N° d’ordre : 3427

PRESENTEE A
LCUNIVERSIT E BORDEAUX |
ECOLE DOCTORALE DE MATI—EMATIQUES ET D' INFORMATIQUE
ParTamy Boubekeur
POUR OBTENIR LE GRADE DE

DOCTEUR
SFECIALITE : INFORMATIQUE

Hierarchical Processing, Editing and Rendering of AcquiredGeometry

Soutenue le :21 Septembre 2007

Apr es avis des rapporteurs :
Markus Gross ... Professeur ETH Zurich
Roberto Scopigno Directeur de Recherche au CNR de Pise

Devant la commission d’examen compa@ de :

Markus Gross ... Professeur-ETH Zurich R ajem
Roberto Scopigno Directeur de Recherche-CNR Rapporteu
Claude Puech ... Directeur de Recherche-INRIA Examimat
Pascal Guitton ... Professeur - Univeedgordeaux | Fsident

C. Schlick Professeur - UniveisiBordeaux Il ... Directeur deélse

2007 -

Abstract

Digital representations of real-world surfaces can now be obtainedatitally using various acquisi-
tion devices such as 3D scanners and stereo camera systems. Théastraew accurate data sources
increase 3D surface resolution by several orders of magnitudepviiog higher precision to appli-
cations which require digital surfaces. All major computer graphics apitacan take benefit of
this automatic modeling process, including: computer-aided design, phgsivalation, virtual real-
ity, medical imaging, architecture, archaeological study, special effemtsputer animation and video
games.

Unfortunately, the richness of the geometry produced by these media @intes price of a large,
possibility gigantic, amount of data which requires new efficient data stescfnd algorithms offering
scalability for processing such objects.

This thesis proposes time and space efficient solutions for modeling, editingradering such complex
surfaces, solving these problems with new algorithms sharing 4 fundansbemaénts: a systematic
hierarchical approach, a local dimension reduction, a sampling-reaotisn paradigm and a point-
based basis.

Basically, this manuscript proposes several contributions, includingwahierarchical space subdivi-
sion structure, the Volume-Surface Tree, for geometry processimgesusimplification and reconstruc-
tion; a streaming system featuring new algorithms for interactive editing of tavgects, an appearance-
preserving multiresolution structure for efficient rendering of large tpoésed surfaces, and a generic
kernel for real-time geometry synthesis by refinement.

These elements form a pipeline able to process acquired geometry, ejitesengted by point clouds
or non-manifold meshes. Effective results have been successfulipettaith data coming from the
various applications mentioned.

Resune

La repgésentation des surfaces du monéelrdans la ramoire d’'une machine peugdormaisétre
obtenue automatiquement via dive&riphériques de capture tels que les scanners 3D. Ces nouvelles
sources de doraes, pecises et rapides, amplifient de plusieurs ordres de grandeésdéution des
surfaces 3D, apportant un niveau dexgsion éleve pour les applicationsétessitant des metks
numériques de surfaces telles que la conception &essr ordinateur, la simulation physique,8alite
virtuelle, I'imagerie n&dicale, I'architecture, 8tude archologique, les effets §giaux, I'animation ou

bien encore les jeux video.

Malheureusement, la richesse de &pgetrie produite par ces @hodes induit une grande, voire gi-
gantesque masse de déesa traiter, recessitant de nouvelles structures de @asnet de nouveaux
algorithmes capables de pasadiechelle d'objets pouvant atteindre le milliarcedhantillons.

Dans cette tbse, je propose des solutions performantes en temps et en espaceldames de la
mocklisation, du traitementépnetrique, de Iedition in€ractive et de la visualisation de ces surfaces
3D complexes. La @thodologie adope pendant Elaboration transverse de ces nouveaux algorithmes
est articube autour de £€léments d@s : une approche éarchique sysimatique, uneéduction lo-
cale de la dimension des prelohes, un principe échantillonage-reconstruction et uneépeéndanca
I'eénunération explicite des relations topologiques aussi d&magproche base-points

En pratique, ce manuscrit propose un certain nombre de contributiongi, [paquelles : une nouvelle
structure hérarchique hybride de partitionnement, I'’Arbre Volume-Surface (V&)ainsi que de nou-
veaux algorithmes de simplification et de reconstruction ; uresystdédition in€éractive de grands
objets ; un noyau temp®el de synthse @onetrique par raffinement et une structure mudtsolution
offrant un rendu efficace de grands objets.

Ces structures, algorithmes et &yses forment une ciree capable de traiter les objets en provenance du
pipeline d’acquisition, qu’ils soient repsengs par des nuages de points ou des maillages, possiblement
non 2-varétes. Les solutions obtenues drte appliqiees avec sués aux donees issues des divers
domaines d’application pcités.

Une traduction de l'introduction et de la conclusiogasume cette #se en fin de manuscrit

Acknowledgments

First, | thank the “Best PhD Advisor of the World”, Christophe Schlick, 4t the discussions we had
during the 3 years of my PhD. He brought me unnumbered scientific skibsjgrafor research, and
inspiration for teaching.

This thesis has been reviewed by Marcus Gross and Roberto Scogighpresented to Claude Puech.
They were all members of my PhD commity, and | want to thank them for takingestter my work.

| also want to thank my team, IPARLA, for all the work and entertainment we Ha particular, |
want to thank Pascal Guitton, the team leader, for his support and his abiléad us in advanced
research activities while maintainingreally fair ambiance in the group. Special thanks goes also to
Patrick Reuter, Xavier Granier, Raymond Namyst, Carole Blanc and PAadee Wacrenier for their
comments and help at many levels during my research and teaching activBi@siafux University.

| also want to thank my co-authors, Florent Duguet, Julien Hadim, Olgar&oakd Julien Lacoste, for
all the pleasant time | had working and discussing with them.

Wolfgang Heidrich, and the Imager group from the University of BritishuGwia, offered me a great
experience during my long-term stay in Vancouver, Canada. SpeaidgtaAbhijeet Ghosh, Vladislav
Kreavoy and Eric Broschu for their friendship during my canadian days

Finally, | want to thanks my friends for the amazingly good time | had with them ird&aux and my
family for their everyday support during my studies. And more than anylomant to thank my beloved
Elisabeth, for all the love she gives me and the unconditionnal suppodffdred at all the steps of this
thesis.

Contents

1 Introduction 10
1.1 Overview of Contributions. 11
1.2 Outline e e 11

2 Background 14
2.1 Acquiring Geometry e e e e e e 14
2.2 Meshes Versus Point-Sampled Surfaces 18
2.3 LargeObjects. e 20

| Processing and Editing of Acquired Geometry 22

3 Volume-Surface Geometry Processing 24
3.1 Context: Simplification and Reconstruction. 25
3.2 Volume-Surface Tree e e e 26

3.21 Definition. e e 26
3.2.2 Construction. e e e e 27
3.3 Rapid Simplification 29
3.3.1 Balancedclustering. e 30
3.3.2 Computation efficiency 30
3.3.3 Meshsimplification 31
3.4 Fast Surface Reconstruction by Refinement, 31
3.4.1 Base Domain Reconstruction 32
3.4.2 MeshRefinement. 33
35 Results e e 34
3.6 DISCUSSION o o e e e e 36

4 Size Insensitive Interactive Editing 38
4.1 Context: Interactive Manipulation of Large Objects 40
4.2 A Sampling-Reconstruction Framework. 42
4.3 Sampling by Adaptive Out-Of-Core Simplification 43
4.4 Out-of-Core Attribute Reconstruction, 46

4.4.1 Streaming Colorization. L 46

4.4.2 Streaming Deformation. 47
4.5 Interactive Out-Of-Core Multi-Scale Editing. 51
46 Results e 52
4.7 DISCUSSION v ot e e e e e e e 57

Il Rendering of Acquired Geometry 60
5 Point-Based Surface Rendering with Surfel Strips 62
5.1 Context: Visualization of Point-based Surfaces. 63
5.2 Surfel Stripping. e e 66
5.2.1 Lower Dimensional Triangulation 68
5.2.2 Inflate-and-Decimate 69
5.2.3 Faststripping 71
5.2.4 TheStripping Tree e e e 72
5.2.5 Rendering Surfel Strips. 73
5.2.6 Multiresolution Levels-Of-Detail 73
5.2.7 Interactive surface deformation L L. 75
5.3 Results 77
5.4 DISCUSSION o o e 82
6 Appearance Preserving Rendering of Large Point-Based Surfas 84
6.1 Context: Large ObjectRendering 85
6.2 Appearance Preserving Surfel Stripping. 0. 87
6.2.1 OVEIVIEW. o o e e e e 87
6.2.2 Out-of-Core Simplification and fast meshing. 87
6.2.3 StreamingNormals. 88
6.2.4 Normal Map Reconstruction. 90
6.3 Results e 93
6.4 DISCUSSION o o v e 95
[l Toward Real-time Geometry Synthesis 102
7 Generic Mesh Refinement 106
7.1 Context: Real-time Mesh Refinement. 108
7.2 Adaptive RefinementKernel 110
721 OVEIVIEW. . . . o o e e e 110
7.2.2 Topology Control with Depth-tagging. 111
7.2.3 RefinementPatterns 112
7.2.4 Adaptive RefinementShaders., 117
7.3 RefinementZoa 118
7.3.1 BezierSmoothing e 118
7.3.2 FullGPU DisplacementMapping 119
7.3.3 Procedural Refinement. o 120
7.3.4 Adaptive TerrainRendering 120
7.3.5 Animated Mesh Refinement. 121
7.4 Implementation and Performance 122
7.5 DISCUSSION v v o e e 123
8 Controllable Mesh Smoothing with Scalar-Tagged PN Triangles 128
8.1 CurvedPN Triangles. e 128
8.2 DescriptionofScalarTags 129
8.2.1 Localsurfaceanalysis 129
8.2.2 Shape parameters through scalartags. 130
8.3 Meshgeneration. 130

8.3.1 Combining shading and smoothing.
8.3.2 Generation of the normalfield.
8.3.3 Generation of the displacementfield
84 Summary e e

9 Real-time Quadratic Approximation of Subdivision Surfaces
9.1 Context: Subdivision Surfaces for interactive rendering

10 Conclusion

Annex

About models and software
Translation in French

Author’s Publications

9.2 Approximated Subdivision L oL
9.21 Principle
9.22 CPUSUppoOrt
9.2.3 GPU Polynomial Approximation.
9.2.4 Adaptive Rendering.,

9.3 Results

9.4 DISCUSSION

160

162

168

Chapter 1

Introduction

Digital modelingencapsulates objects and phenomena in a set of numerical valuesidgsbeir prop-
erties. Among them, thehapehas a fundamental importance in all applications involving a simulation,
the simplest being the image synthesis capturing an approximation of the illuminatiergene by the
object, in other words: theendering Prior to this process, thgeometric modelingf a tri-dimensional
object uses a large variety of functions to represent this shape: theyractured by spatial, spectral or
semantic links, and differ according to the target application, the time and memiasyraints, the level

of accuracy required or even the mandatory artistic rules.

Applications of geometric modeling and rendering range from scientific simaladieentertainment
software, including reverse engineering, special effects, artdgieal exploration, video games, educa-
tion, training and computer animation. With the recent increase of digital témdies, widely supported

by the development of Internet, all these fields have to face a growingrattomea short time schedule,
resulting in complex multimedia systems like, for instanigsigh-end 3D packagegraphics-physics
3D enginesandflying simulators However, while 3D technologies are now able, in many situations,
to quickly produce near-realistic images, there is still a lack in the creatiorhaf weally matters: the
content.

For decades, digital 3D models have been created by Computer Grap@irdésigners, using complex
interactive tools for reproducing real-world objects and inventing imagioaes. While computer
animation and video games strongly rely on their artistic skills, CG designenstctutfill demands on
rapid and precise surface modeling from real-world.

Recently, a new way to create 3D objects has emergetbmatic modelingor how to generate 3D
objects with a 3D scanner, just like pictures are taken by cameras. Withribesdevices, generat-
ing million of polygons sampling a human face can be done in a matter of secmdiswo or three
engineers can produce digital models of a building, with a sub-millimeter pracisiéew hours.

Unfortunately, this new source of content brings a bunch of new pmleoming from the two char-
acteristics of sampled surfaces:

e acquisition is a discrete process that only gets a sampling of reality. Theréfie notion of sur-
face, intrinsically continuous, has to be reconstructed, involving moressrdebitrary decisions
to reconnect the discrete samples

¢ the fine degree of accuracy induces huge data sets, which challegthevnost powerful com-
puters for applications that require a quick feedback, like processifiting and rendering.

10

In this thesis, we propose new algorithms for large 3D objects, designdchiband memory efficiency,
and able to handle the complex shapes coming straight from the 3D acquigui&bime.

1.1 Overview of Contributions

Throughout our research work, we had to solve various problemsrireg in the geometric processing
pipeline dedicated to acquired geometry. We present several origin@ibrdions in the fields of effi-
cient processing, editing and rendering techniques for sampled 3&cssrfHere is an exhaustive list
of the main contributions:

Processing

e a new hierarchical space subdivision structure, the Volume-Surfaae Which can replace the
octree for efficient partitioning, offering a better error-driven split.

e a new fast surface simplification algorithm based on VS-Tree
e a new fast surface reconstruction algorithm based on VS-Tree

e a generic kernel for out-of-core simplification.

Editing
e a size-insensitive framework for interactive editing

e two kernels for transferring appearance and deformation betweenatitfsampling of an object.

Rendering
e an efficient multiresolution polygonal rendering algorithm for point-besethces
e an appearance preserving conversion for large objects rendering
e a generic kernel for real-time mesh refinement with arbitrary displacement
e a controllable refinement method for mesh smoothing with singularities

e an approximation of subdivision surfaces for real-time applications.

1.2 Outline

In the various topics that we address in this thesis, a large number of pseideas and papers are
discussed. In order to maintain a clear presentation, we do not coreethteapresentation of these
numerous previous contributions in a single chapter, but spread out #ueording to the context, at
the beginning of each chapter. This thesis is organized in 3 parts:

Part | proposes new geometry processing and editing methods for large objects.

Chapter 3introduces the volume-surface tree and its application to fast simplificatioreaadstruction
of surfaces.

11

Chapter 4 describes our size-insensitive framework for arbitrary large modehgd
Part 1l offers a new multiresolution generation and rendering system for poietdizsfaces.

Chapter 5 explains how to generate and render an adaptive polygonal struotuestializing point-
based surfaces.

Chapter 6 extends this idea by introducing the idea of attribute mapping in streaming feaepe
preservation of large objects.

Part 1l introduces a new generic refinement kernel for interactive applications.

Chapter 7 proposes a new GPU kernel for adaptive mesh refinement, allowingeayhitiesh refinement
and displacement in a single pass, at vertex shader level.

Chapter 8 extends the original Curved PN Triangle refinement scheme by introdscalgr tags to
control surfaces singularities such as sharp creases and tension.

Chapter 9 tackles the problem of real-time subdivision surface rendering by gimga visually plau-
sible approximation which avoids recursion, and allows adaptive samplirenyateep levels.

Each chapter starts by a motivation and a context, stating related stateat-fh@blems and solu-
tions. Each contribution is systematically concluded with results and implementagiaitsdas well
as a discussion presenting limitations, particular notions, a summary and dpeg@res related to the
contribution.

12

13

Chapter 2

Background

The algorithms, data structures and techniques presented in this thesis affesrg efficient process-
ing of sampled geometry. Therefore, the background of this work tdkes pt the junction of several
fields and we discuss the related work when necessary throughout thescnipt. However, several
topics are transverse and presented in the following sections.

2.1 Acquiring Geometry

The raise of 3D scanners leverages the work of CG designers, duites an engineering process for
ending with high quality 3D surfaces. Basically, the idea is to combine sef2é&ial sampling of an
object, taken from various points of view, to form a 3D sampling, latter abvesi¢o a surface. One must
note that only 3D samples capture the reality: any topological connectivityelea these samples, either
explicit or implicit, comes as an assumption made over the original surfacelligbe 3D acquisition
pipeline is composed of three main steps:

1. thecapture, which samples intersections distances (or depth values) in a whole redigections
from a given point of view, outputting depth images (also called scan gheets

2. theregistration, which puts together a set of depth images, taken from different pointewf
to form a 3D point cloud,

3. thereconstruction, which generates a surface (e.g. mesh) from the point cloud.

At each stepdata cleaningmust be applied for eliminating the various artefacts that may occurs. In
this thesis, we will focus on the processing and use of these geometriesttidgdess, in order to cor-
rectly appreciate the choice we made all along our work, we give a ddepeription of this geometry
acquisition pipeline (illustrated in Figu1) in the following paragraphs.

We refer the reader to the course on 3D Photography by Curless &nd@&80(Q and to the survey on
the 3D model acquisition pipeline by Bernardini and Rushmd&(d2 for a complete review of 3D
acquisition technologies.

14

Acquisition Registration Reconstruction

N1

Real Object Laser Range

Scammer Depth Tmages Point Polygonal

. J _Deanner - \ Cloud / _Mesh J
Image-based Point-based Mesh-based
processing processing processing

Figure 2.1: The 3D acquisition pipeline.

Raw data capture The surface sampling is performed through a set of depth imgggs..D,} that
indicates, for a whole range of rays, at which depth arise the first @utos with the real model along
the ray defined byx,y}, providing a 2.5D sampléx,y, Di(x,y) } in the frame of the sensor. This capture
can be performed with various devices, calBidlscannerswhich are classified in two main families:

e Active 3D scanners a radiation (e.g. light) is emitted and the response produced by the scanned
model is used to define its depth values. For instance:

— Laser 3D Scannerase laser rays to sample the surfaces, either using a time-of-flight mea-
sure (for large scale distant objects, like buildings) or triangulation (& fteenera is used
for capturing the laser impact on the surface of smaller objects).

— Structured Light 3D Scannegwoject 1D or 2D patterns using an LCD projector, analyze
the deformation of the pattern produced by the surface projection andutéa the depth
value. Such acquisition is usually faster but less accurate than laseiggesin

e Passive 3D scannerssimple cameras can be used to capture different views; the set of rgsultin
images is then analyzed using:

— Stereoscopymeasuring the difference obtained from two near points of view.

— Silhouettesextracted by image analysis, and combined to approximate the convex hull of
the model (concavities can be missed).

Active 3D scanners are more expensive, may not work in some partlghéng conditions, but still
offers betters results than passive ones. Note also that while color nemgbeed using the same pro-
cess, the view/light-dependent nature of this property usually requfferedt systems for capturing the
underlying material and reusing it in different view/lighting conditions (seesgle’s thesisjoe04).
Finally, capturing transparent objects is not really possible with all thestersg (see the topographic
reconstruction of Trifonov et alTBHO]).

Registration The registration searches for a set of transformation matfitks...,M,} that align
relatively to each other the 3D geometry defined by the set of depth imagp.-L¢x,y,Di(x,y)} a 3D
sample defined bf;, the registration process generates a matiixso thatM @ p/ = M; ® pjT, with
pi andp; sampling the same surface point from their relative frame. Popular methoegister scans
divide the problem in two steps:

1. aglobal registration that use a full scan analysis to roughly align twtsstias step is the harder
one if no additional information is provided (it may be user-controlled)

15

2. alocal registration, that use curvature-based feature corréspoa to perform the precise align-
ment. One efficient algorithm to do so is the Iterative Closest Point (IBMPR], which can be
enhanced to spread the residual error over the complete set of paiagsed scans, minimizing
the maximum errorBul99.

