications, as it offers much better
results than purely empirical smoothing methods. Figure9.5gives additional examples of our approxi-
mation: we can observe that high framerates can be reached even with deep refinement levels, since our
pure parametric evaluation does not access texture memory.

9.4 Discussion

Comparison: We compare QAS to the GPU kernel of Shiue et al. [SJP05] as it is one of the best solution
so far. Table9.1 states advantages and weaknesses of our approach compared to their.One interesting
property of our implementation is its single pass vertex shading principle: thus,recent graphics hardware
with unified architecture will automatically allocate additional shader units for vertex shading to obtain
optimal balance between vertex and fragment processing, avoiding the usual conversion required by
fragment-based processing of geometry.

The local nature of our kernel makes it also easily comparable to Curved PN Triangles [VPBM01].
Formally, the two approaches differ in the computation of Bézier control points: an empirical estimation
based on tangent plane for PN Triangles, and a true limit subdivision surface interpolation in our case.
As a result, we obtain a far better quality since limit projection may create larger,smoother and more
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consistent variation of the geometry that the simple normal-based approach (see Figure9.4). This also
allows us to simply use a quadratic polynomial instead of a cubic one.

Figure 9.4: Comparison with Curved PN Triangle Smoothing.Left: Coarse Mesh.Middle: Curved
PN Triangles (cubic patches).Right: QAS (quadratic patches).

Summary We have proposed QAS, a simple and visually convincing approximation of subdivision
surfaces using a combination of single limit subdivision pass on CPU and quadratic Bezier patch fit-
ting on GPU. Our method is easy to implement, avoids recursion and reaches real-time performances
for several thousands of input polygons per-frame, outputting millions oftessellated triangles. Our
method is generic in the sense that arbitrary depth and arbitrary vertex valence can be handled and adap-
tively subdivided. This approximation imposes less CPU workload, less graphics bus bandwidth and is
more efficient than exact GPU subdivision kernels, while providing bettervisual results than empirical
smoothing [VPBM01] and lower memory footprint than table-based methods. While CAD applications
may benefit from more precise and more costly approximation techniques such as the recent work of
Loop and Schaefer [CS07], QAS represents a solid choice for interactive applications, such as video
games and virtual reality software, and can also be considered for special effects, as a large upsampling
can be done adaptively. As an application, high resolution displacement mapping takes benefit from
this efficient approximation for sampling the maps that can be extracted directlyfrom large point-based
surface with the algorithm presented in Chapter6.

Perspectives As future work, we plane to perform the limit projection at GPU level still preserving a
single pass rendering. It is interesting to note that we have solved a performance problem of subdivi-
sion schemes using local polynomial fitting, while Levin [Lev06] has recently solved a quality problem
(continuity) of these schemes near extraordinary vertices using a similar approach of local polynomi-
als fitting. We believe that such hybrid polynomial-subdivision representations are a major research
direction in the field of smooth surface modeling.
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(a) 2720 coarse triangles refined at depth 5 (2.7M triangles) - 113FPS

(b) 2516 coarse triangles refined at depth 5 (2.5M triangles) - 128FPS

(c) 1246 coarse triangles adaptively refined at depth 6 (2.6M triangles) - 132FPS

Figure 9.5: Additional examples of real-time approximation of subdivision surfaces.Left: On CPU
dynamic coarse mesh.Right: Realtime QAS geometry synthesis on GPU. Note that all input meshes are
dynamic.
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Chapter 10

Conclusion

In this thesis, we proposed techniques for fast processing, editing andrendering of acquired geometry.
These techniques offer memory and computational efficient solutions to various problems that occur
when using acquired geometry in computer graphics applications. They all build on a set of new concepts
and data structures that are generic enough to be used in other contexts as well.

First, we have introduced the Volume-Surface Tree, and show that a hierarchical space partitioning struc-
ture can better take into account the geometry of a 3D surface by using an hybrid partitioning scheme,
melting 3D and 2D decomposition. As hierarchical partitioning is a fundamental tool in geometry pro-
cessing, we have then been able to apply this structure to the problems of fast surface simplification and
fast surface reconstruction. The resulting algorithms increase the quality-over-speed ratio compared to
state-of-the-art methods and clearly illustrate that not only the geometric measure and quantities, but also
the underlying architecture of a partitioning structure has to be consideredwhen performing hierarchy-
based surface processing. Furthermore, the Volume-Surface Tree isgeneral enough to be used in other
surface processing, including texturing and compression.

Second, we have presented the first interactive editing system which allows to perform high level inter-
active modifications, such as appearance and shape editing, of large models with or without the connec-
tivity information. This is obviously particularly interesting in the context of acquired geometries for
which the accurate local features captured by the scanner need to be preserved, even when interactive
editing is mandatory. This system is based on a sampling-reconstruction principle, where two algorithms
ensure the “dialog” between the out-of-core large model and a given standard texturing or deformation
tool. The first algorithm acts as pre-process and performs an out-of-core adaptive simplification of the
large model. Then, the simplified model is deformed and textured interactively.The second algorithm
acts as a post-process and applies the modification undergone by the simplified model onto the original
large one. Both algorithms work in streaming and use point-based methods, which enables the manip-
ulation of very large, unstructured sampled surfaces. Moreover, this system remains active during the
interactive session and allows to refine the in-core geometry on-demand, providing virtually an out-of-
core multiscale layer to any interactive editing tool. Note that the various experiments presented in this
thesis show also that point sets are well suited to capture and transmit surface properties (appearance and
deformation). Therefore, they represent a solid alternative to usual regular 2D textures, which becomes
obvious in an out-of-core context.