At the end of the process, a 3D discrete point Bas output, so that/p € P,3{x,y,i}/p= M ®
{X7 Y, Di (X7 y)}T

Reconstruction Finally, P is converted into a continuous surfag&eviost of these algorithms end with
a mesh and can be classified in three families:

e explicit methods generate directly a mesh interpolatiRg Such methods include displacement-
based method$[TKK99, JK0Z), deformable modelslM91, DQO0J] and growing fronts$L S 06]

e combinatorial methods use an intermediate combinatorial structure built upofor selecting
a part of the so-defined connectivity as the surface. Such methodsedaased on the Voronoi
diagram BC00, ACK01, DGHO01], its dual Delaunay Triangulation§KS0Q CSDO03, the convex
hull or the k-graph (graph linking each sampleRoivith k neighbors)

e implicit methods define a functionf : R® — R so that one of its iso-surface (usually, the zero
set) approximates or interpolat®&s[HDD*92, HDD*94]. Several basis exist for these func-
tions, either using Radial Basis Functions (RBBEPPK95 CBC*01, TO02Z, quadric approxi-
mations PBA*03], or Poisson equation&BH06]. Depth Image can also be directly used after
registration for constructing a distance functi@LP6]. These techniques often relies on some
least square fitting, and may be:

— global: P is entirely used for defining in any point
— local: only a small and compact subsefiis considered for a given point

— artificially local: several functions interpolate globally subset®&nd are combined to-
gether, using for instance thgartition of unity [OBA*03, TRS04 for solving the global
reconstruction.

As meshes are ubiquitous in 3D applications, a final explicit solution musttbeceed from the
implicit form of f. In general, finding this solution is not possible through an analyticalgssc
S0 a piecewise linear approximation is usually obtained with a 3D contouring dyetinch as the
Marching Cubesl[C87, Blo88] algorithm, for creating a polygonal mesh.

In spite of the numerous papers published over the last 15 yearssesuefeonstruction — and its dual
sampling theory — is still an open proble@{o0§ and all existing solutions have specific drawbacks
and advantages, with theoretical guarantees that do not hold in prdaotiCaapter3, we will focus on
fast reconstruction methods and show how the problem can be solved timhties cases by an hybrid
implicit-explicit reconstruction. We refer the reader to the work of KazH#&z03 for a recent survey
on surface reconstruction.

Data cleaning Each stage of the acquisition pipeline introduces its own noise and artifdeesefore,
specific data filtering must be employed a each level. Note that all thesespescgtrongly benefit from
additional user controM/PK*04], particularly in in under-sampled or highly noisy areas.

16

Image-based filtering Raw data samples are organized in depth images. This indicates an acquisition
“direction” for samples and image processing techniques can be emplegethstance, on very spec-

ular material, laser scanners may estimate a too small value for the depth of amples producing
“peaks” in the direction of view. Therefore, a local Laplacian filtering é&lp to detect and remove
these artifacts. Moreover, since depth images only represent paptateaanother global cleaning has

to be performed after registration, for eliminating unwanted component yead.behind the scanned
object)

Point-based filtering After the second stage, the resulting point cloud may also exhibit some naise th
needs to be removed, particularly in overlapping regions that havendtieeregistration. At this point,
point-based methods are employed. In particular, the Moving Least&pgt@ection is recognized as a
good filter for non uniform point clouds. In the original operatioey98a Lev98H, the surface defined
by stationary projection, the Point Set Surface or PS8GO*01, AK044a], is evaluated at any point

p € R3 by:

e collecting a set of neighboring sampl§$ in the point cloud
e fitting a plane ta\P in the least square sense
o fitting a low degree polynomial parameterized on this plane, that minimize’teeror toNP

This projection procedure can actually be replaced by a simple projectian amerage plane when a
normal estimation is providedAK04b], still converging. This operator acts as a smoothing operator,
and can preserve features when requiFdQS05%. Note that it is somewhat related to treproducing
kernel particle approximation We refer the reader to our own worRJT*05], not discussed in the
present thesis.

Mesh-based filtering Finally, once reconstructed, the resulting mesh can undergone vanbagae-
ment like hole filling, noise removal, anisotropic semi-regular remeshing aadederization. We refer
to the course of Botsch et aBPK*07] for an introduction to mesh processing.

One fundamental geometric processing is the simplification step, that allowsfriwoa surface res-
olution to a given budget of samples or polygons allowed by the final apipiicae will discuss this
problem in Chapte8.

About Normals Once registered and before reconstruction, having an estimation ofrimaingector
for each sample of the point cloud is a very useful information. One soltdioihat is to estimate this
vector directly in the depth image, using local differentiation. However,gkelting normal information
remains an estimation as it is based on the depth image geometry, and it migh¢ lmafsilbouettes (this
can be prevent by either filtering the normals or removing border sampiesh Wave low confidence
anyway). An alternative method is to uskape-from-shadingp “measure” the normal information,
by using several photos with different lighting conditions, and which @aoded with geometry-based
estimation in an optimization process. We refer to the work of Nehab @dRIDRO03 for additional
information.

Last, when the point cloud comes without any information on the original diepdiges, Hoppe et
al.[HDD*92] propose to consider, for each sample, the eigen vector associatedlkessmigen value
of the covariance matrix of its nearest neighbors as an approximation dirdwtion of the normal. A
minimum spanning tree is then used to make the orientation consistent. We wiltiabgs@onsider

point-based surfacess point clouds equipped with normal vectors.

17

2.2 Meshes Versus Point-Sampled Surfaces

At the end of the third stage of the acquisition pipeline, the large repositggarhetry processing, edit-
ing and rendering techniques is available and can be used. Howeseryisig the second stage, several
researchers have developed methods that act directly on the point blefode reconstruction. In the
literature, they appear @int-basedf Mesh-lessnethods. Globally, point-based algorithms process
shapes without considering any explicit topology information, such asdtpeseand the polygons of a
mesh. They rather use weak topological estimators based d&mbarest neighbors (k-neighborhood),
or all the samples contained in ball around the considered locatiarighborhood). In facts, many of
point-based tools offer similar results that mesh-based ones. Sometimassuhe are even better, like
for surface simplificationfor which point-based methods allow more degrees of freedom focieglu
the resolution of a shape.

Figure 2.2: Left: The Max Plank modelTop right: Close-up on the mesh versiBottom right:
Close-up on its point cloud version.

Considering performances, both representations trade memory fat: speshes encode additional
data for polygons (and sometimes edges) but offer constant time neigbtess, while point sets, free
from topological information, can only offer a linear access time to neighb&didogarithmic access is
possible at the price of the pre-generation of a space partitioning seusturh as kD-Trees, but this
structures implies an additional memory overhead.

So neither efficiency nor quality can clearly help to distinguish situationsevpeint-based surfaces
should be preferred to meshes. Still, two elements vote for using point-peseessing when possible.
First, the surface reconstruction is far from being a straightforwakd t&is time-consuming and many
algorithms have side effects on the final geometry compared to the origimaglieg provided by the
3D scanner. So using point-based methods helps to maintain as long asepthesifriginal sampled
surface as a “ground truth”. Second, even after reconstructiort,ohssrface reconstruction algorithms

18

cannot providguaranteednanifold for the output mesh. This means than the explicit connectivity may
not be consistent everywhere, resulting in a so-calieehgle soup Third, surface reconstructias a
more or less arbitrary answer to the question: “Which samples should besthbdg a given polygon and
thus become privileged neighbors ?”. Likewise, nothing is said abouthbiee made by the surface
reconstruction algorithm when a mesh is submitted to a given process. tlindaclogy information
cannot be acquired statically, and is decided using more or less stropgs#ign during the sampling

of the shape, an information usually unknown.

In this context, point-based methods appear as generic processing methiadto process either man-
ifold meshes, polygon soups and point clouds. Unfortunately, rerglandware and algorithms are
designed for polygonal surfaces, imposing meshes in most of commef@iab@ware. In Chapteb
and6, we will show that polygonal rendering technique can benefit to poirgebasrfaces, introducing

a fast local meshing algorithm for interfacimiyectly point-based surfaces and polygonal rendering
systems, allowing to combine flexible point-based modeling tools with efficiengpoBl rendering,
even with large models.

In this thesis, we will not make a strong difference betwaequired geometry, sampled surface
point cloud or point-based surface(PBS). All these terms correspond to the set of samples coming
from the acquisition pipeline before reconstruction. In general, weidenthis set as processed (e.g.,
outliers removal, noise filtering) and in many cases, with sampled or estimatedingctors.

19

2.3 Large Objects

With sub-millimeter precision in range scahd[C*00], even a small real-world object can lead to tens
or hundred of millions samples at the end of the acquisition pipeline. Being tdorigpst applications,

it must be simplified to a target resolution fitting hardware and algorithmic capadilidewever, the
simplification process is application-dependent and, for instance, sp#eras experts have a different
definition of optimality than video games designers: the former use to deal with meillibpolygons
per objects, while the latter is expected to keep only few thousands. Sdindeto simplify an object
before processing or editing it may results in loss of features that couldddal for future applications.

One solution to this problem isut-of-core processingThese techniques allow to process or visualize
an object at its full resolution, using either streaming or external memory geamnt. One popular
example of such methods is simplification itself: too large objects do not fit in meamatyequire out-
of-core methods for being simplified.in00]. However, out-of-core methods remains limited to slow
offline processing or visualization of static shapeE(0, CGG04] after a long preprocess. One major
contribution of this thesis, stated in Chapteis a set of algorithms organized in a streaming system
allowing interactive shape and appearance editing of large objectsnigdal resolution models on the
output and opening a path to size-insensitive computer graphics.

Figure 2.3: The two largest publicly available sampled surfaces, the St Matthew (lefhendtlas
(right), are provided by the Digital Michelangelo Project and feature saMveundred millions of sam-
ples. While their simple visualization is a already challenge, we will go a stepefulbhallowing their
interactive editing.

20

21

Part |

Processing and Editing of Acquired
Geometry

22

23

Chapter 3

Volume-Surface Geometry Processing

Hierarchical Space Subdivision Schemet) are ubiquitous in computer graphics, and more par-
ticularly when efficient processing of acquired geometry is mandatory: siogildn, reconstruction,
compression, visibility, and many other processing steps are based stotpagtition and structure data
sets. Their simple principle has made them popular: the initial space, oftexisaaligned bounding
box, is recursively subdivided until each cell satisfies a given emiterion. The root cell of thédS®

can be either globally associated with the whole scene, or locally with eade sinjgct. Some of the
most populaHS® are octrees, kD-Trees and axis-aligned BSP-Trees, which argessglement and

to integrate in existing computer graphics frameworks.

Nevertheless, in the case of 3D surfaces, wHif# generate satisfying clustering at coarse subdivision
levels, it is obvious that at finer levels, when the cells come closer to thecsyrfolume-based decom-
position leads to imbalanced clustering in areas where the surface is netaligih the main directions

of the data structure (see Figu€el.(a).

(a) Octree clustering

Figure 3.1: Comparison between (a) octree clustering and (b) VS-Tree clustérimglocal 2D scheme
used by VS-Trees produces much better alignment of clusters amcerethe total number of clusters
within a given error bound.

In this chapter, we propose an alternati¥&® which combines a 3D scheme for the first levels of the
tree, and a 2D scheme as soon as the surface can be projected onte wighant folding. We call
such a tree &olume-Surface Trefr VS-Tree, for short). We show that VS-Trees achieve efficient

24

and elegant surface-based partitioning that can be applied to a varigpplidations, such asurface
simplification(Section3.3) andsurface reconstructio(Section3.4).

3.1 Context: Simplification and Reconstruction

Hierarchical Space Subdivision Structures All HS® are based on a recursive subdivision of a root
cell, as long as some user-specified criterion is not satisfied in everglsubs outlined above, octrees,
kD-Trees and BSP-Trees are by far the most popdi. In the case of BSP TreeBIKN8(], the space
subdivision is dyadic, using a simple split plane, often chosen axis-alifgmetie sack of efficiency.
The kD-Tree data structur&gn73 performs orthogonal space separation and stores additional data
elements at internal nodes. Finally, quadtrees and octdd@9[Sam89, or more generally 2trees,
express the dimension of the subdivided space directly in their structdréo-d scheme for quadtrees
in 2D, and a 1-to-8 scheme for octrees in 3D, where an initial bounding isulecursively subdivided in

8 equal cubes until satisfying a given criterion in each space partitiorgritésion being related to the
embedded geometry in our case. The very simple construction of the catreell as its fast conver-
gence toward the shape of the embedded 3D surface, makes it vefpipepen geometry processing
methods, such asurface simplificatiomndsurface reconstructigmeed to be scaled toward large data
sets.

Simplification by Clustering The goal of simplification methods is to reduce the resolution of an ob-
ject, while maintaining as much detail as possible from the original shdp®{93, GH97, CSADO04.
Clustering methods are a particular subset of simplification techniques, wasththe problem as a
partitioning problem, where each partition only keeps one single sample that nesihieg error, in

a given metric GH97, CSADO04, with the original surface. Hierarchical approaches, such as BSP-
based methodsSiG0] or octree-based methodS\\V03, provide adaptivity in the surface partitioning.
This adaptivity allows for more accurate simplification of non-uniformly samplethces than regular
grid partitioning methodsRB93, Lin00], while remaining almost as efficient. Such techniques have
originally been developed for meshes, but they can also be directly agpliedint clouds, when the
sampling density is high enougRGKOZ. In practice, it appears that the quality of the mesh simpli-
fied by hierarchical clustering is strongly related to the subdivision schantewe will show how the
local 2D scheme used by VS-Trees offers a much more regular samjmeatiec than the 3D scheme
induced by octrees (see Sectids).

Surface Reconstruction To be as generic as possible, surface reconstruction techniquély gtarh
from a sampling of the original surface in the form of a point cloud. Noteithaddition to its position,
each sample may also carry additional information, such as normal vea@bm#y (or may not) be
exploited during the reconstruction. Since the seminal work of Hoppe[&tRD*92, HDD*94], various
surface reconstruction methods have been proposed in the literatureisumait of the scope of this
section to perform an exhaustive survey (see Se@ibfor a brief summary).

Today'’s acquired point sets exhibits a sampling density that challengasstaactions methods, so we
focus onspeed-basedethods. Again, hierarchical data structures offer a simple and effitane-
workd to break the intrinsic complexity of surface reconstruction fromsdepoint clouds. However,
this induces a “divide-and-conquer” approach, that certainly spapdcomputation but also causes
problems when a set of partial solutions have to be combined in a singlesurfaerefore, implicit
surfaces appear as the most suitable representation, since their voluteéhigon can be easily ob-
tained by simples operations (e.g., constructive solid geometry, polynomiaibgg on many volumes.

25

For instance, an implicit surface reconstruction can be obtained by spliténgplt point cloud with
an octree, computing a separate implicit surface for each leaf of the patrédinallygluing together
the set of local implicit surfaces by using tRartition Of Unity method, where a compactly supported
kernel weights the contributions of the different functions at a givantp@his process has been suc-
cessfully used for fast local polynomial fitting in tiMulti-Level Partition of Unity Implicits (MPU)
algorithm [OBA*03] as well as forRadial Basis FunctionfTRS04. Unfortunately, as usual with im-
plicits, an explicit solution has to be provided at the end for processingeamiering purpose and
the reconstructed implicit surface is converted into a mesh, which involvex@ensive tessellation
step Blo94]. Moreover, the quality of the resulting mesh is generally poor (the grithse intersec-
tion involved in 3D contouring cannot output well-shaped triangles) asddae improved using, for
instance, an additional remeshing step, either based on parameterit�§|, global optimization
[Bot09 or fitting of subdivision surfaced§DD*95, ZSS97 MK04]. Consequently, even if the computa-
tion of the implicit surface is efficient thanks to the space subdivision, th@eanteconstruction process
including the generation of an high quality semi-regular mesh becomes ragenrsive.

In fact, surface reconstruction remains an ill-posed problem, even withgltubal solutions, and we
often resort to a painful try-and-test session. Thus, we proposedtioB 3.4 a performance-oriented
surface reconstruction technique that takes fully benefit of the volwriaeg organization of the VS-
Tree, to generate a semi-regular mesh of arbitrary genus over arenimed point-cloud, dealing both
with noise and non-uniform sampling. This algorithm is fast enough to berattin an acquired
geometry processing pipeline, offering good results in most cases and lgitinately the choice to
users to switch to a slower techniques in difficult cases (e.g., large hol#suadier-sampled surfaces).

3.2 \Volume-Surface Tree

In this section, we introduce the VS-Tree as an hybrid hierarchical partiigoerforming a volume-
surface decomposition in its structure.

3.2.1 Definition

RN AN

@V-Node O T-Node S-Node

Figure 3.2: The VS-Tree structure. Note in red the T-layer, capturing a 3D-2D interifiathe hierarchy.

26

A VS-Tree is asurface-based HS The basic idea is to combine an octree and a set of quadtrees to
describe a discrete 3D surface. During the recursive split involveceindtree construction, we switch

to a quadtrees as soon as the area of the surface associated with &mt cade is consistent with a
scalar-valued function over a given ground plane (in other worblsjght field. Figure3.2 presents the
three different kinds of VS-Tree nodes:

¢ Volume Nodes(V-Nodes): comparable to octree nodes. Each V-Node has 0 or 8emildtich
can be V-Nodes or T-Nodes.

e Transition Nodes (T-Nodes): leaves of the 3D hierarchy which also are roots of the 2famhie
chies. Each T-Node has 0 or 4 children that are S-Nodes.

e Surface NodeqS-Nodes): comparable to quadtree nodes. Each S-Node has 0 itdrércithat
are S-Nodes.

Note that each T-Node carries a local frame that is used to align its con@isly sub-quadtree. The
union of all T-Nodes defines the volumetric layer under which it becomssilple to implement 2D
algorithms (see Figurg.2); we call it theTransition-layeror T-layer.

VS-Trees are proposed in order to increase efficiency of geomet@egsing usually combined with
simple and efficient hierarchical structures such as octrees. Intordsintain a behavior as similar as
possible to octrees, the ideal structure should have the following prapertie

e Purely recursive construction: popular hierarchical structuresg ltfa& strong advantage to be
instanced through a simple recursive call, which is easy to implement;

¢ Efficient construction: rigid organization of data, such as the 1-to-8cfittrees, allows efficient
traversal and refinement of an hierarchical structure;

e T-layer at low depth: switching to quadtrees as soon as possible rethecesemory overhead
thanks to the 2 dimensional structure, and speeds-up traversals andingsision tests for arbi-
trary points are performed in 2D using the quadtrees placed under tlyerT-la

e Graceful degradation: in the worst case of very small or under-sanmp@logical features, such
as iso-surface extraction from physical simulation, the structure shehlavie no worse than an
octree.

3.2.2 Construction

There are a large number of possible 3D surface decompositions thab leadllection of 2.5D pieces.
We propose to use the following simple recursive construction method thegys@integrate in existing
application software.

Input Let S be the set of samples defining the input surface. Each sasnpleS is defined by a
position p; and a normal vecton;. For dense mesheS,can be chosen, for instance, as the original
vertices of the mesh, or as the barycenters of the polygBreain also be a point-based surface, with
normals approximated with a Principal Component Analysis (PEB)D*92, GKSO(if not available.

Clustering The construction of a VS-Tree begins with the computation of a boundingBboikS
recursively subdivided with a 1-to-8 octree scheme. At each levelptinert set of samples associated

27

with the bounding bo; at that level is classified against each child’s bounding boxkLe¢ aheight
field indicator, signaling whethef§ is consistent with a height field (i.e., it is 2.5D rather than 3D).
This flag stops the recursive 1-to-8 subdivision process. W& is true, the current node is set
as a T-Node, and a local coordinate frame is computed. This local frametwaitigly influence the
final quality of the clustering, and must be carefully chosen. While it is igdigempossible for a
hierarchical structure to precisely recover all the anisotropic feapinessent in the discrete surface, a
well-aligned sub-hierarchy can often be computed by analyzing the lyirdgsurface and considering
its main directions (see Figuf®1 and Figure3.4). Thus, for constructing this local frame, we use a
PCA on§, but rather than considering positions of sampkB[D*92, GKS0(, we use their associated
normals, a more relevant information when clustering surfaC&A\D04.

Since we are looking for directions, we can perform the PCA in the norpadesofS. The set of
resulting eigenvectors is a good approximation of the tangent frame ofrlaesuWe choosén;, u;, v; }
as a local frame, wheng is the average normal &, while uy; andyv; are the normalized projections of
the two eigenvectors that minimize the dot product witlonto the plandl; defined byn; andc; (the
centroid ofS).

The set of sample§ associated with the T-Nodg is projected or1;. Finally, a bounding quad is
computed for§ and is recursively subdivided with a 1-to-4 quadtree scheme. Thesienus stopped
when the error, computed ovE, is below a threshold. Figui@3shows the different steps involved in
this construction. Note that the T-layer becomes independent of thetdiscrace resolution when the
sampling density is sufficient: typically, over-tessellating a dense mesh withaotge the depth of the
T-layer.

Height field indicator Evaluating if a piece of surface will exhibit folding during a lower dimensiona
projection can be done by numerically integrating the curvature over thés &evertheless, such a
test is computationally expensive even in the case of regular meshes, aadongplicated for non-
manifold meshes or topology-free representations such as point cloudgier to make our approach
more general and efficient, various heuristics can be used to defineitid field indicatox for such a
predicate. Pauly et alP[G0] propose a normal-cone test for allowing the projection of a set of lsurfe
using the miniball algorithm. We extend this idea by introducing an additional desplant threshold to
detect scan misalignment in dense acquired point sets. Although a fornadlipnot available, since it
would depend on some form of density and/or topology criterion (not dtaila most practical cases),

@) (b) (©) (d)

Figure 3.3: Different levels of a VS-Tree. (a) The input discrete surface. (bLipper levels of the tree
are three-dimensional (in green). (c) The transition between 3D angt@izture (in blue) is possible
as soon as the surface can be locally expressed as a height field.gd)vwér levels of the VS-Tree are
two-dimensional.

28

Models | Samples| Octree | VS-Tree | Gain |

Feline 49864 0.18s. 0.19s.| 18%
Igea 134346 0.33s. 0.34s.| 49%
Vase lion 200002 0.83s. 0.80s.| 18%
Raptor 1000080 3.50s. 3.11s.| 39%
XYZ dragon | 3609601 | 11.82s. 9.88s.| 52%
XYZ Statue | 5000000| 17.82s.| 14.90s.| 32%

Table 3.1: Computation time to generate the Bi®ith L2 error bounded atl0—“. The gain is relative
to the final number of partitions.

this indicatork gives convincing results in practice. So we defin® betrue when:

nij - N, > dawith &, € [0,1] and
[O k'[{ [(pij —Ci)-ni] < 6dW|th 6d E[]
max(‘ lek CIH

wherek; is the number of samples of the current éelt; the average normal of the surfels in the cell,
pij andnjj are the position and the normal of th® sample of the cell. &, (angle deviation) and
d4 (displacement deviation) are user-provided thresholds. In our impledesat0 anddy = 1/6 has
provided satisfying results in all our tests. Note that by increadingnd decreasingy, it becomes
harder fork to be true, and thus the T-layer is conservatively dropped to a lowerdétted hierarchy.

Error metrics ~ As usual withHS?, an error metrid. can be be defined to control the recursive subdi-
vision with a simple geometric analysis. Good error functions should be mona@todidecreasing with
the size ofS. Obviously, any error metrics can be used with VS-Tree. Yet, we usdueed set of such
metrics, which have proved their qualities. In particular, we use_therror function, which ignores
small-scale high-frequency features in the partitioning, and which is dizedeon sampled surfaces by:

ZHpIJ (P12

with IM;(pij) the orthogonal projection gfi; on some average plane related3de.g., least square or
{ci,ni}). We use also the Quadratic Error Function (QEF) introduced by Gaf@rt97) for better
capturing curved smooth surfaces. Last, as normal is a very relexgpenty of smooth surfaces, we
often use the normal-bas&d! metric [CSAD04, which also better captures anisotropy:

L24(s) = Y [—nil?
J

More complex combined metrics, such as the Sobolev one, may also beutweelchse of large objects,
simple approximated metrics, such as the local density, may be chosendmnefji

3.3 Rapid Simplification

In this section, we show how the VS-Tree structure improves prior sudanplification algorithms
based orhierarchical vertex clustering

29

3.3.1 Balanced clustering

Figure 3.1 illustrates the difference of vertex clustering obtained with an octree ang-ars¥e. The
volume-based behavior of octree decompaosition frequently leads to veajamded clustering, mixing
small clusters (when the surface is located near the corner of the oelipartd large ones (when
the surface passes near the center of the octree cell). Moreoveutdmgenerated by the octree cell
boundaries can be clearly identified within the clustering (see Figu@). VS-Tree decomposition
strongly reduces both artifacts, as it provides a much better alignment diter boundaries with the
embedded surface (see Figid(b). A very low variance can be observed in the size of the clusters,
basically because the clustering only depends on the planarity, but tleé @nientation, of the surface
locally associated with each T-Node. For instance, the variance in the nwhbamples per cluster
has almost been divided by 2 between FigBria)and Figure3.1(b) Additionally, an almost regular
guad-like clustering can be observed. The few remaining non-quatkidyzimarily come from the
volume-based decomposition created at the top levels of the VS-Tree.

Figure 3.4: Hierarchical mesh simplification with4d.error bounded aR.10 3. Left: Original object
(7M triangles). Middle: Octree simplification (1.75 sec. - 62856 triangl&syht: VS-Tree simplifica-
tion (1.20 sec. - 52024 triangles).

3.3.2 Computation efficiency

In addition to providing more balanced clustering, the VS-Tree is also méicgeat than the octree
when computing thé1S®. Moreover the advantage of the VS-Tree over the octree increasesheith
size of the input data, as shown on TaBl& For large objects, a 16% improvement can be observed
in the computation time, as well as a reduction of the number of clusters bet®&earid 52% for the
same bounded error. This may appear quite surprising as octree desittompis generally considered
extremely efficient. In fact, the speedup observed by VS-Tree dectigpocomes from two different
properties. First, when the size of the input data increases (e.g., vesg deeshes), most of the data
will be represented below the T-layer, and thus 1-to-4 splits will be much fnegeient than 1-to-8
splits. To reach a given error threshold, the octree is thus usually megedeavith significantly more
empty cells compared to the corresponding VS-Tree. Second, belowl#éyerT-all the computations
involved in the VS-Tree are done in 2D. When there is a large number dfsgoithe sub-hierarchy of a
given T-Node, these 2D computations more than compensate for the agiénkielved in the projection
to the local 2D frame.

30

3.3.3 Mesh simplification
We have implemented an hierarchical mesh simplification algorithm based or gkrséering in the
VS-Tree. The algorithm proceeds as follow:

1. aVS-Tree is computed for the input object,

2. all vertices are classified according to the S-Node they interseca(tiécal test),

3. arepresentative vertex is computed for each leaf (centroid or GHBT] origin for instance),

4

. triangles that have their three vertices in different S-Node are ex@atover the relative repre-
sentative, others are discard.

Here again, the more balanced cluster sizes provided by the VS-Tneeerdtk mismatch of features
for a given error threshold, without imposing an overly conservativehntkensity. Moreover, the local
frame computed independently for each T-Node roughly captures traraig of the underlying mesh,

while the octree completely ignores it. For instance, see the cheek on Biguwss expected, the VS-

Tree introduces fewer clustering artifacts in the mesh topology, and bafieres the original geometry
(see near the eye, for instance).

3.4 Fast Surface Reconstruction by Refinement

In this section, we describe a new efficient surface reconstructionithigobased on the specific
volume-surface decomposition of VS-Trees.

(b) (©)

Figure 3.5: Noise filtering. (a) Input point cloudl@7063samples). (b) Reconstruction with VS-Trée L
error bounded atl0~* (1.758sec, 125K triangles). (c) Reconstruction with VS-Tréeiror bounded
at10-3 (0.987sec, 32K triangles).

Obviously, meshes have become the de-facto standard for 3D geonwegping and rendering and we
seek for a robust and efficient point-to-mesh surface reconstruetahmiques. Several properties for
such a reconstruction processes are mandatory: (1) dealing with prigimaus; (2) offering intuitive
de-noising control; (3) avoiding final remeshing by directly providing misegular mesh; (4) provid-
ing error controlled output; and, of course, (5) being as efficientassiple. We propose to use the
advantages of the VS-Tree decomposition in order to develop a point-to@esnstruction technique
that fulfills these five properties.

31

Intuitively, most of the global topological features of the surface camnelbevered at the T-Layer of
the VS-Tree. Thus, the T-Layer helps us to split the problem into two mairs:si@oarse mesh

Mo is generated during the first step, and refined during the second steg;dont for all the details

included in the input point cloud. This second step uses a displacemesisprdriven by the quadtree
corresponding to each T-Node. Algorithhsummarizes our approach.

Algorithm 1 Surface reconstruction using VS-Trees.

Require: PointSet S, Threshold t
VSTree T« buildVSTree(S)
Mesh M« extractMeshAtTLayer(T)
while error(M, S)> tdo
M «— refinePN(M)
M «— displace(M, T)
end while
return M

3.4.1 Base Domain Reconstruction

Globally, we follow the construction process presented in Se&ianSimilar to Pauly et al. PGK0J,

the high frequency noise typically present in scanned ddRDR03, is directly addressed at thmint

level by simply specifying ah? error threshold driving the VS-Tree creation. While more formal noise
removal solutions existHG01, SFS03, this simple technique nicely smoothes out the noise, as shown
on Figure3.5, and is intuitive enough to be easily tuned by the user.

Base mesh reconstructionThe remainder of the algorithm will inherit the global topology\y, and

in particular its genus. Since the geometry of S-Nodes does not changjella¢topology of the shape,
Mo is created using only the T-Layer (see FigBté(a). However, the set of T-Nodes composing the
T-Layer can be sparse (e.g., large areas with low curvature), whiehmut allow the use of Delaunay-
based reconstructions for this base-mesh. Moreover, ideally, we Wikald watertight 2-manifold,
homomorphic to the input point-based surface. This naturally leads us tisets simple implicit
surface reconstruction defined, by a functibn R — R3, by just considering the half space defined
by the oriented frame of each T-Nodg(i.e., a linear polynomial acting as a distance function) and
contouring it in similar fashion to Hoppe et alHDPD*92]. However rather than directly contouring
this simple localized distance function with a marching cube algorithm, we rathstraot a smooth
implicit surface using &artition of Unityscheme:

f(p) =2 a(p)Qi(p)

with @ (p) aPartition of Unitykernel centered oy and
Qi(p)=(p—ci)-n

the signed distance to its average plane, Wihn;} the support plane of; (find usingk). The octree
structure of the upper levels of the VS-Tree allows consistent geneddtovmerlapping zones that can be
used to blend the local distance functions, in a similar fashion as in the w@hktake et al. DBA*03]:

__wP _ n(3P—bil
(n(p)_ijj(p) with e (p) h(2ri)

with b; the center of thel; cell andr; the radius of its bounding sphere. We replace the quadratic
kernel proposed in the work of Ohtake by an Hermitian diig), for its better vanishing behavior (see

32

Sectiord.4.1). The mesh is then generated by applying a Bloomenthal polygoniz&iof4]. In order
to guarantee that no topological feature of the VS-Tree will be missed s&e uual contouring grid
and set its resolution to that of the deepest T-Node (see Figy6(e). Note that there is room for
improvement here with the octree countouring methods recently prop83ⅆ KKDHO7]. Finally,
this mesh is simplified by clustering it at the T-Layer level. This leads to the fimateanesiVip, which
contains only one vertex for each T-Node (see Figléc).

e
. .

.
.....

@) (b) (c)

Figure 3.6: Coarse mesh generation. (a) Input point cloud (in blue) clustered ilsalkée (T-Layer
in orange). (b) Marching cube dual contouring at the resolution of thepist T-Node (red grid). (d)
Coarse mesh Wl(in green) generated by simplifying the mesh at the T-Layer level.

3.4.2 Mesh Refinement

The goal of this second stage is to iteratively refine the mesh, until the geoffieetiures of the input
point cloud are recovered according to a given error thresholdrigagular meshes, the approximating
subdivision scheme proposed by Lod@p87] is known to provide high quality mesh refinement. Butin
our quest for efficiency, we need to find a trade-off between speed@ality. We have found that local
subdivision based ofurved PN-TrianglegVPBMO01] are well suited to our constructive approach.
This leads us to the following efficient two-step refinement technique:

1. each triangle of the meg¥; is refined into four sub-triangles and the newly inserted mid-edge
vertices are translated according to the cubic Bezier triangular patch tediputhe PN-Triangle
scheme;

2. these three mid-edge vertices are translated to their final positiondaagty the geometry stored
in the local quadtree (see FigBey).

Leaf Sample

N
jsplacemen’,
N

P
... F’V Refinement!

=<
Loop subdivision

Figure 3.7: Top: vertex insertion comparison. Bottom: VS-Tree refinement amdadsment in a
T-Node.

QuadTree (S-Nodes)

33

This displacement procedure is the step that benefits most from the specperties of our VS-Tree
decomposition. Instead of having to define a smooth scalar field such as iniirspifece reconstruc-
tion methods, or a robust energy functional such as in dynamic model fitM@§E04, we simply
use the quadtree defined at each T-Node to displace the inserted vacioedingly. Letv denote an
inserted vertex that has to be displaced. First, we find the highest SeNbdeonly containy. Then,
we select the ledfexhibiting the highest local variation in the quadtree builsoRinally, we translate
toward the average sample carried byWe markl as locked, and will no more consider it for future dis-
placement steps: as PN-Triangles provide an interpolating scheme, tieis isenow interpolated until
the end of the refinement loop. This simple construction approximates the ogigpkEicement of and
avoids the mismatch of high-frequency features that would occur if a sinfilegonal displacement
was performed (see FiguBe?).

At each refinement step, the mesh is maintainele-freesince we only translate its vertices. In order

to avoid thesurface aliasingeffect that could occur when many vertices are projected toward the same
leaf, we do not displace when no more leaf remainslockedin the quadtree built os. After each
displacement pass, newly inserted vertices that have not been displecethoothed out according to
the final position of neighbor vertices, using a simple tangential smoothinge #e PN-refinement
performs a 1-to-4 subdivision, each verielxas at least two neighbors that have already been processed
at a previous refinement step, and thus have reached their final position

(a) (b)

Figure 3.8: Reconstruction of the ball-joint model37062points,1.758 sec). (a) Input point set (b)
Coarse mesh generated at the T-layer of the VS-Tree. (¢) Finatcefiresh.

3.5 Results

Adaptivity to curvature variation In the case of point clouds sampled from a surface that exhibits
large variations of curvature, one may think that an adaptive refineroeairse ZSS97 would allow a
better capture of the global shape. However, both the efficiency twarsertion, as well as the final
semi-regular topology of the mesh, would be lost by such an adaptivemegint. Efficient adaptivity to
curvature variation can be easily included in our scheme by letting the ussthiedy, anddy thresholds
used in the height field indicatar. Indeed, increasing, and decreasingy induces a deeper T-layer
in high-curvature areas and thus, a larger number of T-Nodes. Qityds,generated by T-Node clus-
tering, Mg is itself denser, leading to a final mesh with higher resolution in high-cuwattgas (see
Figure3.10(a). Although this solution may break down for some pathological cases, iimsrfe less
expensive than, for instance, the optimization of tffeerror MK04]. Figure 3.5, 3.8, 3.9and3.11
shows some examples of surface reconstruction obtained with our algorithm.

34

@) (b) (c)

Figure 3.9: Reconstruction of the Igea model. (a) Input point set. (b) Reconstisurface (c) Close-
up on the semi-regular mesh produced by our algorithm. Note, in thanad,¢he limit of our technique
which propagates high-degree vertices generated gn M

Performances Table 3.2 provides some reconstruction timings for various models. The timing pre-
sented includes the VS-tree decomposition, the coarse mesh generatitie amelsh refinement loop.
Globally, this new algorithm is one order of magnitude faster than state-edrttiast surface recon-
struction methods@BA*03, GKS0(Q, while directly providing a final mesh with semi-regular connec-
tivity without any additional remeshing steps. For large point clouds, th& M8 construction becomes
the bottleneck, since this is a non-linear operation. Figui®(b)compares the final mesh quality of
[OBA*03] to ours. In our implementation, the intensive use of pointers limits the size dfrim1e-
construction. We are currently exploring out-of-core methods foroperihg the reconstruction with a
constant and small amount of memory.

The mesh quality obtained by our technique is much higher as the one obtgiapplping some octree-
based tessellation on a reconstructed implicit surface (see F3gLdéb) and approaches the quality
obtained by mesh beautification techniques. However, they exhibit a few extreordinary vertices,
resulting from the initial clustering at the T-Layer level of tHg (see Figure3.9). Nonetheless, it should
be noted that the refinement proces®s nogenerate additional extraordinary vertices. So, if limiting
the number of such vertices really matters for some specific application asgeselution would be to
apply mesh beautification on the coarse milghwhich of course is dramatically faster than applying
remeshing on the final dense mesh.

35

@)

Figure 3.10: (a) Adaptivity by T-Layer constraint. (b) Close-up of the mesh obtairfeshweconstruct-
ing the ball-joint model with th&ultiple Partition of Unity(top) method with our VS-Tree based method
(bottom).

As said previously, even if our reconstruction technique generatesghiglity meshes in almost every
tested examples, we have biased each speed vs. quality tradeoff dfouthan towards computation
efficiency. Consequently, for difficult examples that exhibit poorly dachjpreas with high curvature,
slower reconstruction techniques based on implicit surfaO8A[03, TRS04, usually offer better re-

covering of thin features.