Third, we have addressed the problem of point-based surface rendering, which is necessary for visu-
alizing acquired models before reconstruction. Indeed, we have shownthat the point-sampled surface
representation can be interfaced at low cost with polygonal rendering systems and hardware, performing
a fast lower dimensional meshing organized in a multi-resolution structure: theSurfel Stripping. This
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approach enables the large repository of polygonal rendering techniques without performing full sur-
face reconstruction, and comes as an alternative to surface splatting andpoint-based surface raytracing.
Moreover, when the input is too large, we have proposed an appearance-preserving enhancement of our
technique, which captures, in a streaming process, the essential part ofthe visually richness present
in the large sampled surfaces, and expresses it in a set of high-resolution normal and color maps for
rendering.

Last, we have focused on geometry synthesis for interactive applications. We have introduced a generic
adaptive mesh refinement kernel which runs on the GPU and allows to refine arbitrary meshes, with
arbitrary displacement, offering real-time high-resolution mesh synthesis. This kernel allows to deal
directly with high-level representations, like subdivision domain meshes, onthe CPU side, letting the
GPU creating a refined surface in single rendering pass, at vertex shading level. With this kernel, we
have then been able to propose an evolution of the Curved PN Triangle refinement, by taking into
account surface features described by scalar tags. Finally, we haveaddressed the problem of real-time
subdivision surface rendering, and proposed a plausible approximation that avoids recursion and enables
deep adaptive refinement at high framerate.

This last contribution opens a way to data driven geometry processing. Asshown all along this thesis,
the acquired models need to trade efficiency for quality in order to use them incomputer graphics
applications. We have developed three kinds of analysis:

• a hierarchical volume-surface decompositionwhich improves hierarchical processing of 3D sur-
faces and allows lower dimensional methods

• asampling-reconstruction in streamingwhich structures out-of-core editing

• asynthesis by instancingwhich offers flexible geometric refinement for real-time applications.

These three general approaches, combined with the genericity of point-based techniques, can be applied
to various other problems, including surface compression, large object topology editing, aggressive
visibility computation and data-driven geometry synthesis. This last topic represents probably the most
promising research direction, as the growing size of 3D content data will soon impose the development
of suitable higher-level representation that both allows highly dynamic structure for rich editing and
accurate on-demand sampling for real-time geometry synthesis. Finally, we believe that one major open
problem remains the gap that exists between raw data sampling and procedural representations: the
former is the only information we can get from the real world, and the latter is the native language of
computers. We will try to build the missing bridge in future work.

145



Bibliography

[AA03] A DAMSON A., ALEXA M.: Ray tracing point set surfaces. InProceedings of Shape
Modelling International(2003).65

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SILVA C. T.: Point
set surfaces. InIEEE Visualization(2001).17, 38, 47, 65, 82

[ACK01] A MENTA N., CHOI S., KOLLURI R. K.: The power crust. InSymposium on Solid
Modeling and Applications(2001).16

[Ado06] ADOBE: Photoshop, 2006.58

[AGP∗04] ALEXA M., GROSS M., PAULY M., PFISTER H., STAMMINGER M., ZWICKER M.:
Point-based computer graphics.ACM SIGGRAPH 2004 Course Notes(2004).42, 46, 63

[AH05] A SIRVATHAM A., HOPPEH.: GPU Gems 2. Addison-Wesley, 2005, ch. Terrain render-
ing using GPU-based geometry clipmaps.108, 120

[AK04a] AMENTA N., KIL Y. J.: Defining point-set surfaces.ACM SIGGRAPH(2004).17

[AK04b] A MENTA N., KIL Y. J.: The domain of a point set surfaces.Eurographics Symposium
on Point-based Graphics(2004).17

[AKP∗05] ADAMS B., KEISER R., PAULY M., GUIBAS L. J., GROSSM., DUTRE P.: Efficient
raytracing of deforming point-sampled surfaces. InProceedings of Eurographics(2005).
65, 83

[Ali06] A LIASWAVEFRONT: Maya, 2006.41

[AWD ∗04] ADAMS B., WICKE M., DUTR P., GROSSM., PAULY M., TESCHNERM.: Interactive
3d painting on point-sampled objects. InPoint-Based Graphics(2004).40

[BB83] BARSKY B., BEATTY J.: Local control of bias and tension in beta-splines.ACM SIG-
GRAPH(1983).130

[BC00] BOISSONNAT J.-D., CAZALS F.: Smooth surface reconstruction via natural neighbour
interpolation of distance functions. InSymposium on Computational geometry(2000).
16