3.6 Discussion

Limitations: In spite of its efficient hierarchical analysis, the VS-Tree offers onlyub-optimal
height-field decomposition. Its intrinse@-free structure may impose over-splitting when searching
lower-dimensional clusters. One typical example is the sphere, which widbiben 8 pieces before
switching to a 2D patrtitioning, while it is well know that the tetrahedron (i.e., 4tehs¥is the smallest
non-degenerated polyhedra onto which a sphere can be projectedt,lwhen an optimal height-field
decomposition is mandatory, there is no efficient solution and one would tesa global analysis,
using for instance Mean Shift or K-Means methods. Nonetheless, theleaity room for research in
improving aggressive height-field indicators for (point-)sampled sagac

Summary: Hierarchical space subdivision schemes are the key ingredient to fffizken¢ geometric
processing methods in a large number of situations. In this chapter, wephavesed the VS-Tree,
a surface-based partitioning structure combining an octree with locatrgead This simple structure
improves the quality of simplified meshes generated by vertex-clustering, miailetaining similar
computation time compared to conventional octrees. It can seamlessly reptaees in a variety of
situations, providing better results when dealing with dense surfaces.

We have also proposed an efficient point-to-mesh surface recamstratgorithm based on the VS-Tree
data structure. This algorithm combines the robustness of an implicit appfoacecovering the global
topology of the surface using the upper levels of the VS-Tree, with thaeafly of an explicit one, for
retrieving local geometric features by a simple and efficient local displatesseeme induced by the
lower levels of the VS-Tree. As a result, manifolds of arbitrary geniuseareconstructed avoiding the
computationnal effort involved with multiple polynomial fitting of a complex locabigetry.

36

Perspectives: This structure and these algorithms can take place in in the 3D acquisition pideline
the following chapter, we will discuss the use of the VS-Tree in an oubod-system for what usually
follows the (semi-)automatic processing of acquired geomaitgractive editing

Models Samples| Our method. MPU.
Bunny 35949 0.852s. 4.272s.
Dino 56195 1.026s. 5.010s.
Santa 75783 1.067s. 7.135s.
Igea 134346 1.813s. 6.890s.
Male 303382 2.798s.| 55.008s.
Dragon 437647 5.400s.| 60.176s.
Happy Buddhal 543652 6.384s.| 80.866s.
Youthful 1728305 20.621s.| 200527s.
XYZ Dragon | 3609601 41.844s.| 480693s.
XYZ Statue 5000000 53.298s.| 475551s.

Table 3.2: Timing for VS-Tree surface reconstruction (with error sebtb0*) and MPU (with error
set accordingly).

Figure 3.11: Reconstruction of the XYZ Dragon mod&l6M points -53.298 sec). Close-up on the
semi-regular mesh produced by our algorithm.

37

Chapter 4

Size Insensitive Interactive Editing

The previous chapter provides essential tools for semi-automatic pmgesscquired surfaces. Com-
bined with filtering tools, such as the MLS projectiohHCO*01], point clouds and can be simplified

and reconstructed efficiently. However, t@und truthprovided by the point sampling may need to be
edited prior to any decision about its simplification and reconstruction. bicpkar, appearance texture
andshape deformatiomay need to be applied. These two operations are the most common ones in
the computer graphics industry, and both share a central constraintetiigye an interactive response
from the application.

In fact, interactive editing differs from the kind of algorithms described na@er3, because there is
not any a priori result: the user interactively explores the space d@fitjesappearances and shapes,
progressively refining its own idea on the result until obtaining the finabBject, ready for animation
and rendering. In this situation, the whole editing session must remain interagiih enough frames-
per-second for letting the user focus on his work rather than waiting éocamputer. Observing state-
of-the-art software tools, it appears that thigcial interactivity cannot be provided for dense surfaces,
such as the ones coming from the acquisition pipeline: even few million polygpnssent a bottleneck
for rich surface painting and deformation tools.

Nevertheless, controlling interactively the shape and the appeararsefates, including acquired
ones, is unavoidable in many computer graphics fields, for being able pt adanodify real-world
objects for a particular application. So far, the usual solution is to simplify thgemand then to edit
it. In other words, the resolution and the accuracy of 3D surfacesmmesore depend on the quality
of the acquisition devices and its original precision, but depends on gabitiies of the software and
the computer used for editing it. In practice, this means that, as simple has may bedification
(e.g., bending the arm of a virtual human), the simplification process hasajogiied, loosing features
originally acquired. This explains the difference we can observe betvegrlering of static shapes and
animated ones for instance: the former have been preserved and feralisred out-of-core, while the
latter have undergone simplification for texturing and deformation reasons.

In a modern 3D content processing pipeline, we consider that the fud geametry should be main-
tained as far as possible, being simplified only at the end of the pipelineifegq Thus, we propose a
new approach to 3D surface manipulation, shenpling-reconstruction methpfr editing interactively
both shape and appearance, whatever the size of the input/output dbje&ey idea behind this system
can be stated as follow:

A modification of the sampling can be considered as a sampling of the ratidific

In other words, we claim that, for editing the shape and the appearaadargke object, we can:

38

e sample it at a lower resolution,
e edit interactively its shape and appearance,

e reconstruct a function that transfer these modifications to the originattoljetaining an edited
large object.

So formulated, scalability becomes possible: both sampling and reconstractiperformed witlout-
of-core streaminglgorithms, which makes them scalable to arbitrary object size, the intermeaiiate s
pling representing the only memory footprint required.

Our system is able to take either point clouds, polygon soup or manifold sieshan input, and al-
lows to use a large variety of popular editing method onto large objects (minisaingsion are made
on the interactive editing system used). Isige-insensitiveupon a billion sample in our tests. Our
framework is actually organized as a bracketing system for any integagtiiting tool, and is based
on two fundamentastreamalgorithms: arout-of-core simplification preprocessand anout-of-core
reconstruction post-process The former extracts a sampling from the original object, while the latter
transfers the modification (color and deformation) undergone by this sagriplithe original (large)
model. The size of the sampling is chosen according to workstation capabititassar demand (see
Figure4.1).

(a) Color Editing

(b) Shape Editing

Figure 4.1: Interactive editing of large objects: the Raptor model (8M triangles). Thmimgeometry
is adaptively downsampled through a streaming process, to get a simptifistiless version (146k
points) that can be edited interactively with on-demand local refineméug @mapshots). Afterwards,
a second streaming process performs a color and deformation transtiee triginal geometry.

39

4.1 Context: Interactive Manipulation of Large Objects

We focus on the interactive manipulation of the two essential propertiesbfajgct: appearance and
shape.

About the former, we propose an interactive painting tool: color informag&ined from acquisition is
usually hard to exploitin final images because appearance is a viemdkgeroperty. Note that even if
some scanners provide the color information during the scanning preiaisssformation can rarely be
directly exploited since the captured appearance strongly depends lightivey conditions. Actually,
similarly to the geometry acquisition pipeline that we discuss in this thapisearance acquisition
methodsexist: we refer the reader to the thesis of Goe&ld04 for a recent survey. Unfortunately,
such systems are complex and cannot be used in all the situation wheraiescare useful. As a
result, appearance (e.g. color texture) has to be partially or completely eftiéewards.

Concerning shape, the 3D acquisition pipeline provides a base shapmahatieed to be modified.
Freeform Deformation (FFD) techniques offers various way to perfinis task, but none can handle
large objects. Our approach solves also this problem. In the followingrzts, we discuss the related
work in these areas.

Appearance Texturing The interactive texturing of 3D objects is a key step in the editing of the final
object appearance in computer graphics productions. As usual withgétiter tools, the size of the in-
core model must be kept low since the dynamic information added during thadtite editing process
would break any highly-optimized data-structures, from on-GPU ventdfetbobjects to out-of-core
representations of large objects.

Direct interactive texturing of 3D objects has been an issue in computahnigssfor many years. One of
the first complete framework for interactive 3D painting was the WYSIWY Gtpag tool of Hanrahan
and HaebertifiH9(Q]. Their system allows the user to interactively paint colors and materialstigire
on a 3D model, introducing a simple brush metaphor. The authors were apeiudiyng the usefulness
of such a system for 3D scanned models.

Recently, the idea that 3D textures could be an interesting alternative tb2lBtextures in a painting
tool has been independently developed by DeBry et gDGPR02 and Benson and DaviBP02]
who introduced the idea ajfctree textures The main idea is to set a per-node color at each level of
the octree hierarchy and use it to color an object embedded in its volume. tiNdtectree textures
may be interactively constructed or sampled from an existing texttHi&l05], without requiring any
parameterization. This is particularly interesting in the case of acquiregicastftheir poor topological
guarantees coupled with there high density make them hard to unfold in thes phanding the use of
2D textures. Another great advantage of octree textures is their logabtowhich is not usual with
solid textures, that are often globally defined by some procedural fumcEor a complete survey on
textures in computer graphics, we refer the reader to the book of He¢klex864.

The color texture model that we develop in this chapterfiat-Sampled Textu@ST), is volumetric
and even more flexible than octree-texture. It has been inspired by thkesionstruction of &pace-
to-color function from samples, as introduced with tieaction-diffusiormethod of Turk Tur91], who
efficiently obtained a color evaluation at a given location using a simple weiglvierage of the neigh-
boring samples, an idea later used in the Photon Mapgiend. PST inherits the parameterization-free
nature of point-based techniques, which merge appearance and geofisgtmples in the same entity
(i.e. the surfel) PZvBG0Q ZPKG02 AWD*04].

40

Note that several commercial packages propose 3D brushes foiinigxamd modelingAli06, Rig06,
Pix06| but do not address the problem of applying them on huge objects.

For the sake of simplicity, we will essentially discuss here the constructionetimgle color texture.
But, as usual with texturing tools, complex textures may be built incrementallyg$igrang different

textures for different material channels, to get more complex shadimeéspnce composition with
specular, ambient, emissive and/or diffuse textures, see FHgliZe

Freeform Shape Deformation In the field of geometric modeling, FFD encompasses a large family
of techniques $P86 Coq9Q MJ96 where intuitive constraints are interactively applied to a shape in
order to deform it. Earlier FFD techniques were based on a 3D spagarddion induced by a dummy
object (e.g., lattice, curve, mesh): the user moves the vertices of this dunjery, dhducing a smooth
space deformation applied to the embedded shape Bsa84 for a survey). Such a dummy object is
no longer required with recent FFD techniques, where the deformatioretlg defined on the initial
shape: a part of the surface is frozen, another one is moved, antiahe sf the remaining part is
smoothly deformed using some fairness constraints. Most recent metiroagddte surface deforma-
tion as a global variational optimization probleBK04, SLCO 04, YZX*04, BPGKO04, although the
same interface can be used with space deformaB#&®$]. These techniques offer a precise control of
the deformation area (arbitrary boundaries) but remain less efficiemtintiodtiresolution editing tools
[2SS97 LMHO00, ZS0Q. A comparative presentation of recent deformation techniques cawuine in
[Sor0g and BSO07.

All these techniques are powerful and flexible tools for interactive sm@btbhape editing. However,
while interactivity is the key constraint for the usability of such tools, it catre@omaintained when the
complexity either of the 3D model or of the applied deformation exceeds a gigekstation-dependent
threshold (the notion of “large” strongly depends on both the workstatiohtlae FFD method used
since even few hundred thousand samples may be too much in some cases) sbmewhat in conflict
with acquired geometries, that may contain several hundreds millions of sgropfguring accurately
extremely fine-scale geometric features. In this chapter, we solve thidsitalproblem with our
sampling-reconstructioframework, allowing users to define interactively the shape of arbitrardyela
3D models with most FFD tools, at full resolution, without doing any conversimr loosing any
sample and opening the use of advanced deformation metaphors to modgtg am million to
billion samples. Our system also offers the ability to work on models that fit in memdgrovercome
the capabilities of a given FFD tool.

Handling Large Objects In spite of the continuous growth of hardware capabilities, even the mere
visualization of large models is a complex challenge. Thus, large object miaeag has been essen-
tially studied in the context of static visualization. We will discuss this particuldc tiopSection6.1
Concerning appearance, Christensen etGBJ4] have showed that the irrandiance can be stored with
cache-coherent out-of-core structures. Their system is not irdefatlénteractive manipulation but
already gives some ideas on how to organize appearance data fomadgés. Note also that the spe-
cific issue of terrain visualization takes benefit from out-of-core tealeiqsee Losasso et aLHO04]

for a recent survey). Unfortunately, all these systems have beégneddsfor static objects rendering
only and cannot be used in a dynamic context such as texturing and HRizjng the simplification
problem discussed earlier. Indeed, many fine-scale features arelrdigseg this resolution reduction
and when dealing with acquired shapes, the benefit offered by areéescanning process is partially
wasted, loosing real-world object details which are acquired but neepred for editing reasons. Sim-
ilar problems arise when very complex synthetic models are created with sgectiiniques such as
displacement paintin¢e.g., ZBrush Pix08]).

41

Out-Of-Core = = = =: streaming
Simplification| '*.; O: in-core 1 .): out-of-core
i

o

‘P [Edit Black Box] @_, Attribute | . p%

~ \ Reconstruction =
+ 2
. ¢+ Color
AN +’ Deformation
~ -~ . - -

e
~ .
-
L .

-

Figure 4.2: Our Sampling-Editing-Reconstruction framework for interactive color amaps editing
of large objects.

4.2 A Sampling-Reconstruction Framework

Editing the color and the shape of large objects imposes one strong constrdhre software archi-
tecture: as the whole object is potentially too large to fit the in-core memory, tlgetraty generic
and efficient implementation is to perforout-of-core data streamingMoreover, as interactive shape
editing typically involves semi-random access to the database, specificamiaia structures have to be
designed, that allow efficiemtialog with the out-of-core object, in the spirit of recent work by Isenburg
et al. ILO5, ILSS04. However, in order to avoid painful editing sessions, only a reducedber of
streaming passes should be performed, since each pass may takersgudess for large objects.

The key idea developed in this chapter is that the color and the shape @ algiect can be precisely
edited through the interactive modification (i.e., painting and FFD) of a simplifiediia version. Thus,
we propose the three-fokhmpling-editing-reconstructiosystem described on Figude2

1. Sampling:an efficient adaptive out-of-core downsampling is performed on thénatitarge ob-
ject R during a streaming process, to get a simplified ver&emvith a size compatible with
interactive texturing and deformation (see Secdd3).

2. Editing: an interactive texturing and deformation session is then appli&d wobtain a modified
simplified objectP;. During this session, local upsampling may be achieved at any time, when
additional precision is required for a given manipulation.

3. ReconstructionFinally, another streaming process performs an accurate featurevimgssolor
and deformation transfer frof to R, in order to generate the final edited large objgc(see
Sectiond.4).

This three-fold approach exhibits several features:

Size-independent interactivity Interactivity is an essential property of any painting or deformation tool
since the target result is not precisely known a priori and is usualljheghby interactively exploring
the space of possible shapes and appearances. Our system ¢dfiexstivity, for any size of the initial
object, by performing adaptive downsampling to fit the workstation and aofteapabilities. Both the
sampling and the reconstruction steps work in streaming and only involvedoddinear processing,
which guarantees memory and computation efficiency.

Pure meshless processingas mentioned earlier, efficient 3D acquisition enables only greedy +econ
struction techniques in practice, and it is well known that such algorithmedoravide strong guaran-
tees about the consistency of the resulting topology. To overcome possitijnanifold input data, we
have chosen to simply ignore the underlying topology, and only employ meghtdmiques4AGP*04],
which allows our system to process unorganized point clouds, polyggpssor manifold meshes in

42

a similar way, both for data input and data output. This also lead us to develomlitimetricPoint-
Sampled Texturasstead of regular bi-dimensional ones.

Compatibility with arbitrary painting and FFD tools : as recalled in Sectio#.1, a rich palette of 3D
editing methods has been proposed during the last twenty years; eaelmdfi#is specific strengths and
weaknesses and each CG designer has her own preferences asmnglthpreserve this variety, we
do not impose any particular method, but rather propose a surrounditegrsallowing the use any
interactive texturing and deformation tool with large objects. Our systersiders the editing step as a
black box betweeRs andPs. It only requires a one-to-one correspondence between the sanfhes o
simplified modelPs and those of its edited versid, which is trivially provided by most of tools.

On-demand local refinement One possible weakness of manipulating downsampled geometry is pre-
cision reduction of some deformation or texturing tools (e.g., the user maytwprgcisely outline the
frozen area on the original object, before manipulating the deformatiogldrn Whenever the user
requests an improved precision of a specific area, our system perdffiaisnt local upsampling of the
in-core model by fetching additional samples from the original geometnytramdferring to them the
deformation defined so far.

Having all these features combined, our system can be considered @sttheeractive out-of-core
multi-scale modeling and texturing systecompatible with a vast repository of existing 3D editing
tools.

4.3 Sampling by Adaptive Out-Of-Core Simplification

The first step of our system aims at efficiently generating a convincing sinapidic of the original,
possibly gigantic, model during a streaming pre-process. As mentionigt,gapology inconsistencies
often present in such objects lead us to work in a meshless context. TheslaegofR_ requires an
efficient simplification algorithm, and the temporary natur®gdllows a non-optimal geometry. In this
context,vertex clusteringappears as a good choice. Such methods can run out-ofRBE&S3[Lin0O,
SWO03 and can handle non-manifold surfaces. We recall that the idea is toager@epartitioning of the
space embedding the object, and compute one representative samplehf@aetiion, using various
error metrics to control the hierarchy depth. At the end of the processethof representative samples
can be considered as a downsampling of the original object.

The adaptivity and the efficiency of vertex-clustering simplification algoritstmsngly relies on two
key elements:

e thespace partitioning structurée.g. 3D grid, BSP, octree)
e theerror metric(e.g. Quadrid_,, L, 1, etc).

For instance, Schaefer and Warre\W03 have used octrees combined withgaadric error func-
tionf[GH97] defined over the original geometry. Their algorithm can be used with Egeets thanks to

a dynamic split-collapse function over the octree structure. Howeverawe shown in Chapted that
the Volume-Surface Tree offers a better adaptive vertex clusteringottteges, as it requires less sam-
ples for an equivalent error bound. So we propose to extend ther®&vErtex clustering algorithm

43

VS-Tree

TN
‘P,)= =+ SFGrid 1 Octree [— 1 Quadtree [~ —b

Stream Topology Geometry
adaptivity adaptivity adaptivity

Figure 4.3: Multi-structure Out-of-Core Simplification in Streaming.

presented in Sectia®.3in order to make it out-of-core, which can be done in two ways:

e External memory managememiaps partially a structure from hard to main-memory, and syn-
chronizes both versions.

e Streaming computatiotonsiders only a stream of samples which are maintained in main memory
for a limited time, and processed on the fly.

The former allows more flexible data access but may be slow, while the lattest i$td limited in its
“view” of the object. As our algorithm need to be used on an interactive womkeek for efficiency, and
propose &/S-Tree simplification in Streamirfgee Figuret.3). Actually, we can take benefit from the
coherency present in large acquired objects, by usiagial finalizatio[ILSS0§ for maintaining a low
memory footprint. The basic idea spatial finalizationis that the order of sample in a streamed geom-
etry mostly corresponds to its acquisition order, which means that two samigthesiwilar locations in
the stream, have similar positions in the space. This induces that clusteritigetira spatially produces
a time-coherent partitioning: the first and last sample of a partition have @mhadl difference in their
stream rank. Building on this idea, we propose to generate a set of tempM3dlrees structured in a
coarse 3D grid and use them to locally downsample the surface. This&Skdnest avoids the memory
challenge of one global data structure and behaves particularly well igimtic objects which exhibit
strongacquisition coherengyas mentioned by Isenburg et dL$S04.

Algorithm 2 Streaming VS-Tree Simplification

Require: R the out-of-core large sampled surface
Require: r the grid resolution and the error driving the simplification
Require: Psthe empty in-core sampling
Grid G < GridElemenir][r][r]
for each sampl@ streamed fron®_ do
{i,],k} < coordinate ofpin G
Gli][j][K].count— GJi][j][K].count+ 1
end for
for each sampl@ streamed fron®_ do
{i, j,k} < coordinate ofpin G
Gli][j][k].samples— G]i][j][k].samples) p
Gli][j][K].count— G]i][j][K].count— 1
if G[i][j][K].count= 0then
Ps — PsU VSTreeSimplification G[i][j][k].samplese)
free G[i][j][k].sample}
end if
end for
return Ps

44

Figure 4.4: Left: XYZRGB Dragon (7.2M trianglesMiddle: Close-up of the eyeball on the original
geometryRight: Adaptive downsampling by out-of-core VS-Tree clustering.

Algorithm : Our simplification process, described in AlgorittZruses two streaming passes:

1. First pass:all the samples o are streamed through a coarse 3D @idDuring this pass, each
cell of G simply counts the number of samples falling in it and keeps the counter for ¢tbhade
pass (a preliminary pass is required if the bounding box is not known).

2. Second passll the samples are streamed again throGgfihis time, each read sample is stored
in the intersected cel, and the counter of this cell is decreased. Once the coun@dobps to
zero, we know that there are no additional samples belongiginothe remaining stream. So,
we simplify the set of samples storedG@rby using VS-Tree clustering (Secti@n3).

The resulting set of representative samples is then concatendfedaiod the content of (i.e.
original set of samples and VS-Tree) is discarded. If required by gditials, a mesh can be
obtained either by reindexing polygons in the case of polygons soup jrguising fast meshing
techniques in the case of point clouds or indexed mesh vertices (se@ Sgcto

In practice, this algorithm only requires a small fraction of the originalesigto be present at the same
time in the main memory. The observed memory footprint ranges from 10% for néizedl objects to
less than 1% for billion sized ones. When the large objects are providedetittpbsitions and normals
for each sample, we can use a product oflth@ndL, 1 error metrics CSAD04 to drive the VS-Tree
clustering. Otherwise, a simple density measure is used, and an aggridsisiess test replaces the
volume-surface transition predicate. WHenis a point-cloud, the normals & are estimated using a
PCA on the local neighborhootiPD*92]. The resolution of the coarse gri@lis user-defined, ranging
in our tests from 1&to 128 according to the size ¢4 . Usually, a large number of cells speeds up the
simplification process, while a small number improves the adaptiviBs (dee Sectiod.6).

Note also that for future local refinement that may be required during teaitive editing session (see
Sectiond.5), we keep, for each cell, two values about this pre-processing:

e the starting and ending indices of the samples that belo@gridhe input stream; this will enable
partial streaming for local refinement of the cells intersecting the area thavhe refined,;

e the VS-Tree structure; this avoids error computation and recursivef@plévels already tested
during the initial simplification. In order to keep a negligible memory footprint, mie tree is
too deep, it is not cached and will be rebuilt from scratch if upscale isined,

Figure4.4 illustrates the downsampling quality froR to Ps obtained with our approach. Obviously,
this algorithm inherits the lower-dimensional structure of the VS-Tree amtfisigntly reduces the
number of final representative samples for a given error boundatkageducing the whole processing
time. Compared to octrees, we have observed a gain of 15% to 25% both in tihmeeamory, which

is a significant benefit in the context of gigantic objects. The divideemdtuer structure offered by
spatial finalizationmakes this algorithm particularly well adapted to multi-core CPUs, which become
more present on current workstations. Finally, when the Spatial Finalizhgaristic fails, it can be
replaced by one additional pass to split the input model into a set of fileedson a per-cell basis.

45

4.4 Out-of-Core Attribute Reconstruction

The second out-of-core streaming process of our system takes fflac¢ha interactive editing ses-
sion, where the initial point-based simplified geomed®yhas been transformed into its textured and
deformed versioP’s. The goal of this section, is to explain how to efficiently and accurately feans
these appearance and shape modifications to the original gigantic Bhjerget the final edited object
R*. For each sample with positigne A_, we have to extract two functions frof#s, P }: acolorization
function that will define its coloc and adeformationfunction that produced a new positigr. As this
attribute reconstruction is performed in streaming, we have developed adbaton, that only requires
the analysis of a small and compact neighborhood. Since we use a psau-tEpresentation, we do
not have any explicit neighborhood information. Nevertheless, a caatsee set of neighbors can be
collected with thek nearest neighborfl?GKO02:

N«(p) = {do,-..,Ok_1} With ¢ € Ps

We also consider the associated cafoand deformed positiog;’, both defined irP$ during the inter-
active editing session.

This neighborhood must be large enough to offer a correct filteringalso small enough to remain
accurate in areas of large curvature. In practice, wekus€l0, 30] according to the density ¢%&. Note
that N(p) can be efficiently computed using a static kd-treeRgngenerated once for all just before
streamingh_.

Let fé be the familypoint-sampled functiondefined over the point sé& and reconstructing the at-

tribute A: f&s(p) gives the corresponding color attribute to stream q@(:p) states the deformed posi-
tion.

4.4.1 Streaming Colorization

Once the point set has been textured, we propose to consider itsglbag-gampled 3D texturer PST,

to color its high resolution version in streaming. Thus, the question is: “Howtraolate the set of
samples in order to use it at a higher definition?”. Actually, this problenmufretly arises in the field of
surface reconstructianin particular,variational implicit surfacesnethods are ubiquitously recognized
as quality approximation methods for a set of samples with attribi®@82]. Usually, an iso-surface

is finally extracted after fitting a functioh: 3 — to the set of samples. In our case, the problem is
simpler as we do not need iso-surface extraction, and just keep th@fudefining the implicit surface
as a 3D texture.

Several function basis are available for filling the space with point-sampledudes. Radial Basis
Functionsor Moving Least SquardAGP*04] provide smooth 3D fields and can be evaluated locally.
Unfortunately, in our case, the final evaluation of the function may potentialigone several hundred
million times for either coloring the original file or directly shading pixels duringtracing for instance.
Thus, we rather adopt a simpler and more efficient approach that tdkastage of a very important
feature of our PST: contrary to implicit surfaces used for geometricnstnaction, we do not need a
signed value. In this case, a variation of the seminal idea of Turk for patteation Tur9] can be
adapted to our more general problem.

We define the PSTSS(p) as anPartition of Unityfiltering process oPs:

co S0P g) G
)= wpa)

46

Note that the size of thieneighborhood influences the support radius of the reconstructlargevalue

of k will smooth out the so-defined attribute function and can be used as an iatgitbalfiltering
parameter for users (see Figuté). In our implementationk is user-defined. The functiom(p,q;)

is adecayfunction that weights the influence of neighbors samples attributes. It iskwelln that a
Gaussian kernel is a good choice tor Nevertheless, in the context of large object texturing, selecting
a less computationally intensive function is often interesting. We choose thaasthuniform cubic
Hermite polynomial, usually recognized as a good and fast approximatioauds&an-based kernels:

vte[0,1] ht)=1-3t>+2t3

The kernel functiorw(p, ;) uses the previous polynomial simply adaptedli{op), and is hence defined

as.
w(p,qo::h(p—ai >

argma(|p—q;|)
Note that thisHermitian Partition of Unitykernel function is extremely inexpensive, but may filter out
some high frequency details presentfas When this is an issuesingular weight kernelgi.e., Dirac
behavior near zero) can be usédBCO*01, GGO7. Alternative feature-preserving kernels may also be
chosen among the huge set of kernels developed over the years, in feepmaessing community.

g

)

(@) (b) k=5 () k=16

Figure 4.5: Point-sampled texture filtering. (a) A simple point-sampled texture. (b Joy @xturing on
a human face. The k-neighborhood used for space-filling intuitively difneesmoothnessf the PST.

4.4.2 Streaming Deformation

While colorization can be cast as a filtering process, deformation is a tetdiskisconsidering tha®
has been scanned, we want to keep all as much as possible its originstgedeatures, avoiding the
use of a simple (low-pass) filtering process.

Point Sampled Deformation Function: By manipulating one or several deformation tools during the
interactive editing session, the user implicitly defines a continuous spamerdion functioan?S. But,

as the editing step is considered as a black box by our system, the actutixbriufg is unknown.
However, the simplified geometifs and its deformed versioRs form a discrete displacement field
{pi, P} which can be interpreted as a point sampling of the continuous funqﬁo(rsee Figuret.6).
Therefore, our goal is to reconstruct the continuous deformatiortiﬁmcbpz from the discrete field
{pi, p{'}. Here, the difference with the colorization of Secti#.lis that the original geometric feature
carried byp; must me preserved under deformation. Since smooth function reconstrowibods are
slow and too global, which make them prohibited in the context of large obj@etpropose a purely
local method, based onrermal displacemenepresentation combined with a new efficient point-based
coordinate system.

47

Figure 4.6: Left: Initial in-core geometry obtained by out-of-core VS-Tree clusteriiddle: De-
formed in-core geometry after an interactive FFD sessRight: Discrete displacement field generated
by linking the initial (green extremum) and the final (red extremum) positi@ach sample point. This
displacement field performs a sampling of the continuous space deformnfatiotion at the scale at
which it has been edited.

Average Plane and Normal DisplacementReconstruction of a continuous function from point sam-
ples always involves some assumptions about the smoothness of the intti@furetween the samples.

In our case, the simplified point-based geom&sas been computed from by VS-Tree clustering
which includes several geometric error bounds to guarantee a rédes@maoothness dif between
neighboring samples ¢&%&. In other wordsPs can be considered as a low-pass filtered version encoding
large-scale geometric component$pfwhile the differencd} -Ps encodes fine-scale geometric details.
Since the interactive editing tools proviBg, we can smoothly reconstruct the deformation function cor-
responding to the low frequency part®f we use again an aggressive interpolation based on Hermitian
filtering. The remaining part is the preservation of the features carriél-By, particularly when rota-
tion is undergone. To relax this constraint, we propose to encode this dettitsnormal direction of
some local average plafe[LSLCOO05 KS0€. So each samplp € R can be expressed as:

p=p+d-n

wheren is the normal vector dfl, p’ the orthogonal projection qf onH andd the signed distance from
p to H (see Figuret.7). Note that efficient computation of the average plahis vital, as it has to be
done for each sample € B.. Moreover, the variation dfl from one sample to its neighbor should be
smooth ag’ is not supposed to include geometric high frequencies.

Similarly to colorization, we propose to compudeusing a locapartition of unityfilter weighted by an
Hermitian kernel:
n—= ZE(:l (A)(p, ql) N
SE 1 0(p,g)
The same kernel is also used to compute the centét.ofThe low-pass filtering can be intuitively
controlled by the user, by increasing or decreasing the geometric extéetkernel.

48

{b; by by o

Figure 4.7: Projected barycentric coordinates.

Projected barycentric coordinates: Similarly to p € B, any pointp* € B* can also be expressed as a
normal displacement relative to an average pldiie
Reading this equation backwards provides a simple algorithm to transtenusfon fromp to p*:
1. computeH from local neighborhood gp in Ps
computep’ andd from p according taH
reformulatey’ intrinsically in Ps
reproducey’™ simply by switching fronPs to P4
computeH* from local neighborhood of* in P§

L

computed* from d, accounting for a possible scale factor
7. finally, computep* = p’* +d*-n*

Differential representationSLCO*04, LSLCO04 provide an elegant solution to obtain rotation-invariant
intrinsic coordinates. Kraevoy and Sheff&J06]| introduce thegpyramidal coordinateswherep’ is re-
placed by itsmean value coordinateld=lo03 in its 1-ring-neighborhood. However, these solutions
require explicit topology and remain computationally expensive, which mihlegs prohibitive in our
context.

We propose an alternative intrinsic encoding which can be considerad approximation tuned for
efficiency, more suitable in the context of gigantic objects. Let us conai@neighborhood (p) =
{ai,qj,a«} for pand its projectio’(p) = {q{, dj, i} onH. We can use the projected barycentric coor-
dinatesB(p) = {bi, b;, b} of p’ in the triangleT’(p) as intrinsic coordinates qf onH (see Figuret.7).
B(p) can be directly computed fromusing the fast evaluation (49 ops) proposed by Heidrt#i(5].

So the switch fronp’ to p™* (step 4 of the algorithm) can simply be expressed as:

p/* _ T’*(p) . B’(p)T.

We now have to face a topology problem: how to correctly selé¢g). For symmetry and robustness
reasons]T (p) should be as equilateral as possible, and to ensure fidelity of deformatstrquld be
as small as possible. To efficiently fit these constraints, we need to selghbors according to their
distribution LP03 GBPO0Y, so we introduce the notion afngular voting the first neighbog; € Nk(p)

is selected as the nearest sampl@toThis neighbor will discard a conical spaCgestarting fromp,
centered in the direction ajj and with a solid angle /3. The second neighbay; is selected in the
subset ofNy(p) contained inR®\C;. This neighbor discards another conical subsi@cerinally, g is
selected in the subset Bk (p) contained irR®\ (C; UC;). If a test fails (for instance, an empty set in the

49

remaining space, which is frequent on surface boundaries) the armtedied by two and the selection
process is restarted. As a result, this algorithm searches for the smaédlegtercentered omp (i.e.,
capturing accurately the deformation) with as large as possible edge dinglemcreased robustness
avoiding numerical degeneration in projected barycentric coordinates).

The last element that we need to define is the signed distinstep 6 of the algorithm). Thanks to the
intrinsic coordinates, the local rotation undergone by the geometric detaitgydhe deformation has
been accounted for, but an eventual scaling has not. So we propsisgoly scale the distanakby the
size ratio of the surrounding triangles, before and after deformation:

d=d-r'/r,

wherer (resp.r*) is the circumcircle radius oF (p) (resp.T*(p)). By putting all the elements together,
we obtain the final expression for our reconstructed deformation funqﬁo

vpeR p =fR(p)=T"(p) B(p) +d"-n.

Figures4.1, 4.8 and4.14 present various examples of the accurate deformation of small featitres w
our fast deformation function.

Streaming Deformation Reconstruction: Once the kd-tree required for neighborhood queries has been
set up, the purely local behavior of our colorization and deformatioctfoins enable streaming, as each
samplep is processed individually: the position of sample$ofire read on the input and new position
and color are written on the output. Moreover, these per-sample operatiorfully exploit multicore
CPUs. In order to optimize the cache usage when collecting the local setgbfor candidates iRs,
spatially coherent input buffers can be built by using the structure galbgG again (see Sectioh 3).

Figure 4.8: Left: Julius Caesar (800k triangles) interactively deformed using a 30k dawpkiag.
Right: Bumpy Sphere (1.4M triangles) interactively deformed using a 25k dompisey. Note that
both versions exhibits small scale features which are strongly blurredeositiplified version during the
interactive session, but are adequately reintroduced by the deformagtmmstruction on the original
geometry.

50

4.5 Interactive Out-Of-Core Multi-Scale Editing

Figure 4.9: Out-of-core Multi-Scale texturind.eft: After having roughly painted on it, the user selects
an area (in blue) of the low-res sampled objeRight: A local refinement is performed in streaming,
by up-sampling the selected area from the original large model. Newlytatseamples are textured
according the current PST defined by the in-core point set; the usenca paint smaller features.

One weakness of manipulating downsampled geometry is the possible ladcisiqn for a particular
color or deformation feature. To avoid this possible issue, our systemdst@lperform interactive
upsampling, whenever the user requests improved precision on a speedifor finer editing. This
progressiveanteraction works as follows:

1. The user selects the area which require higher sampling ratio andraaigrserror bound than
the initial sampling;

2. Sub-parts of the original objects, corresponding to the index rainggch cell of the grids (see
Section4.3) intersecting the selection, are streamed.

3. Upscaling is performed by clustering the streams in the cached VS; Eetesith the new error
bound.

4. Each additional representative samplis then concatenated &, and its corresponding color
c and deformed positiop* — computed by applying the colorization and deformation functions
defined so far — is concatenatedR

When using this procedure, it becomes quite natural to start with a vergecoacore geometrizs
to define large scale deformation and rough color texture, and then seine regions of interest and
define more accurate deformations and finer color features. This perep be used recursively until
the desired precision is reached, which reproduces a very similar warkfi the one provided by sub-
division surfaces. Figuré.9illustrate the application of this principle for color editing and Figdr&0
gives an example of multi-scale deformation. This figure also shows anatbeerty of our system:
since it is not method-dependent, several tools can be mixed; herestwestd the global deformation
tool by Pauly et al. PKKGO03, and then, we switched to anflating displacement tool.

51

Figure 4.10: Out-of-core multi-scale FFD on the Hand model (1.5M trLgft: Initial coarse sampling
for interactive editing (50k samplesMiddle Top: FFD performed at a large scaleMiddle Bottom:
Local upsampling of the in-core geometry (green area) with our systeeradditional samples fetched
from original geometry are moved according to the deformation perforsoefdr, and FFD is enabled
at a finer scale (125k samples), with the same or another Right: Final multi-scale deformation.

4.6 Results

Implementation: We have implemented our system on a standard workstation .@®3Hz, 15GB
RAM, 36GB SCSI and 200GB SATA HD) running GNU Linux& using C++, OpenGL, POSIX
threads, the GNU Scientific Library and Qt.

Performances: Table4.1 presents the timings of both streaming processes (adaptive simplification and
attribute reconstruction) for various modelsin all cases, no memory swapping has been observed,
thanks to the spatial finalization. Since deformation is more expensive th@aization, we report only

the deformation timing. Colorizations exhibit in general two time faster postegsiag.

The pre-processing streaming is mostly bottlenecked by the physicalili#gmiof the 1/0 device.
Note that, to speed-up processing of very large objects, only vertieesead and streamed: since
ordering is preserved in the stream, the final deformed point set ren@imzatible with the original
topology (provided by triangle indices) and point-based editing can lzbsadely FPKG02 PKKGO03.
Alternatively, triangles can also be streamed, if mesh-based FFD are exdploy

The final streaming is more computationally intensive. To exploit multi-coretaathres, now widely
available, multiple threads are used to process the 1/O buffer. Note alghéhstcond pass of the pre-
process benefits from multithreading for largest objects, using a sptbedid for each active cell &.

In practice, this means that the thread scheduler has to deal with 20 to 20tasmous threads.

1The scalability of our system has been intensively tested on the Digital Minellagigantic models. As there are strong
legal restrictions on shape editing for these models, we only present tihhgginbut not the resulting pictures.