[BD02] BENSOND., DAVIS J.: Octree textures. InACM Siggraph(2002).40

[Bec94] BECHMANN D.: Space deformation models survey.Computer and Graphics(1994).41

[Ben75] BENTLEY J. L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(1975).25

146



[BK03] BOTSCH M., KOBBELT L.: High-quality point-based rendering on modern GPUs.Pa-
cific Graphics 2003(2003).64

[BK04] BOTSCH M., KOBBELT L.: An intuitive framework for real-time freeform modeling.
ACM SIGGRAPH(2004).41

[BK05] BOTSCH M., KOBBELT L.: Real-time shape editing using radial basis functions.Euro-
graphics(2005).41, 57

[BKS00] BISHOFF S., KOBBELT L., SEIDEL H.-P.: Towards hardware implementation of loop
subdivision.ACM SIGGRAPH//Eurographics Graphics Hardware(2000).108

[Blo88] BLOOMENTHAL J.: Polygonization of implicit surfaces.Computer Aided Geometric
Design 5(1988), 341–355.16

[Blo94] BLOOMENTHAL J.: An implicit surface polygonizer. InGraphics Gems IV. Academic
Press, 1994.26, 33

[Bly06] BLYTHE D.: The direct3d 10 system.ACM Siggraph(2006). 107, 109, 123, 124, 138,
140

[BM92] BESL P. J., MCKAY N. D.: A method for registration of 3-d shapes.IEEE Trans. Pat.
Anal. and Mach. Intel. 14, 2 (1992), 239–256.16

[BMZB01] B IERMANN H., MARTIN I., ZORIN D., BERNARDINI F.: Sharp features on multireso-
lution subdivision surfaces.Pacific Graphics(2001).109

[Bot05] BOTSCH M.: High Quality Surface Generation and Efficient Multiresolution Editing
Based on Triangle Meshes. PhD thesis, RWTH Aachen, 2005.26

[BPGK06] BOTSCHM., PAULY M., GROSSM., KOBBELT L.: PriMo: Coupled prisms for intuitive
surface modeling.Eurographics Symp. on Geom. Processing(2006).41

[BPK∗07] BOTSCH M., PAULY M., KOBBELT L., ALLIEZ P., LEVY B., BISCHOFF S., RSSL

C.: Geometric modeling based on polygonal meshes.ACM SIGGRAPH Course Notes
(2007).17

[BR02] BERNARDINI F., RUSHMEIER H.: The 3d model acquisition pipeline.Computer Graph-
ics Forum 21, 2 (2002).14

[BS95] BLANC C., SCHLICK C.: X-splines: A spline model designed for the end-user.ACM
SIGGRAPH(1995).109

[BS02] BOLZ J., SCHRODER P.: Rapid evaluation of catmull-clark subdivision surfaces.3D
Web Technology(2002).108, 137

[BS03] BOLZ J., SCHRODERP.: Evaluation of subdivision surfaces on programmable graphics
hardware, 2003.108, 137, 141

[BS07] BOTSCH M., SORKINE O.: On linear variational surface deformation methods.IEEE
TVCG(2007).41

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.: Phong splatting. InSymposium on Point
Based Graphics 2004(2004).64, 67, 77

[BSK05] BOTSCH M., SPERNAT M., KOBBELT L.: High quality splatting on today’s gpu. In
Symposium on Point Based Graphics 2005(2005).64, 77, 78, 96

147



[Bun05] BUNNELL M.: Adaptive Tesselation of Subdivision Surfaces w/ Displacement Mapping.
nVidia, 2005, ch. GPU Gems 2.109, 137

[BW06] BOKELOH M., WAND M.: Hardware accelerated multi-resolution geometry synthesis.
ACM I3D (2006).108

[BWG03] BALA K., WALTER B., GREENBERGD. P.: Combining edges and points for interactive
high-quality rendering.ACM SIGGRAPH 22, 3 (2003), 631–640.90

[BWK02] BOTSCH M., WIRATANAYA A., KOBBELT L.: Efficient high quality rendering of point
sampled geometry. InEurographics Workshop on Rendering(2002).85

[CAZ01] COHEN J. D., ALIAGA D. G., ZHANG W.: Hybrid simplification: Combining multi-
resolution polygon and point rendering.IEEE Visualization(2001).64

[CB04] CHRISTENSENP. H., BATALI D.: An irradiance atlas for global illumination in complex
production scenes.Eurographics Symposium on Rendering(2004).41

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B., MITCHELL T. J., FRIGHT W. R., MC-
CALLUM B. C., EVANS T. R.: Reconstruction and representation of 3D objects with
radial basis functions. InACM SIGGRAPH(2001).16

[CC78] CATMULL E., CLARK J.: Recursively generated b-spline surfaces on arbitrary topologi-
cal surfaces.Computer-Aided Design 10, 6 (1978).136

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MARTON F., PONCHIO F., SCOPIGNOR.:
Adaptive TetraPuzzles – efficient out-of-core construction of giganticpolygonal models.
ACM SIGGRAPH 2004(2004).20, 85

[CH02] COCONU L., HEGE H.-C.: Hardware-accelerated point-based rendering of complex
scenes.Eurographics Workshop on Rendering 2002(2002).64