52

60

80

‘Raptor (8M tri.) ‘ 32><é2><32 g‘rld resofutlon ‘

Lucy (28M tri.) —— A 64x64x64 grid resolution
David (56M tri)

70 + :‘1?8x128x128 grid resolution
I\

50 f
|

60 | b

40 -

50 | 4l

30 40

30 -
20 -

Nemory Usage (in MB)
Nemory Usage (in MB)

20 |

10 -
10

100 0 ‘5 1‘0 £5 2‘0 2‘5 3;0 3“5 40 4‘5 50
Time Step (in seconds) Time Step (in seconds)

Figure 4.11:. Left: Evolution of memory footprint during out-of-core simplification for variousdm

els (error bounds have been set to obtain about 200k sampRight: Influence of the coarse grid

resolution on the footprint for the David model (56M triangles).

The k-neighborhood queries, intensively used during the outputsingaare implemented onto a static
kd-tree, built once, just before streamiRg The typical size oPs ranges from 20k (after out-of-core
simplification) to 500k (worst case observed after all the local refineniavigsed in a whole editing
session). This induces a very fast generation of such a tree (leserikaecond in all our tests). The
computation workload is essentially concentrated in this attribute reconstrusgenTéble4.1) and
more particularly the deformation, which emphasizes the use of our aygréss efficientprojected
barycentric coordinates

The main part of the memory footprint during the interactive session is egdioPs plus P. Note
that makingPs itself out-of-core is actually fairly easy as discussed in the next sectiaurd-4.11
measures the evolution of the memory footprint involved throughout the sinapiific process. The
peak memory usage is reached during the second pass of the simplificajwoqass. Fortunately, tt
clearly appears that this footprint is largely independent of the mode{tsitk Lucy and David present
a memory peak about 50MB) and is rather linked to the geometric complexitiisiance, high surface
genus may require deeper VS-Tree samplers. The influence of theegallition is more complex. A
finer resolution foIG reduces the global memory footprint, but as there are more simultaneotigé/ ac
VS-trees, it involves additional over-clustering in areas of low samplsigenn practice, we rather

Original Size R/W data | Sampling Pre-process Post-

Models vertices\ triangles 1st pasi 2nd pass process

Julius Caesar 387K 774K 8.8 MB 30Kpts | 0.35s | 0.43s 1.70s
Bumpy Sphere 701K 1.4M 16 MB 25Kpts | 0.81s | 0.98s 1.32s
Hand 773K 1.54M | 176 MB | 50K pts | 0.81s | 1.11s | 141s
XYZRGB Dragon 3.6M 7.2M 82.3MB | 160Kpts| 2.25s | 2.98s | 5.06s
Raptor aM 8M 91.5MB | 146Kpts| 2.07s | 3.07s | 594s
Lucy 14M 28M 3204 MB | 202K pts | 7.21s | 10.5s | 379s

David 28M 56M 640.8 MB | 209K pts | 13.3s | 30.2s 120 s

St Matthew 186M 360M 2.07GB | 189K pts | 60.4s 122s 338s
Double Atlas 500M 1G 559GB | 270K pts | 143s 775s | 1121s

Table 4.1: Pre-process (adaptive simplification) and post-process (deformatioisfieg) performances
for various models.

53

advocate a medium resolution f@&; around 64 in our experiments, which nicely balances sampling
quality and reasonable memory consumption.

Many examples provided in the paper have been created using the pséut-éditing tool proposed by
Zwicker et al. FPKGO0Z and Pauly et al. PKKGO03 in the PointShop 3Denvironment. We have also
experimented our system wiBlenderto provide interactive mesh-based out-of-core editing of gigantic
objects (e.g., displacement painting).

Complexity Let| be the size oR. andmthe size ofs. The theoretical complexity of the post-streaming
is O((lI +m)logm), due to kD-Tree construction and k-neighbors queries. In practiediavem << |

and the cache coherent access to samples in the stream exhibit an alnaodedinavior for the range
of object size we study. The theoretical complexity of the pre-streamingotdre worst than the one
of a quad-tree clustering which B(llog,l): this worst case corresponds to an height-filed directly
detected by th& predicate. Another “bad” case would be an an obfgctomposed of samples with
random location in the volume (no surface coherency), and a spatibditi@n grid resolution of one.

In this case, the complexiy is bounded 0¥l loggl) (no surface detection). The practical complexity
is hard to estimate in general, as it is geometry-dependent. Neverthelesan wensider a complexity
of O(llog,1*), with I* << | in the case of large and dense sampled objects: a geometric error function
is used for driving the tree clustering, and it is clear that, in the case of siisafficiently” sampled
surfaces, an higher sampling ratio does not involve a deeper tree (irgla leaf represents a whole
piece of surface, as soon as it is sufficiently sampled).

Examples: Figure4.1shows a complete out-of-core texturing and FFD session with the Raptof.mode
Figure4.12 shows a combination of several color PST applied on various chaniffelsé] specular,
ambient, etc) of the appearance of the Vase Lion model and Fg8idustrates the deformation ob-
tained with mid-sized objects. Multi-scale texturing and modeling are illustratedgures4.9 and
4.10 Finally, the absolute scalability of our system, for either shape or appearaodeling of very
large models, is presented on Figude$3and4.14 Note that in all cases, interactivity has been pre-
served, while on the same workstation, major commercial modeling packagaese &mger interactive
above one million triangles, and just fail when trying to load objects aroundillions.

Figure 4.12: Point-sampled texture for high-quality renderingop left: Original mesh (6.5M poly-
gons).Bottom left: Multi-channel interactive out-of-core texturing with our system (50k p@intges).
Right: Offline rendering of the original mesh (6.5M textured polygons) with @imtpsampled textures

(diffuse and specular component).
54

(b) Michelangelo’s Atlas (500M polygons) - 278k samples for interadixturing

Figure 4.13: Interactive texturing of very large modelseft: Original large meshMiddle: Interactive
multi-scale texturing with our systerRight: Application of the PST to the original model and real-time
out-of-core rendering. Multi-scale editing is used, and textures are ogewhfrom photos and stones
patterns.

55

Figure 4.14: Interactive freeform deformation of very large modelfop: XYZRGB Dragon (7M
triangles) - 160k samples for interactive deformati@d@ottom: Lucy (28M polygons) - 300k samples
for interactive deformation. Interaction snapshots are displayed in geglyand blue. Each full session
with adaptive simplification, interactive editing and deformation transfer tooktless5 minutes.

56

4.7 Discussion

Comparison To our knowledge, this is the first system that permits interactive multi-scatarfe
preserving shape texturing and editing of gigantic objects, as well asngpétre use of costly editing
method to medium size objects. However, the three pieces of system casilpee@apared to existing
methods.

First, we have propose a new out-of-core simplification algorithm, whictbeasompared to the octree
method of Schaefer et alSIWV03. In term of efficiency, our out-of-core VS-Tree simplification reaxhe
the user-defined error threshold quicker than octrees, generatsgdewles for the same error. Con-
cerning memory, the spatial finalization allows to discard most of the structereead along the time,
which reduces the memory footprint, while the octree method maintains a singléexooapree during
all the simplification. This makes also our algorithm easily portable on PC clustemalti-core/CPU
workstations.

Second, oupoint-sampled texturemre sampled volumetric textures, and can thus be compacexdtres
textures Basically, the main advantage of PST over octree textures is to allow théouségractively
refine directly from the original surface, without being constrained togttié topology induced by
octrees (See Figuré¢.13. Simple point sets allow greater flexibility and very quick variation in the
density of sampling (which are very frequent when the user wants to ¢éegtgiven area more ac-
curately pDGPRO02) where a very deep octree would have been necessary. Lasbbl#ast, octree
textures cannot efficiently represent fine color features which dr@xsaligned. However, the uniform
structure of octree textures allows efficient on-GPU implementatiadsID5, LKS*06], which is more
difficult for PST. Of course, in such a situation, our PST can be easiBmeled in an octree texture for
real-time shading. But, we rather focus on very large objects, for whieldlor is usually encoded in
the data-structure, on a per-sample basis, for efficient renddRin@0 DVS03 GMO05].

Third, a variation of our system could be to simplify a model with an arbitratyobicore method,
edit it, and stream the original samples through a volumetric variational calionizand deformation
field constructed on the simplified model, such as the one based on radsfurations by Botsch et
al. [BKO5]. Compared to such an approach, our system offers at least twditbertérst, the spatial
finalization structure built during the sampling allows to efficiently and locallyaopgde the model
during the interactive session. Second, our color and deformationgeaotions are fast, avoiding any
global variational minimization (for which, for instance, local editing with displaent painting may
require too many constraints), while providing visually accurate and plausbiéts: in the context
of large objects, this speed comes as a key property in a time-schedufedsigooal context. Lastly,
one could consider making a specific or texturing or FFD method size-itigens This is possible,
for instance, with volumetric deformation fields. However, we believe thgelabjects should not
impose a particular modeling method. Our system is generic, which meansthbatyarbitrary editing
techniques can be used for manipulating the shape and the appearémedaofe object, but also that
several can beixed within thesamesession: for instance, by only considering the coypteP¢}, we
allow the user to start her work by a globally smooth deformation, then to ceniith bone skinning
for articulated parts, before ending with displacement painting such aséntrpopular 3D tools (e.qg.,
ZBrush). This flexibility, and the possibility to upsample on-demand spec#i@sas the strength of our
system.

Limitations During the development of this system, we have almost systematically tradedegc
for efficiency. Consequently, at least three limitations can be exhibitedt, Biur streaming deforma-
tion may cause local self-intersection on highly deformed areas, whichigsaa with many existing
multi-scale editing techniques. Second, the quality of the initial downsamplinggdronfluences the

57

smoothness of the final color and deformation. This is one reason fohwieitiave included on-demand
local refinement, as it is difficult for the user to predict the number of sasswytlenately required during
the interactive session. Note also that all geometric prediction (e.g. cteyatan fail why colorization,
since high frequency color variations may not be correlated to the georkréetally, the major drawback
of our color editing method is also its strength: this ipaaameterization fre¢ool for texturing large
objects, which means flexibility and efficiency as demonstrated throughisuththpter, but which also
implies that its “3D painting metaphor” is slightly different from usual 2D paintsoftware Ado0g
and requires for CG designers and artists to change their habits. This ihaleeason why 3D paint-
ing is still an active research field: retrieving in 3D the accuracy of po@Dapainting packageis a
challenge that would also induce new interaction metaphors.

Summary We have proposed size-insensitive framewottk interactively apply texturing and FFD
techniques to large objects. By size-insensitive, we mean that the in-conemnéootprint does not
depend on the size of the original object, but rather on the complexity ostireraquested modification.

This system features 3 new algorithms:
e an adaptive out-of-core simplification algorithm based/&TreesandSpatial Finalization

e a smooth colorization method providing a fast color transfer between modifexent scales
without parameterization,

e a feature preserving deformation, the projected barycentric coordjratite to transfer a defor-
mation from a simplified model to its original version.

One main advantage of our system is its ability to directly work full resolution eseahd point clouds,
without requiring any (possibly long and feature-missing) conversiothier@epresentations (e.g., sub-
division surfaces). The choice of meshless techniques for both exdgrefstreaming processes not only
ensures efficiency but also provides flexibility, as they can be seamlgssti/on point sampled data,
standard manifold meshes, as well as polygon soups (topologically inrtshapes made of multiple
disjoint surfaces, that are quite frequent in CG applications for thetaimtarent industry).

Perspectives Defining a totally scalable system means that the simplified models themselves become
out-of-core. Even though we have not encountered the case, ailgk intagine that when applying
numerous local refinements andPg would ultimately be too large to fit the in-core memory. Thus, we
are working on a system that reuses the spatial finalization to implement afkiredst-Recently-Used
caching system between the in-core and the out-of-core memory. Thiamsichis compliant with the

usual workflow for interactive shape editing: first apply global textyiamd deformation on a coarse
in-core model, then recursively refine the model to apply more and morkzled¢anodifications, that

does not involve the whole object. Actually, we have already a satisfastdugion for colorization, as
described in Annex0.

Finally, our system inherits an important limitation of FFD tools: the global topoldgih® object
cannot be edited. Removing this issue is one of our future researctialiecan important step in this
direction has been made i64HO07.

58

(b) Volume-Surface Clustering

(c) Interactive-Out-Of-Core Texturing

Figure 4.15: Application to large scale environnement editing(a) 7 millions point-samples coming
from the registration of 6 scans of a castle. Each scan has been obtasimeglaitime-of-flight scanner,
suitable for distant and large scale objects. (b) VS-Tree clustering: made objects quickly appear
during the clustering. (c) Interactive out-of-core texturing: using salvphotos and some texture pat-
terns of stone, wood and grass, the environnement model is erthaittecolor-information for each
point in a full size-independent stream process.

59

Part Il

Rendering of Acquired Geometry

60

61

Chapter 5

Point-Based Surface Rendering with
Surfel Strips

Figure 5.1: The Asian Dragon point-based surface can be rendered with surfepsigpat its full
definition of 3.6M points, with antialiased 2D texturing and cube mapping, &te3ies per second at a
display resolution of 1600x1200 pixels.

This chapter addresses the second problem often present in thetamypipeline: the visualization of
Point-based Surfaces (PBS). Such surfaces are directly obtaiegaint-based processing, such as
noise filtering, and requireole-filling rendering methods due to their possibly high sampling rate. Prior
work in PBS visualization has essentially focused on the design of a nevwokietidering algorithms,
calledpoint-based renderingvhich peform an image-space surface reconstruction by considéeng
surfel as the unique rendering primitive. This class of algorithm hasddensively studied over the last
few years, and various GPU implementations offer reasonnable resufisrtlthately, such techniques
induce two drawbacks: first, the performances are not competitive wigigqal rendering, due to the
native support of polygons by graphics devices for polygons; endrsl, since no object-space entities
exist beyond the points, a large part of the huge repository of polygendering techniques is not
compatible with point-based rendering.

In this chapter, we propose a new hardware-friendly approach tadhfden of visualization of PBS: a
polygonalapproach. The goal of our work is to efficiently merge 3D models reptedeas point clouds

in state-of-the-art high quality polygonal 3D renderers, providing @ditenal layer between point-
based modeling and polygonal rendering.We claim that a polygonal ioéedan be generated and
maintained efficiently between the point-based surface and the hardiare. precisely, we present

a new technique for fast local meshing and multiresolution rendering ofd@B&d Surfel Strippingn
whereSurfel Stripsare topological entities — composed of small triangle strips that interpolate t8e PB
— designed for efficient generation and GPU rendering.

Basically, the idea is to generate polygons upon the PBS as efficiently siblpo® feedthe GPU,

62

producing hole-free rendering. There are two major contributions whidd upon the general ideas of
fast hierarchical partitioning and lower dimensional geometry proces&fended in this thesis.

First, at loading time, we equip the PBS with a weak topology targeting visualizanign This is done

by first generating a set of overlapping small triangular meshes that atesethe PBS using lawer
dimensional Delaunay triangulationWe then remove redundant triangles and finally strip the small
triangular meshes by using a cache-friendly stripping method. All thesatipes are performed by
using an octree data structure.

Second, we reuse this data structure for providing a multiresolution intexatsualization of the surfel
strips at rendering time. Sin&urfel Strippings local and very fast, it can be used in a lot of situations
as an object-space alternative to the image-space surface splatting aie ttansidered half way be-
tween point-based rendering and surface reconstruction. Ren&anifeg Strips is very efficient since it
neither requires multi-pass rendering nor time-consuming vertex/fraginadéss compared to surface
splatting. We show also how to exploit the locality of the surfel strips for maintgicdmpatibility with
point-based modeling tools, such as local deformations of surfaces.n#y fjive some examples of
well known visual enrichments developed for polygons, directly applid®BS thanks to surfel strips.

5.1 Context: Visualization of Point-based Surfaces

The interest in PBS visualization has grown significantly in recent year®iodmputer graphics com-
munity. Several authors have already explained the reasons of thisagoppAGP*04], e.g. the
widespread use of 3D acquisition devices that directly generate PBSg oidttance of connectivity
management that greatly simplifies many algorithms and/or data structures.

The basic idea to use points as rendering primitives can be attributed to theaspapar of Levoy and
Whitted [LW85]. However, rendering a sufficiently large amount of points at interadtamerates only
became feasible when an efficient point-based rendering system esenped by Grossman and Dally
[GD9g. Their work initiated a highly growing interest towards point-based gepland we refer the
reader to AGP*04, KB04] for a complete survey of point-based rendering. It is now widely admitted
that when including additional information at each poik/p3], such as normal vectors, colors or
material properties, and using specific rendering techniques (mainlydeffy fill the holes that may
appear between the points), PBS can become as flexible as the ubiquitmeabsurfaces. Following
Pfister et al. PZvBGO0(Q, such enriched points are commonly calkdfels

A large variety of rendering techniques for PBS have been presentbe iterature and all have to
solve the central problem of hole filling when points are projected on tleesciThey can basically be
classified in three families (see also Figbr8):

e Surface Splattingwhich runs in the images space by blending ellipsoids centered on points;
e Raytracing which cast rays through pixels, intersecting a continuous approximatite ¢¥BS;

e Patchingwhich perform a local object-space reconstruction, enabling dirstgniaation.

63

Il Screen Resolution Dependent
Il Screen Resolution Independent

Surface
Splatting

Il Object Space Reconstruction

=

Ra
.y Patching

Tracing

Il Forward Rendering

I:I

Figure 5.2: Point-based rendering classification.

Surface Splatting Most of point-based rendering methods are basesptatting where a reconstruc-
tion kernel (e.g. gaussian convolution) is centered at each projeciit@dill the neighboring pixels.
The accumulation of the contributions from all the kernels can be conslidsran image-space surface
reconstruction that is generated on the fly. This approach has a lovafiges, such as filtering and
antialiasing, and thus enables high-quality rendering. Unfortunately splatto involves a totally dif-
ferent graphics pipeline, compared to the one used in current 3Digsdpdrdware. As a consequence,
even advanced hardware implementations of splatting techni®®€05 GBP0g have to resort to
expensive combinations of vertex shaders, fragment shaders andpassdtrendering to finally obtain
a surface that could have been rendered directly if its equivalent @o&ygxpression were available.
Moreover, the intrinsec image-space reconstruction makes harderatlabibty of such techniques to
high-definition display.

Surface Splatting methods can be divided in two grougsality-orientedmethods ancefficiency-
orientedmethods.

One of the early papers in the former group is undoubtedly the work btePésal. PZvBGO0(Q, who
first introduce the idea of surfel and local screen filling around sepgejected points (i.e. “splatting”).
This work has then been extended by Zwicker etaRBGO01, ZRB*04], with the EWA Surface Splat-
ting, one of the most popular point-based rendering techniques, whichad bashe screen space for-
mulation of the Elliptical Weighted Average (EWA) filter, initially proposed by Keert for antialiased
texture mapping on polygonal meshéscf86. EWA splatting enables high-quality anisotropic fil-
tering and EWA splats can be implemented on programmable GRBZ(2 BK03, GP03 BSKO04,
BSKO05 and even directly as special hardware devid®A*07]. However, surface splatting suffers
from limitations due its image-space accumulation principle. One example of saltness is the case
of transparent surface rendering requires complex ordering in #veiray calls fZ06, GBP0G. Sim-
ilarly, depth-of-field KZB03] and deffered shadingdBP04 BSKO05 has to be redesigned for fitting
surface splatting.

Second, there are performance-oriented approaches, which afg besged on specific data structures
for efficient rendering of very large point sets, such as 3D scapbggtts. The early member of this
family is the QSplat technique developed by Rusinkiewicz etRILOQ] as part of the Digital Michelan-
gelo Project LPC*00Q]. This kind of technique has also been used in hybrid point-polygoneramgl
systems DVS03 CNO01, CAZ01, DHO2, CHO02 GMO05]. Actually, these algorithms do not propose a
solution to the so-called hole filling problem: their basic principle is rather to ys®rd-based repre-
sentation to provide an efficient level-of-detail rendering for compldxgmmal meshes, than to provide
a true rendering solution for point-based surfaces.

64

Ray Tracing Ray tracing of PBS induces the non trivial question of intersecting poinidchath a
line. Obviously, the probability of intersecting a line with a point in a 3D spacefisiiely small. The
simplest solution is to replace rays with cones, shafts or cylinders: thecsurftersection point would
thus be obtained by considering the closest point to the ray origin in théagtinder/shaft. Unfortu-
nately, this solution produces view-dependent intersections, leadingtarpage quality $J0Q.

To overcome this problem, most of PBS ray tracing algorithms locally approxitn@feoint set with a
continuous surface and consider the intersection with this substitutede{®&03, Wal05. Usually,
MLS projection is a good choice for such an approximatidBCO*01]. The polynomials basis used
for evaluating the surface can be precomputed and cached in a kDthegeused for maintaining a
logarithmic intersection cost. Alternatively to moving least squares, weighstl $guare can be used
for deep enough trees (i.e., dense enough PBS). In the case of anPBðe kD-Tree is replaced by
a bounding sphere hierarch&KiKP*05], allowing a progressive update of pre-cached data.

Patching The algorithm proposed in this chapter can be considered@chingprocess. There
is very little work in this field, but the basic idea of generating a set of objeates patches “onto”
the point clouds has several advantages in term of fast renderingibi@ed with their introduction
of Point Set Surfacebased on the MLS approximation, Alexa et aABCO*01] implemented a first
point-based rendering technique quite related to ours, rendering a $8%$dlection of overlapping
two-dimensional parametric patches that locally approximate the surfacevéy patch, a quad mesh
is generated by sampling the parametric domain of the underlying bivariataqmigl. Since the
patches are generated independently, it is obvious that the resultiagesisfnot eve® continuous.
Moreover, as neighboring patches do not share common normal vaalors on their boundaries,
a visual smoothnesfor the rendered surface is only achieved when employing a very lamyder

of patches, which actually never interpolate exactly the point cloud. &fiereLinsen et al. have
proposed the Fan CloudsR03, which are triangle fans constructed on surfels k-neighborhookiis. T
method is somewhat related to the idea of lower dimensional meshing presetitedamtext of surface
reconstruction by Gopi et aldKS0(J. However, these solutions do not propose a complete rendering
solution for PBS and their k-neighborhood basis avoids a larger aedgsanin the lower dimension, as
we will discuss further. More recently, Wicke et aVDG05 have proposed a conversion of point-based
surfaces to polygonal surfaces with textures. In a way, this work amiksgoals to ours: providing
an interface to polygon-based software and rendering techniquédsrtlurately, their global approach
requires a heavy preprocess (more than 20 minutes for half a million points).

We propose an efficient object-space patching method based on asealbfpieces of triangulated
surfaces that we caBurfel Strips Surfel Strips can be quickly generated while loading the PBS either
from a local disk or from some network, and are stored in a specificesbiaeed data structure, the
Stripping Tree It is important to notice that, despite the use of triangles for renderindglStripping

is not a point-to-mesh reconstruction technique (a complete discussion doglisan be found in
Section5.4), since we preserve the integrity of the underlying PBS, by only gengriatilexed polygons
over it. In other words, the core representation of objects is still the PB& STirfel strips are used to
fill quickly the topology naturally required for polygon rasterization, amte they are purely locally
generated, they can be locally updated during some point-based modskignsevhere common point-
based tools are used to modify the shape of the 3D object (see Chppter

65

5.2 Surfel Stripping

nﬂate)—)(Local ReconstructiorD—)(Decimate @
@—)(Spatial Partiti Oninnﬂate)—)(Local ReconstructiorD—)(Decimate 9

nfiat@—)(Local Recénstruction)—)(Deci:mate 9

Figure 5.3: Overview of the algorithm.

As said above, the basic principle of Surfel Stripping is to convert the i3 into a set of rendering
primitives, calledSurfel Strips indexed onto the PBS. In fact, the rendering of polygonal primitives,
as performed on current graphics hardware, requires two araggeometry bufferusually defined by
listing the connectivity of vertices, and which can be filled by the PBS in ose,cand armndex buffer
(topology), made of polygons in the case of meshes, and by definition migsiRBS. The goal of
Surfel Stripping is precisely to provide an efficient way to fill the indexduih the case of PBS.

Definition Sincetriangle strips[ESV94 are the most efficient 3D primitives in current hardware, we
define a Surfel Strip as a small 2-manifold strip of triangles that locally intetg® a subset of a PBS
(see Figures.4). We recall that a triangle strip is lossless compression of triangle list lwastd local
shared ordering induces by common edges: for instance two adjacegleédare usually represented
as list of six indices:

{Vo,V17V2, V1,V2,V3}.

Strips exploits the partial duplication that exists in this list for encoding a trizagytbe last two indices
plus a single new one, leading in our example to the list:
{Vo,V1,V2,V3}.

In order to keep a single reference per surfel strip, wedegeneratedtrips: two strips can be joined
by duplicating the last index of the first and the first index of the secord areating a primitive with
empty geometry but enabling a unique list for disjoined pieces of surfaces.

When the original PBS includes additional information at each point, sucblass or texture coordi-
nates, the Surfel Strip automatically inherits them on a per-vertex basis.

@ (b) (c)
Figure 5.4: The Surfel Strip principle: (a) small subset of the initial surfel set, (bal@onnectivity

information is computed, (c) resulting Surfel Strips rendered with Gous&iading by using a per-vertex
normal and color.

66

This latter behavior is an important characteristic of Surfel Strippatighe data that exists in the orig-
inal PBS is exactly transmitted to the Surfel Strip structure. In other wordsg ik no compression or
low-pass filtering as in usual splatting techniquéaByBGO01 BSK04]. Of course, filterings sometimes
interesting, mainly when there is some noise in the initial PBS. But in our opinids piteferable to
remove noise at the point-based level, with for instarR@(q1, rather than spending computational
effort ateachrendering frame to low-pass filter the point set.

In addition to its ability to efficient hardware rasterization, such a localizédifive also provides

a coarser granularity for many aspects of the rendering processge danount of operations (e.g.
discarding tests for culling, see Sectibr2.5, can be performed at the Surfel Strip level, instead of at
the point level, reducing the number of different tests to perform in aespaberent fashion.

Once the idea of using local triangle strips for a hardware-friendly \imtaon of surfels is set, there
are still three fundamental problems to solve to get an efficient and decystem:

e How to efficiently generate each individual Surfel Strip? This can furbeedivided into two
sub-problems: the efficient computation of the local connectivity and fi@esft generation of
the triangle strip from the connectivity.

e How to guarantee that no holes will be visible between neighboring Surfpk3 In other words,
we want an object-space hole-filling algorithm, similar to the image-space Hwig-firovided
by conventional splatting techniques.

e How to take benefit of the data structures constructed at loading time in trg@opose an
efficient rendering and in order to locally update the “visualization layesVided by thesurfel
strips

The next section details the algorithm that we propose to solve these twepob

@ (b) (© (d) (e)

Figure 5.5: The different steps involved in Surfel Stripping: (a) initial surfel set, @@yasponding
Stripping Tree space-partitioning data structure, (c) a Surfel Strip is gead at each leaf of the Strip-
ping Tree, on annflated local surfel set, (d) aftedecimation most of the overlappings have been
discarded, (e) real-time rendering using 3 colored light sources.

67

5.2.1 Lower Dimensional Triangulation

The Surfel Strippetis the core of our system: it can be seen as a blackbox that inputs a sns&itRBulf
the initial PBS and outputs a triangle mesh p&ichihe ground topology of an upcoming surfel strip. A
canonical method to create triangles from an unstructured set of poimtisdianensional space is the
Delaunay triangulation. However, using a true 3D Delaunay triangulatioectonistruct a 2-manifold
in 3D is usually not very efficient, as this process generates a lot of in{égo volume) triangles that
have to be find and removed to keep only the triangles that lie on the suffaiseis not triavial in the
case of non uniform point sets and actually a waste of time in our case.

In order to generate only “surface” triangles, we propose to perfo2d Delaunay triangulation by
projectingR on a lower dimensional object, i.e. an average plBfe Indeed, this process greatly
speeds-up the meshing but imposes another constraint in the partitidghinmust be consistent with
a height maprepresentation (i.e. each point can be expressed as an elevation aamgytial of an
average plane). We will explain latter how to reach this constraint duringidrarchical partitioning.
This 2D approach reduces the generation time by about one order oftodEy(see Figuré.6).

@ (b) (©

(e)

Figure 5.6: Local surface reconstruction performed by the Surfel Stripper. (@plmpartition P. (b)
Projection ontd;. (c) 2D Delaunay triangulation. (d) 3D projection. (e) Surface patcm8exing P.

We definell; by the centroid o and a normal vector that can either be obtained by uBimggciple
Component Analysisn the covariance matrix of the surfel positionsRp{the eigenvector associated
with the minimum eigenvalue), or by simply averaging the normal% when they are available. We use
an adapted version of tHacremental Randomized Delaunay Triangulat[@ev9§ on the projection
of B (see Algorithm3).

Algorithm 3 Incremental Randomized Delaunay Triangulation

Require: B € PBS
S < boundingTriangléR)
for eachp randomly choosen iR do
for eacht € S do
if pncircumCirclet) then
S§S<—§-t
Tp e Tp+t
end if
end for
Ep «+ alledgesinfpN§
for eache € Ep do
S « S+ Triangle(p,e)
end for
end for
return §

Thanks to the random insertion of samples, this algorithm exh@iitdogn) complexity wheren is the

68

number of surfels if. A typical size ofn in our implementation is between 20 and 40, which offers the
best overall performance for the entire Surfel Stripping process.

The connectivity information generated by this 2D triangulation forms a ficldexed oveP,. How-
ever, astrict partitioning would lead to a set of disjoint patches, with holes in-between tbedels. We
propose aiinflate-and-decimatapproach to solve this problem.

5.2.2 Inflate-and-Decimate

be detailed in the next section. In order to avoid holes between Surfek Stvip improve the local
triangulation by proposing an efficient two pass technique, cafigate-and-decimatevhich reduces
the set of useless triangles while still maintaining a hole-free visualization.

Inflation Theinflation pass takes place before the Delaunay triangulation: we egdmndincluding

the nearest surfels from neighboring partition®dbee Sectiob.2.4. The inflation can beonservative

by including all the surfel of the neighboring space partitionaggressivevhen a density estimation is
provided. This inflated surfel sEtis then triangulated using a 2D Delaunay algorithm as detailed above.
As a result, obtaining overlapping surface patches, we fill the holes irbjeetspace (see Figuke7).

@) (b)

Figure 5.7: Hole filling through overlapping. (a) (a) In yellow, the overlapping zomween the
two neighboring surfaces. (b) From left to right: the original point-basedace, the aggregation of
generated surfaces respectively without and with overlapping. Evesr anstrong close-up, the visual
continuity is maintained.

Decimation The decimationpass is done after the triangulation: we compare the resulting triangles
of § with the neighboring patches that have been generated so far andidiseggss triangles in over-
lapping zones. This decimation pass is based on a classification of the tsiahgléis classification,
established for its low computational cost, a triangle can have one of théoltmwing states:

e outer: the triangle does not share any surfel with the original surfel sBt of

e redundant: more than one instance of the triangle is present in the overlapping zopeifieet
overlapping, very frequent thanks to the Delaunay triangulation),

e dual pairs: the triangle forms, with a triangle sharing a common edge, the dual cortfiyucd
two triangles present in a neighborhoring partition,

e valid: in all other cases.

69

(a) Overlap (b) outer removal (c) redundant removal (d) dual pairs removal

Figure 5.8: The decimation pass: two overlapping triangulations with shared edgegrsimored.

Discardingoutertriangles ensures that the overlapping zone will be only a thin band of leisimgthe
worst case. An instance of a triangle is removed of the current inspeetedihen it isredundant
The dual pairsof triangles representing geometrically the same quad have not to be kepuieea
hole-free vizualization (see Figuke3and5.7). Thevalid triangles are maintained and are used for the
rest of the algorithm. This set @flid triangles, quickly detected by the use of this classification, does
not certify a watertight triangulation, but considerably reduces the nuoflmverlappings between the
small neighboring triangulations. We have made this choice in order to keepaib& processing as
fast as possible. A finer classification and an additionnal local remeshimgould lead to a watertight
triangulation under some sampling criteria, but this is not useful for oualimition purpose and is
also time-consuming. Indeed, one nice property (observed in experineéiss inflate-and-decimate
process is that it leads to patches with boundaries that match perfectly in raar®38o of the cases.
This surprisingly good result can be explained by the local uniqueri#giss Delaunay triangulation, that
resists quite well under projection in medium curvature areas. So, vy, dhe same set of triangles
are generated in the overlapping zones of two neighboring inflated gedcitethe decimation process
will then perfectly remove the overlapping triangles. A typical example is shiowigure5.8.

Note that using “neighboring” Surfel Strips may appear somehow in adintian with our claim that
we do not generate explicit connectivity between the strips. In fact, thare real contradiction here
because we only use the connectivity of the space-partitioning cells amdtdexplicitly stitch the
strips together. Finally, the only annoying case where the decimation steptdatally remove the
overlapping, arises when the sampling density vs. curvature rate is too $mdiis case, a different
connectivity may be generated for surfels that belong to the overlappimg af neighboring inflated
strips. This is due to the very different orientation that may occur for teea@e planes that are com-
puted in two neighboring cells in such high curvature areas. When thisacass, we simply keep the
triangle of the inflated Surfel Strip to maintain a hole free visualization withoahgtartefacts (see the
close-up view on Figurg.15).

This inflate-and-decimate process is efficient, robust and very easy tenmapt. The usual approach,

developed in computational geomety3D03, to stitch boundaries of partial triangulation by comput-
ing an adjacency graph, is much more complex, requires a precise compusatibhas to examine a

large set of configurations to find the case where neighboring trianglssaoilapse. As we only seek

for a hole free visualization, the proposed technique perfectly fits auinements.

70

@) (b) (©

Figure 5.9: The Surfel Stripper: (a) the initial PBS, (b) the collection of Surfel Strips wvatidom
colors, almost every overlapping triangles have been discarded €djribl Gouraud shading does not
suffer from the remaining overlappings.

5.2.3 Fast stripping

In order to speed-up rendering and compress the patch topologyeaekrbach patch is stored as a
triangle strip rather than individual triangles. Several approachesreaently been proposed to perform
a direct stripping during the Delaunay triangulati&fKD3]. Nevertheless, due to the decimation step
involved in our approach, it does not make sense to generate stripe Ibleéofinal set of triangles is
actually known. We have found that the fast-stripping algorithm propissfRBA05] works extremely
well to strip our small sets composed of about 50 triangles (e.j0 5sec. to strip 50 triangles on
a P4 1.8 GHz). For every leaf node of the Stripping Tree, a cachadfyidralf-edge data structures
computed by storing the 3 half-edges at each triangle as a vector. Thig aligms the half-edges in
memory and reduces each half-edge access to one pointer de-cefgrefhe stripping is then done
in a similar way to STRIPEESV9q]. Note that since the strips are computed separately in each leaf,
they are constrained to the local space-partition of the leaf. Of coursen#kes the strips smaller and
so less optimal concerning data overhead, but as a result the strips withdee“culling-friendly” than
usual long strips which may be visible from many viewpoints and thus limit the abflityeorendering
system to perform a tight hierarchical back-face and frustum cullieg $ectiorb.2.5.

@00 O/0\00
OO0 O

. Internal Nodes .Leaf Nodes (Surfel Strips) V: f .
() (b) (©
Figure 5.10: The Stripping Tree structure: (a) the partitioning of the input surfel setth{e adaptive

tree with the Surfel Strips on its leaves. (c) a Surfel Strip is generated foradi(with a random color
for each cell).

71

5.2.4 The Stripping Tree

After having detailed the Surfel Strip primitive and the Surfel Stripper élgaor, the last component

to focus on is thestripping Treedata structure that is used to efficiently subdivide the initial PBS in a
way that it is consistent with the constraints required by the Surfel Strigually, almost any usual
space partitioning technique (bounding sphere hierarchy, BSP-tterek, octree) may be used, as
long as a consistent split criterion can be defined. In our current implaitiem we use an octree-based
bounding box hierarchy. Each internal node of this hierarchy contains

¢ the bounding box of the whole set of surfels belonging to its subtree,
e the average position, normal and color of its subtree,
e a cone of normal vectors used for fast culling,
e 2to 8 references to its children nodes
Each leaf node contains a Surfel Strip (see Figui€).

The generation of the Stripping Tree for the PBS is based on the main donhefrthe Surfel Stripper:

a Surfel Strip can only represent a height field. Consequently, we twapartition the PBS into a
collection of height fields. The recursive construction is based on th# fmoperty. A node with an
associated surfel set that does not satisfy this property is subdivitte8 new nodes. We use the same
criterion as the one described in Secth2.2 Note that a VS-Tree can perfectly be substituted to the
octree here, preserving the remainder of this chapter unchanged.

The described construction has the advantage to quickly convergaltharPBS since the local height
field property is reached after less subdivision steps compared to vdiag BSP trees or bounding
spheres hierarchies. As explained in Secbdh], the inflate-and-decimate process used by the Surfel
Stripper implies the availability of neighboring space-partitioning cells. Instéading a topological
approach based on the tree to find the neighboring cells, we have famoddtefficient to simply use a
geometric predicate: the epsilon box-collisions with the current cell (i.et avtether the box distance
is smaller than epsilon) are computed between other cells in a top-down grates any leaf cell that
passes the test is added to the list of neighbors of the current cell, and'éis sire added to the inflated
surfel list. To speed-up the process, a distance threshold may be echptogeld only neighboring
surfels that are close enough to the current cell either using an inpsitylestimation or a heuristic. In
our implementation, the distance threshold is set to 25% of the cell diameter.

In order to guarantee a good performance of the Surfel Stripperpdeegartitioning must also ensure
that each leaf of the Stripping Tree does not have to handle too maniss(iiés means that in addition
to the height field criterion, we also includ@apulation criterionthat ensures that no leaf node contains
more thark surfels. We have determined experimentally that constraiking20,40] provides a good
trade-off for the whole preprocessing step on almost every tested nactiatieoff between:

e too large surfel strips, which are expensive to compute as the compleXdy Delaunay triangu-
lation is not linear and does not provide good hierarchical culling, and

e too small surfel strips, which would lead to bad memory performance and tob owerlapping
proportionnaly to Surfel Strips size.