[CK03a] CHUNG K., K IM L.-S.: Adaptive tessellation of pn triangle with modified bresenham
algorithm.SOC Design Conference(2003).128

[CK03b] CHUNG K., K IM L.-S.: A pn triangle generation unit for fast and simple tesselation
hardware.IEEE International Symposium on Circuits and Systems(2003).128

[CL96] CURLESSB., LEVOY M.: A volumetric method for building complex models from range
images.ACM SIGGRAPH(1996).16

[CMRS98] CIGNONI P., MONTANI C., ROCCHINI C., SCOPIGNO R.: A general method for pre-
serving attribute values on simplified meshes. InIEEE Visualization(1998).86

[CN01] CHEN B., NGUYEN M. X.: POP: a Hybrid Point and Polygon Rendering System for
Large Data.IEEE Visualization 2001(2001).64

[COM98] COHEN J., OLANO M., MANOCHA D.: Appearance-preserving simplfication.ACM
SIGGRAPH 98(1998).86

[Coq90] COQUILLART S.: Extended freeform deformation: a sculpturing tool for 3D geometric
modeling.ACM SIGGRAPH(1990).41

[CS00] CURLESSB., SEITZ S.: 3d photography.ACM SIGGRAPH Course(2000).14

[CS07] C.LOOP, SCHAEFER S.: Approximating Catmull-Clark Subdivision Surfaces with Bicu-
bic Patches. Tech. rep., Microsoft Research MSR-TR-2007-44, 2007.142

148



[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational shape approximation. In
ACM SIGGRAPH(2004).25, 28, 29, 45

[CSD02] COHEN-STEINER D., DA F.: A Greedy Delaunay Based Surface Reconstruction Algo-
rithm. Tech. rep., INRIA Sophia Antipolis, 2002.16, 70

[DD04] DUGUET F., DRETTAKIS G.: Flexible point-based rendering on mobile devices.IEEE
Computer Graphics and Applications 24, 4 (2004).85

[Dev98] DEVILLERS O.: Improved incremental randomized delaunay triangulation. InACM
Symposium Computational Geometry 1998(1998).68

[DGH01] DEY T. K., GIESEN J., HUDSON J.: Delaunay based shape reconstruction from large
data. InIEEE Symposium on Parallel and Large-Data Visualization and Graphics(2001).
16

[DH02] DEY T. K., HUDSON J.: PMR: Point to mesh rendering, a feature-based approach.IEEE
Visualization(2002).64

[DQ01] DUAN Y., QIN H.: Intelligent balloon. InACM Symposium on Solid Modeling and
Applications(2001).16

[dRBAB02] DEL RIO A., BOO M., AMOR M., BUGUERA J.: Hardware implementation of the
subdivision loop algorithm.ACM SIGGRAPH/Eurographics Graphics Hardware(2002).
108

[DVS03] DACHSBACHERC., VOGELGSANGC., STAMMINGER M.: Sequential point trees.ACM
SIGGRAPH 2003(2003).57, 64, 74, 86

[DYQS04] DUAN Y., YANG L., QIN H., SAMARAS D.: Shape reconstruction from 3d and 2d data
using pde-based deformable surfaces. InECCV (2004).34

[EDD∗95] ECK M., DEROSE T., DUCHAMP T., HOPPE H., LOUNSBERY M., STUETZLE W.:
Multiresolution analysis of arbitrary meshes. InACM SIGGRAPH(1995).26

[ESV96] EVANS F., SKIENA S. S., VARSHNEY A.: Optimizing triangle strips for fast rendering.
IEEE Visualization 1996(1996).66, 71, 115

[Far02] FARIN G.: Curves and Surfaces for CAGD (Fifth Edition). Morgan Kaufman Inc., 2002.
130, 132

[FCOS05] FLEISHMAN S., COHEN-OR D., SILVA C.: Robust moving least-squares fitting with
sharp features.ACM SIGGRAPH(2005).17

[Fer05] FERNANDO R.: Shader model 3. nVidia, 2005.119

[FKN80] FUCHS H., KEDESZ. M., NAYLOR B. F.: On visible surface generation by a priori tree
structures. InACM SIGGRAPH(1980).25

[Flo03] FLOATER M. S.: Mean value coordinates.Comp. Aided Geom. Design 20, 1 (2003).49

[For87] FORTUNE S.: A sweepline algorithm for vorono diagrams.Algorithmica 2(1987), 153–
174. 78

[GBK05] GUTHE M., BALZS ., KLEIN R.: Gpu-based trimming and tessellation of nurbs and
t-spline surfaces.ACM Transactions on Graphics 24, 3 (2005).109

149



[GBK06] GUTHE M., BALZS ., KLEIN R.: Gpu-based appearance preserving trimmed nurbs
rendering.Journal of WSCG 14(2006).109

[GBP04] GUENNEBAUD G., BARTHE L., PAULIN M.: Deferred Splatting.Eurographics(2004).
64

[GBP05] GUENNEBAUD G., BARTHE L., PAULIN M.: Interpolatory refinement for real-time
processing of point-based geometry.Eurographics(2005).49

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.: Splat-mesh blending, perspective rasteri-
zation and transparency for point-based rendering. InPoint-Based Graphics(2006).64

[GD98] GROSSMAN J. P., DALLY W. J.: Point sample rendering.Eurographics Workshop on
Rendering 1998(1998).63

[gDGPR02] (GRUE) DEBRY D., GIBBS J., PETTY D. D., ROBINS N.: Painting and rendering
textures on unparameterized models. InACM Siggraph(2002).40, 57

[GG07] GUENNEBAUD G., GROSSM.: Algebraic point set surfaces.ACM SIGGRAPH(2007).
47

[GGSC96] GORTLER S., GRZESZCZUK R., SZELISKI R., COHEN M.: The lumigraph. InACM
SIGGRAPH(1996).90

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using quadric error metrics. In
ACM SIGGRAPH(1997).25, 29, 31, 43

[GKS00] GOPI M., KRISHNAN S., SILVA C.: Surface reconstruction based on lower dimensional
localized delaunay triangulation. InEurographics(2000).16, 27, 28, 35, 65

[GM04] GOBBETTI E., MARTON F.: Layered point clouds. InEurographics Symposium on Point
Based Graphics(2004).85, 95

[GM05] GOBBETTI E., MARTON F.: Far voxels.ACM SIGGRAPH(2005).57, 64, 85

[Goe04] GOESELEM.: New Acquisition Techniques for Real Objects and Light Sources in Com-
puter Graphics. PhD thesis, Max-Planck-Institut fr Informatik (MPII), Saarbrcken,Ger-
many, 2004.15, 40

[GP03] GUENNEBAUD G., PAULIN M.: Efficient Screen Space Approach for Hardware Accel-
erated Surfel Rendering.Vision, Modeling and Visualization(2003).64

[GPG06] GPGPU: General-purpose computation using graphics hardware. http://www.gpgpu.org,
2006.107

[Gre06] GREEN S.: Next generation games with direct3d 10.Game Developer Conference
(2006).124

[Gro06] GROSS M.: Getting to the point. IEEE Computer Graphics and Applications 26, 5
(2006).16

[HDD∗92] HOPPEH., DEROSET., DUCHAMP T., MCDONALD J., STUETZLE W.: Surface recon-
struction from unorganized points. InACM SIGGRAPH(1992). 16, 17, 25, 27, 28, 32,
45

[HDD∗93] HOPPEH., DEROSE T., DUCHAMP T., MCDONALD J., STUETZLE W.: Mesh opti-
mization. InACM SIGGRAPH(1993).25

150



[HDD∗94] HOPPE H., DEROSE T., DUCHAMP T., HALSTEAD M., JIN H., MCDONALD J.,
SCHWEITZER J., STUETZLE W.: Piecewise smooth surface reconstruction. InACM
SIGGRAPH(1994).16, 25

[Hec86a] HECKBERT P.: Survey of texture mapping.IEEE Computer Graphics and Applications
(1986).40

[Hec86b] HECKBERT P. S.: Survey of texture mapping.IEEE Computer Graphics and Applica-
tions 6, 11 (1986).64

[Hei05] HEIDRICH W.: Computing the barycentric coordinates of a projected point.Journal of
Graphics Tools 10, 3 (2005).49

[HH90] HANRAHAN P., HAEBERLI P.: Direct wysiwyg painting and texturing on 3d shapes. In
ACM Siggraph(1990).40

[Hop96] HOPPEH.: Progressive meshes.ACM SIGGRAPH(1996).86, 109

[HSRG07] HAN C., SUN B., RAMAMOORTHI R., GRINSPUN E.: Frequency domain normal map
filtering. In ACM SIGGRAPH(2007).89, 91

[IL05] I SENBURGM., L INDSTROM P.: Streaming meshes.IEEE Visualization(2005).42

[ILSS06] ISENBURG M., L IU Y., SHEWCHUK J., SNOEYINK J.: Streaming computation of de-
launay triangulations.ACM SIGGRAPH(2006).42, 44

[Jen96] JENSEN H. W.: Global illumination using photon maps.Rendering Techniques(1996).
40

[JK02] JEONG W., KIM C.: Direct reconstruction of displaced subdivision surface from unor-
ganized points, 2002.16

[JT80] JACKINS C., TANIMOTO S.: Oct-trees and their use in representing three-dimensional
objects.CGIP 14(1980).25

[JZH07] JU T., ZHOU Q.-Y., HU S.-M.: Editing the topology of 3d models by sketching.ACM
SIGGRAPH(2007).58

[KAG∗05] KEISER R., ADAMS B., GASSER D., BAZZI P., DUTR P., GROSSM.: A unified la-
grangian approach to solid-fluid animation. InIEEE/Eurographics Symposium on Point-
Based Graphics(2005).83

[Kaz05] KAZHDAN M.: Reconstruction of solid models from oriented point sets. InSymposium
on Geometry Processing(2005).16

[KB04] K OBBELT L., BOTSCH M.: A survey of point-based techniques in computer graphics.
Computers and Graphics, v28, n6(2004).63

[KBH06] K AZHDAN M., BOLITHO M., , HOPPEH.: Poisson surface reconstruction. InSympo-
sium on Geometry Processing(2006).16

[KBR04] KESSENICH J., BALDWIN D., ROST R.: The opengl shading language.
http://www.opengl.org, 2004.117
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Annex: Scalability and Antialiasing of
Point-Sampled Textures

Texture Antialiasing The up-scaling of the PST does not exhibit artifacts thanks to the smooth filter-
ing provided by the kernel function. However, in the case of ray-tracing, when the texture is directly
used for evaluating the color of a pixel, the down-scaling of the PST may leadto aliasing. Using cone
tracing instead of ray tracing is a common (but expensive) solution to prevent such aliasing. In our case,
cone intersection can be speeded up by replacing the evaluation offS(p) by the average of the samples
falling in the sphereΦ, centered at the intersection point. The diameter ofΦ is chosen as the object-
space size of the pixel at the intersection point. This special evaluation is performed as soon as more
than one ray sample intersectsΦ.

Full Scalability At any time, if the in-core model becomes itself too large for maintaining an inter-
active frame-rate, a down-sampling is performed, again on a per-1-node basis, by replacing theLeast
Recently Used(LRU) area by a unique sample, and storing the edited piece of surface onthe disk. Lat-
ter, if the user comes back to this part of the object, the area is reloaded, and an LRU down-sampling is
again performed until reaching interactivity. In practice, it can be useful to maintain a ring of 1-nodes at
current resolution around the currently edited piece of surface (i.e. 1-neighborhood safe, whatever the
LRU selection). This simple LRU down-sampling rule makes the PST itselfscalable.
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Translation in French

Introduction et Contexte

La mod́elisation nuḿeriquerepŕesente les objets et phénom̀enes du monde réelle par une suite de valeurs
numériques d́erivant leurs propríet́es. Parmis ces propriét́es, laformea une importance fondamentale
dans toutes les applications mettant en oeuvre une simulation, la plus simpleétant la synth̀ese d’une
image capturant une approximation de l’éclairage subit par l’objet, en d’autres mots : lerendu. En
amont de ce proćed́e, lamod́elisation ǵeoḿetriqued’un objet en 3 dimensions utilise une grande variét́e
de fonctions pour d́ecrire cette forme : elle sont structurées par des relations spatiales, spectrales ou
sémantiques, et diffèrent selon l’application, les contraintes de temps de calcul et de mémoire, le niveau
de pŕecision souhait́e, voire m̂eme les r̀egles artistiques imposées.

Le champ d’application de la modélisation ǵeoḿetrique et de la synth̀ese d’images s’étends de la sim-
ulation aux applications de divertiseement, en passant par la conception, les effets sṕeciaux, l’́etude
arch́eologique, les jeux vid́eo, l’apprentissage et l’animation. Avec le dévelopement ŕecent des tech-
nologies nuḿeriques, motiv́e en grande partie par l’essor d’Internet, toutes ces applications doivent
désormais affronter une demande grandissante sur une plage de temps réduite, imposant de complexes
syst̀emes multiḿedia, tels que par exemple lesmodeleurs CAO, lesmoteurs des rendu temps-réelou bien
encore lessimulateurs de vol. Cependant, bien que de nombreuses technologies existent aujourd’hui
pour ǵerer ces oṕerations, un cruel manque demeure concernant la création de ce qui compte réellement
: le contenu.

Depuis des d́ecennies, les modèles 3D sont cŕeés par des inforgraphistes, utilisants de complexes outils
informatiques afin de reproduire les objets du monde réel et d’en inventer de nouveaux. Bien que certains
domaines, en particuliers dans l’industrie du divertissement, tirent partie deleur comṕetences artistiques,
les infographiste ne peuvent répondre rapidement “à la main” aux demandes de modélisation pŕecise de
surfaces ŕeelles.

Récemment, une nouvelle technique de modélisation aémerǵe: lamod́elisation automatique, ou com-
ment ǵeńerer une surface 3D̀a l’aide d’un scanner, exactement comme l’on géńere une image avec un
appareil photo. A l’aide de ces nouvelles machines, géńerer des millions de polygonséchantillonnant un
visage humain ne demande que quelques secondes et géńerer la ǵeoḿetrie d’un batiment̀a une pŕecision
infra-millimétrique se fait en quelques heures.

Malheureusement, cette nouvelle source de données am̀ene de nouveaux problèmes, líes à deux car-
act́eristiques essentielles de l’acquisition:

• l’acquisition est un processus discret qui ne produit qu’un ensemble d’ échantillons. Ainsi, la
notion de surface, intrinsèquement continue, doit̂etre reconstruite, induisant un ensemble de
décisions plus ou moins arbitraires pourétablir la connexion entre leséchantillons ;

162



• la haute pŕecision des feuilles de scan implique des masses de données non triviales, difficiles̀a
manipuler m̂eme sur les machines les plus puissantes, et particulièrement lorsque un comporte-
ment int́eractif est ńecessaire (traitement,édition et synth̀ese).

Dans cette th̀ese, nous proposons de nouvelles structures de données et de nouveaux algorithmes pour
les grands objets, architecturés pour̂etre efficicace en temps et en espace, et capables d’appréhender les
formes complexes provenant directement du pipeline d’acquisition 3D.

Descriptions des Contributions

Tout au long de ce travail de recherche, nous nous sommes attaqué à divers probl̀emes líes au traitement
géoḿetrique età la synth̀eseà partir de ǵeoḿetries nuḿeriśees. Nous pŕesentons plusieurs contribtu-
ions originales dans les domaines du traitement rapide, de l’édition int́eractive et du rendu de surface
échantillonńees. Voici la liste des principales contributions:

Traitement

• une nouvelle structure hiérarchique de partitionnement spatial, l’Arbre Volume-Surface, se substi-
tuant avantageusementà l’octree pour un partitionnement efficace, et offrant une meilleur découpe
par l’erreur.

• un nouvel algorithme de simplification rapide de surfaces basé sur l’Arbre Volume-Surface ;

• un nouvel algorithme de reconstruction rapide de surfaces basé sur l’Arbre Volume-Surface ;

• un noyau ǵeńerique pour la simplification hors-ḿemoire.

Edition

• un syst̀eme insensiblèa la taille pour l’́edition int́eractive de grands objets;

• deux algorithmes en flux pour le transfert de l’apparence et de la deformation entre diff́erents
échantillonnages d’un m̂eme objet.

Synthèse

• une structure multi-ŕesolution offrant un rendu polygonal de surfaces de points ;

• un enrichissement de cette structure, préservant l’apparence des grands objetsà l’aide de textures
de normales ;

• un noyau ǵeńerique pour le raffinement de maillages en temps-réel avec un d́eplacement ǵeoḿetrique
arbitraire ;

• un contr̂ole des singularit́es de surfaces dans le raffinement ;

• une approximation temps-réel des surfaces de subdivision.
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Organisation

Parmis les divers sujets abordés dans cette thèse, une grande partie des travaux préćedents sont discutés
en pŕeambule. Afin de pŕeserver une certaine clarté, nous ne pŕesentons pas l’ensembles des travaux
préćedents en un seul chapitre, et les répartissons, selon le contexte, aux débuts des diff́erents chapitres.

Ce manuscrit est organisé en 3 parties :

Part I : nouveaux traitement géoḿetriques et ḿethodes d’́editions pour les grands objets.

Chapter 3 : introduction de l’Arbre Volume-Surface et de ses applicationsà la simplification et̀a la
reconstruction de surfaces.

Chapter 4 : description d’un système insensiblèa la taille pour l’́edition int́eractive de grands objets.

Part II : une nouvelle structure multirésolution pour le rendu polygonal de surfaces de points.

Chapter 5 : géńeration et rendu en-ḿemoire de la structurèa partir d’un nuage de points.

Chapter 6 : enrichissement hors-ḿemoire de cette structure pour la préservation de l’apparence des
grands objets.

Part III : synth̀ese ǵeoḿetrique temps-ŕeel par raffinement pour les applications intéractives.

Chapter 7 : description d’un nouveau noyau pour le raffinement adaptatif et le displacement en une
seule passe de rendu.

Chapter 8 : contr̂ole des singularit́es de surface pour la représentation des arêtes vives, de la tension et
du biais au cours du raffinement.

Chapter 9 : approximation des surfaces de subdivision pour la synthèse ǵeoḿetrique temps-ŕeel.

Chaque chapitre d́ebute par une description du contexte et de l’état de l’art du sous-domaine relatif.
Chaque contribution est systématique accompagnée d’une discussion sur les résultats, les performances,
les limitations et les perspectives d’avancées líees au domaine.

Résultats et Conclusion

Au cours de cette th̀ese, nous avons proposé de nouvelles techniques pour le traitement rapide, l’édition
et le rendu de ǵeoḿetrie nuḿeriśees. Ces techniques offrent des solutions efficaces en mémoire et
en temps̀a de nombreux problèmes apparaissant lors de l’acquisition de surfaces pour les applications
graphiques. Elles sont toutes construites sur un ensembles de nouveauxconcepts et structures de données
qui sont suffisamment géńeriques pour̂etre utiliśees dans d’autres contextes.

Premìerement, nous avons introduit l’Arbre Volume-Surface en montrant qu’une structure híerarchique
de partitionnement spatiale peut mieux prendre en compte la géoḿetrie d’une surface 3D en utilisant un
sch́ema hybride de partitionnement, mélangeant d́ecomposition 3D et d́ecomposition 2D. Le partition-
nement hierarchiquéetant au coeur de nombreux algorithmes de traitement géoḿetrique, nous avons
ensuite appliqúe cette structure aux problèmes de la simplification de surface et de la reconstruction de
surface. Les algorithmes obtenus améliorent le compromis temps-qualité de l’́etat de l’art et illustrent
clairement le fait que les quantités et mesures géoḿetriques ne sont pas seules en charge de la qualité
du ŕesultat d’un traitement, et que la structure utilisée pour localiser les calculs aégalement une grande
influence.
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Deuxìemement, nous avons présenter le premier système d’́edition int́eractive pour grands objets. Ce
syst̀eme autorise une manipulation de haut niveau de l’apparence et de la formes de grandes surfaces,
sans ńecessiter d’information topologique sur les modèles. Bien entendu, ce système trouve sa première
utilit é dans le cadre des objets scannés, pour lesquels on souhaite préserver toute la richesse de l’information
géoḿetrique. Ce système est baśe sur un principe d’́echantillonnage-reconstruction, où deux algo-
rithmes en flux assurent le “dialogue” entre un programme et les masses de donńees en stockage externe.
Le premier algorithme effectue une simplification adaptive en flux. L’apparence et la forme du mod̀ele
simplifié peuvent ensuitêetreédit́ees. Enfin, le second algorithme transfert ces modifications au grand
objet original. Les deux algorithmes fonctionnent en flux sont basés-points, ce qui permet de manipuler
de grandes masses de données non structurées. De plus, le système reste actif pendant l’édition, offrant
la possibilit́e de raffiner̀a la demande la ǵeoḿetrie manipuĺeeà partir du grands modèles, et fournissant
un syst̀eme multi-́echelles hors-ḿemoire ǵeńerique. On notera que la représentation simplifíee, baśee-
points a offert toute la flexibilit́e requise en terme d’édition durant les nombreuses expérimentations
meńees : les mod̀eles de points prouvent ainsi leur supériorité aux textures ŕegulìeres, et plus encore
dans le cadre des grands objets.

Troisièmement, nous avons abordé le probl̀eme de la synth̀ese d’images̀a partir de surfaces de points,
uneétape ńecessaire pour visualiser les modèles nuḿeriśes avant reconstruction. En fait, nous avons
montŕe qu’une surface de points peutêtre interfaćeeà faible côut avec le syst̀eme de rendu polygonal
mat́eriel (GPU), en ǵeńerant localement un maillage en deux dimensions organisé dans une structure
hiérarchique: leSurfel Stripping. Cette approche ouvre la voièa l’utilisation du large ŕepertoire de
techniques de rendu polygonal aux surfaces de points et se présente comme une alternative ausplattinget
auray tracing. De plus, d̀es lors que l’objet en entrée est trop grand, nous avons proposé un algorithme en
flux capable de capturer la plus grande partie de la richesse visuelle de l’objet, en extrayant directement
un ensemble de cartes de normales (et couleurs) en haute définition à partir du mod̀ele de points, utiliśes
ensuite sur lessurfels strips.

Finalement, nous nous sommes orienté vers la snyth̀ese ǵeoḿetrique pour les applications intéractives.
Nous avons introduit un noyau géńerique de raffinement de maillage sur GPU qui autorise le raffinement
de maillages arbitraires avec undisplacementarbitraire, offrant des performances temps-réel pour une
synth̀ese ǵeoḿetrique haute d́efinition. Ce noyau permet de traiter directement les représentations de
haut niveau, telles que les surfaces de subdivision, au niveau application/CPU, laissant le GPU créer une
surface raffińee en une unique passe de rendu, au niveau duvertex shader. A l’aide de ce noyau, nous
avonsét́e en mesure de proposer un contrôl local des singularit́es de surfaces, en les décrivantà haut
niveau par des facteurs de formes scalaires. Enfin, nous avons abordé le probl̀eme du rendu temps-réel
de surfaces de subdivision en proposant une approximation quiévite la ŕecursion tout en offrant un rendu
adaptatif temps-ŕeel.

Cette dernìere contribution ouvre la voièa la synth̀ese ǵeoḿetrique diriǵee par les donńees. Comme
montŕe tout au long de cette thèse, les mod̀eles nuḿeriśes doivent́equilibrer qualit́e et efficacit́e afin
d’être implant́es dans les applications infographiques. Plus préciśement, nous avons dévelopṕe trois
types d’analyse:

• unedécomposition híerarchique volume-surfacequi aḿeliore le traitement ǵeoḿetrique des sur-
faces 3D, tout en offrant la possibilité de mettre en oeuvre des algorithmes de dimension inférieur

• un sch́ema d’́echantillonnage-reconstruction en flux qui structure l’édition hors-ḿemoire

• une synth̀esepar l’instance, qui offre un raffinement ǵeoḿetrique flexible pour les applications
temps-ŕeel.

Ces trois approches géńerales, combińeesà la ǵeńerictié des ḿethodes par points, peuventêtre ap-
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pliquéesà divers autres problèmes, notamment la compression, l’édition de topologie, le calcul de visi-
bilit é et la synth̀ese ǵeoḿetrique par les donńees. Ce dernier sujet représente probablement la direction
de recherche la plus prometteuse, puisque la taille grandissante des contenus 3D ńecessitera rapidement
le développement de représentations de plus haut niveau permettantà la fois une structuration dynamique
pour l’édition et uńechantillonnage précisà la demande pour la synthèse temps-ŕeel.

Enfin, nous pensons que le lien entre donnéeséchantillonńees et proćedurales demeure un problème
majeur : les premières sont les seules informations capturées du monde réel, et les secondes sont le
langage natif des machines. Nous aborderons ce problème dans les travaux̀a venir.
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