In the case of quite uniformly sampled PBS, this population criterion also @dmsthe geometric extent
of all resulting Surfel Strips to be very similar, as can be seen in the raodlmmnvisualizations (Figures
5.5 5.9and5.11). This feature also offers some good properties for downsampling @fxklas will be
discussed in sectidb.2.6

72

5.2.5 Rendering Surfel Strips

The Surfel Strip collection can be directly submitted to standard graphics Wigiout the use of spe-
cific vertex/fragment shaders or multipass rendering. During the rigigdstep, the Stripping Tree is
traversed top-down, and the per-node normal cone and boundingrbaxsed for hierarchical back-
face and view-frustum culling according to QSpIRLLPQ]. As illustrated in Figureb.11, hierarchical
backface culling can reduce the number of rendered Surfel Stripsrimsa50%, even performed at the
surfel strip resolution. In other words, we test the leaves (Surfelsshtihich are the finer entities for
our hierarchical culling and never test the triangles individually.

@ (b) (©

Figure 5.11: Hierarchical culling of the Surfel Strips: (a) the initial surfel set, (b) therf8uStrip
rendering, (c) the actual subset of Surfel Strips that has been usedpn-culled) for the rendering
done in (b).

5.2.6 Multiresolution Levels-Of-Detail

The main strength of Surfel Stripping is to be able to display complex point sloandsery high reso-
lution displays while providing interactive framerates, which is of major impogananany different
application fields like, for instance, precise archeological studies ohschartefacts, or model valida-
tion in reverse engineering. So considered, there is currently no com@egtitint rendering technique
that would be able to display the full resolution 3.6M antialiased textured ariament mapped point
model presented in Figu1 at 31fps on a 1600x1200 display (see discussion in Section 5). On the
other hand, having only one high resolution representation of a givéni®#8metimes wasteful. Con-
sequently, being able to switch between several levels-of-detail (L@Ds)d be a valuable extension

of Surfel Stripping. In this section we present two different appreadbr including multiresolution in

the surfel stripping system.

73

(a) 40881 surfels (b) 10656 surfels (c) 2993 surfels

Figure 5.12: Surfel stripping for a PBS at different levels of details.

Multi-resolution at generation time One of the main adavantages of point-based surfaces is their
ability to quickly produce different levels of details of a shape. Rathertbastructing a set of discrete
levels of detail starting from the surfel strips at full resolution, one cpudder to take advantage of this
good property of PBS by constructing a set of LOD directly on the pointd;land then using the surfel
stripping for each of these discrete levels. Near-optimal levels can Istrooted using the different
techniques presented iRGKO0Z. Nevertheless, in order to speed up this process, we use a hieedrchic
simplification based on the stripping tree constructed at full resolution, Isyecing points in a similar
fashion to the algorithm described in Sect®i. This fast approach offers convincing results in usual
cases (see Figue12). Its only weakness is that the preprocessing time and the memory footprint is
increased by about 33% as with usual mip-mapping (each inner levelim®m@aproximatively 1/4th

of the strips of its child level). As usual with discrete LOD, the selection of threeat level is simply
based on a distance criteria.

This solution does not involve any modification in the Surfel Strips rendeHiogvever, being performed
at generation time, it cannot provide a true view-dependent adaptivitiy.

Multi-resolution at rendering time Following [RLOQ] and [DVS03, we have integrated a multires-
olution rendering scheme in the hierarchical traversal of our strugberégrming a hybrid viewpoint-

dependent point-strip rendering. This avoids unusefmhpletedrawing of too small or too far surfel
strips and does not require any additional preprocessing.

As described previously, each internal node of the stripping tree sarapresentative surfel with
position, normal and material attributes computed as an average of its childaed a bounding sphere
enclosing all its leaves. During the depth-first traversal of the strippe® twe compute the projected
size of the bounding sphere of each of the nodes. When this size is legsairto a pixel, we draw the
representative surfels a single shaded point, otherwise we continue to traverse the structutevtap
performing culling as mentioned above (see Figutes).

74

Figure 5.13: Hybrid point-strip Multiresolution Rendering. Top row: the surfel strip angéimal nodes
drawn as simple point are displayed in red. Bottow row: final renderihg,aliasing is reduced thanks
to the average color and normal used for representative surfels of islteodes.

Our experiments have shown that performing too expensive tests to deciderecisely when we have
to render a single point (i.e. a pixel) or a rasterized primitive (i.e. a triangf® sannot offer the same
framerates than our approach, because of the highly optimized rengpieline present in today’s
GPU, with which it is sometimes more efficient to render a small object than toaletidther we have
to render it. Our approach represent a good trade-off, since:

e the tests performed will never reach the triangle level, but will be limited, in thetwase, to test
if a wholesurfel strip leaf partition (e.g. about 50 triangles) has to be fully rertjenehas to be
simply replaced by a point; this induces a sub-linear complexity, even in thet vase;

e thepopulationcriterion mentioned above ensures a fine enough selection in practice.

While we do not perform the selection on the GPU, our mixed point-strip retgleeaches high framer-
ates in practice (see Figusel), preserving a low CPU workload and letting the vertex shader instruction
set free for other tasks.

5.2.7 Interactive surface deformation

The ability of surfel strips to be generated considering only a small lot¢alfssurfels makes it pos-
sible to incrementally update the collection of surfel strips. For instance, ltbvgsalocal point-based
freeform deformations. Let us consider the Fighrg4 on the right, the Santa model (75 783 surfels)
has been loaded and a stripping tree has been constructed on-thertlyittea direct rendering of the
model.

By using conventional point-based modeling to®IKKG03, we have locally deformed and up-sampled

75

the top of the model, such as shown on the right of the figure. In orderip &e interactive framerate,
we keep all the surfel strips which have not been modified, and recortipaitsurfel strips only for

the top of the model. During the interactive deformation, the modified pointdassified against the
stripping tree, according to the following process for each modified point:

1. Each leaf cell containing the point is marked.

2. When the height children of a node are marked, we propagate thisnation bottom-up in the
tree and the node is marked.

This allows to reduce the number of full traversals of the tree: during ttssifilzation of a given point
in the stripping tree, we stop the top-down traversal as soon as a mardledsiencountered. After
having processed all the modified points, we recompute the cells marked #gedhahd update in a
bottom-up fashion theepresentative surfelsiormal cones and bounding spheres of internal nodes.

A slight modification of the original stripping tree generation (Sec8dh4) is necessary for allowing
the user to enlarge some part of the model: the original bounding box aselef octree-based de-
composition of the point cloud must be over-scaled, and we ensure tlia¢ @leformations applied to
the model fit inside this enlarged bounding box. Note also that during tleerdafion, some points can
move to “empty” space. In this case, the stripping tree will be refined in locati@ne, at the beginning,
no cells were present.

The updating time is 0.18 seconds in the example of Figutd and the original surfel stripping per-
formed at loading time has taken 2.67 seconds. Note that, even if it is possith@yvenot stretched the
original surfel strips of the deformed zone, but completly recomputed tf@i.incremental update of
the stripping tree reduces the computation in the case of freeform defonsia@d course, for particu-
larly well identified deformations, such as bone-based skinning of cteasa more efficient approaches
can be used to limit the number of local surfel strip regenerations. Finadlgldibal interactivity, during
the user freeform deformation, can be increased: followlRlKHGO0J, a lazy update of our structure
can be performed when deforming the object (in our case by simply “singtcine strips for instance),
and thetrue update is performed only once the deformation is finished.

(a) 75783 surfels (b) 78726 surfels

Figure 5.14: Interactive deformation of the underlying point-based surface.(a) Origbuafel Strip-
ping. (b) Local update.

76

5.3 Results

We have implemented our visualization system under Linux with OpenGL. Rgninies and framer-
ates are given for an Intel P4, 3.4 GHz with an nVidia Quadro FX 4400 .@HUests have been done
by using vertex buffers.

(@) (b)

Figure 5.15: Comparison of the visual quality. (a) The high quality EWA rendering (tis¢estrong
EWA artefacts on close-up views: lack of continuity for silhouettes and vigitde lsoundaries). (b)
The same object at the same resolution rendered with Surfel Strips.

Visual Quality As pointed out by Botsch et alBEK04], Zwicker et al.'s EWA splattingZPvBG03
can be compared to Gouraud shading of polygons in terms of quality, sitlcédzhniques only blend
colors and do not use per-pixel normal interpolation. As far as sigealyhs concerned, it is true that
both shading techniques have the same limit when the number of surfelskvgntives to infinity, but
actually the convergence rate is quite different: for a given numberrtdlsivertices, Gouraud shading
is closer to the limit shading than EWA splatting. This appears clearly on thedafbpFigure5.15
for the same number of points, EWA applies a stronger low-pass filteringhaisccancels much more
details than the Gouraud shading provided by Surfel Stripping. Morgfimeclose-up views, strong
visual artefacts such as silhouette discontinuities and visible splat baesi@pear very often with
EWA splatting (see the eyeball and the eyebrows on the right part ofd%gL$). Although we did not
perform comparison, this argument should remain true when comparing hathgPshading for both
techniquesBSKO0g.

Another advantage of Surfel Stripping over EWA splatting appears wémtering non-uniform point
clouds: Surfel Stripping takes benefit of the Stripping Tree to perfatnadaptive reconstruction in
undersampled areas, and generates a hole free surface with wellutéstrilbangles, thanks to the
underlying Delaunay triangulation. On the contrary, the hole filling apgprod&WA splatting is based
on an adaptive per-vertex radius. So, in order to be conservatil@gea radius has to be used in
undersampled areas, which produces a strong bluring effect in tranatites between undersampled
and well-sampled areas.

In terms of quality of PBS rendering, Surfel Stripping should also be coadpt Phong splatting
[BSKO04], as both techniques propose to generate a meso-structure for thegingnof a small set of
surfels. A Phong splat strongly reduces its underlying surfel sevésaging the color information and
by encoding the normal variation wih a quadratic function over the splafelSsiripping offers much
more flexibility as it interpolates (and thus presenadi)he position/orientation/color details included in
the original point cloud, which is desirable in many applications. FurthernSndel Stripping always

77

Model Face | David | Bouddha| Asian Dragon
Points 40881 | 258332| 543654 3609601

Surfel Strips || 1612 | 17861 | 28757 89356
Preprocess 2s 12s 26s 131s
FPS >200 167 121 31

Table 5.1: Preprocessing time and rendering framerate for various models (remglés done with
antialiased 2D texture, cube mapping and 3 light sources, on a 1600xd@8en resolution)

keeps the true geometry of its surfel set, resulting in a better silhouettes\ingsbehavior.

However, splatting methods offers an high quality filtering when sever&lsubelongs to the same
pixel. In particular, this reduces this aliasing effect. Considering thatuhielSStripping is a polygonal

method, the only alternative is to use super-sampling, which may significamihk $he framerate and

cannot offer competitive filtering with EWA splatting.

Finally, both approach can benefit from Phong interpolation and @effeinading BSK05 when rich
and expensive fragment shaders are used.

Performance We achieved two different kinds of performance measurements: firsprépocess-
ing time required by the Stripping Tree and the generation of Surfel Stripkeb$urfel Stripper, and
second, the framerate that is obtained during the rendering by includingererchical culling and
multiresolution rendering.

We performed tests on many different models up to a few millions surfels (ontpri@ models are
allowed with our current implementation) and the frameratgerfall below 31fps on a 1600x1200
resolution, even when simultaneously activating antialiased 2D texturing, mapping and 3 lights
sources (see Tabfeland Figureb.18.

The critical step for the preprocessing is the Delaunay triangulation. Injtiaéythought that the pop-
ular Fortune’s algorithnifor87 would provide better results than the incremental randomized one, but
for small surfel sets, better performance cannot be clearly estahlisfezlchoice of an incremental
triangulation also allows progressive visualization combined with progeedsita transmission.

Figure5.18llustrates the robustness of Surfel Stripping for various PBS, with @iffedensities and
complex features. Our experiments have realizetaally perfect, crack-free and hole-free rendering
for every tested model.

78

(a) Cube mapping (b) Polygonal toon shading (c) 3D texturing

Figure 5.16: Surfel Strips can naturallgirectly benefit from the rich collection of polygonal rendering
techniques, with many hardware-supported ones.

Polygonal Rendering Techniques Modern graphics hardware offers various extensions for specific
rendering tasks. As Surfel Stripping is a pure object-space appralhtinese specific hardware render-
ing techniques are automatically available. FigbrEs(a)shows the reflection produced by using cube
environment mapping when rendering the strips. Fidguid(c)illustrates another hardware-supported
feature offered to PBS with of Surfel Stripping: volumetric textures whiaheha density distribution
unlinked to the PBS one. This is an interesting propery when large flat (plaatscan be represented
geometrically with few surfels) require a higher definition for the appearan

Note also that the framerate does not suffer from these additionatsffeoce they are hardware-
supported and mainly take place in the rasterization unit of the GPU. Ouoagpmlso enables a
large variety of alternative polygonal rendering techniques, sucbmagimoto-realistic ones (see Figure
5.16(b).

A last advantage of Surfel Stripping compared to image-based techngeelse perfectly adapted for

an easy integration of PBS in current rendering engines. Figureshows the direct use of shadow
maps with antialiase®hong Shadingin scenes that combines polygonal models, spline models and
point-based models.

Figure 5.17: Surfel Stripping enables direct use of PBS in standard polygonal remglengines.
Here, two examples of antialiased Phong shading with shadow mapsing&8S, meshes and spline
surfaces.

79

(a) Stanford Dragon with per-surfel color and cube-mapping (b) Woman face (309 737 points)
(437 646 points).

(c) Man body (146 616 points)

(d) Man face (303 382 points)

Figure 5.18: Realtime OpenGL rendering of surfel strips (right) converted from cdi@eint clouds
(left). The artefacts in shoulders are not produced by the surfel strippiegvibre already present in
the input data.

80

(b) Raytracing Surfel Strips

81

5.4 Discussion

The Surfel Stripping is somewhere inbetween point-based renderinguafatte reconstruction tech-
nigues. On one side, it allows to quickly obtain a mesh indexed over a poimnd-blp considering the
strip topology. Even if there is no guarantee on the watertight nature oésudting set of manifolds,
this can represent a good enough results for many applications (e.gtagment industry). On the
otehr side, Surfel Stripping provide a minimum (i.e visually continuous) topdiagsubmitting a point
cloud to the polygonal graphics pipeline, without adding or removing pdtghermore, its intrincsec
hierarchical principle offers at no cost a simple and efficient vieweddpnt adaptive rendering.

To our knowledge, there are at least two previous papers that inclsidglar idea of local (hon water-
tight) triangulations: the visualization system proposed for point setcstay Alexa et al. ABCO*01],
andFan Cloudsintroduced by Linsen and Prautzschi”’D3. Compared to the former, the rendering
quality offered by Surfel Stripping is much higher, as it uses the positimmal and color information
that exists at every single surfel, which is not the case for Alexa’s tgaenwhere th€ ! boundaries
of the patches are apparent, since neighboring patches do not sharean attributes such as normal
information. Compared to the latter, both the rendering speed and theirengeality offered by surfel
stripping is higher: first, triangle strips offer better caching better triaragls fn the hardware graph-
ics pipeline, second, fan clouds do not propose any hierarchicaksteuto generate efficient culling
and third, the local Delaunay triangulation is more robust and respect thettgeometry than a simple
k-neighborhood fan construction, reducing the final number of oppiteys to get hole-free rendering..

Scalability and GPU Friendliness The standard pipeline used in 3D graphics hardware has been
developed to scale efficiently when the screen resolution is increasedkd to the incremental com-
putation involved in triangle rasterization, the framerate that can be achigviedrdware rendering is
only slightly affected when switching from, say, 800x600 to 1600x1206fotiunately, the complex
per-pixel operations involved in image-space splatting techniques, SUENVA splatting, break this
nice property. This means that the user has to systematically find a tradetaten high-resolution
rendering at low framerates and low-resolution rendering at high fiatesr

This is not the case by using our approach, since it is totally based on tiiasdariangle rasterization,
and very high framerates are obtained even for high resolutions (typit2llyfps at 1600x1200 for a
PBS with 400k surfels). Another major feature of our approach, themitee standard pipeline, is that
the rendering time of a single frame is relatively view-independent for engiwmber of surfels. The
only component that can speed-up or slow-down the rendering time ingbef is the culling step that
may discard a significantly different number of Surfel Strips from oaenf to the others.

But as already said above, the main advantage of Surfel Stripping cethpastandard point-based
rendering is its GPU friendliness. The process only requires one sthretedering pass, which frees
graphics hardware resources to include additional visual effectsibg popular multi-pass rendering
effects, such ashadow mapsnotion blur, depth of fieldetc. Actually, this was our initial goal when we
developed our approach: be able to smoothly merge the rendering of RB&émt high performance
3D engines, such as the one developed for video games, with as little speodessing as possible.
Finally, the Surfel Stripping is somehow for PBS what marching cube siniplicits and blobs, what
recursive sampling is for subdivision surfaces and what parametatigieis for NURBS: dast tessel-
lator for rendering.

Limitations Essentially, the Surfel Stripping fails in two situations:

82

e very non-uniform sampling of the surface: in this case, the surfel gppill not be able to fill
too large holes,

e very dynamic surfaces, such as fluid simulations: in this case, the veyyeine updates of the
strips can lead to a complete regeneration of3befels Strippingstructure.

In our opinion, the first case is a sampling problem, and belong to geometpeggessing, even with
conventional splatting. The second limitation is still the big advantage of usirt-lpased rendering
(see Keiser et alHAG*085)]), even if ther per-surfel radius (for splatting) or the continuousaximaion
(for ray tracing AKP*05]) update belongs to some local neighborhood analysis and/or cachinguee
and fast hole-free visualization.

Summary In this chapter, we have presented both a fast stripping method for PagstedBSurfaces
and a rendering system tuned for hardware rendering at interadivefates. Our system provides an
additional object-space layer between point-based surface and palygodering, represented as small
triangular strips, th&urfel Stripsorganized in an efficient hierarchical structure. The main advantage
of this system is its ability to be locally generated and updated, the naturarysden of the surfel
properties such as position, normal and color, and the direct reusaedmtional polygonal rendering
methods.

We have shown that, in various cases, Surfel Stripping representficéaneé alternative to existing high
quality rendering of PBS that have been developed in recent yeacs, isineither requires a specific
multi-pass rendering process, nor some expensive combination of frexgement shaders. Basically,
our combination of hierarchical culling, multiresolution rendering and staigeld rasterization provides,
at high screen resolution, a significant speed-up of the renderingefede, compared to current state-
of-the-art high quality point rendering techniques.

Surfel Stripping can also be seen as an alternative to complete point-tosudabe reconstruction
offering a fast solution to import colored PBS into standard 3D applications.

The Stripping Tree has been developed to quickly space-partition a RB&8ffans an efficient access
to neighboring cells. At rendering time, it provides an efficient hieraathiwultiresolution rendering,
particularly interesting for models made of more than one million surfels. Suripb®g is currently
not the best solution for highly dynamic surfaces, such as fluid simulatigrg bonvincing solution in
all other cases.

Perspectives In spite of its various optimizations and trade-offs, the Surfel Stripping irgrienited

to in-core models and the size of models coming straight from the acquisitiolingigan exceed its
capabilities. Therefore, in order to provide an efficient visualizatiohuzfe point-based surfaces, we
explain in the following chapter how to perform an efficient out-of-cqypesrance preserving conver-
sion of such large sampled models, outputtiagmal-mapped surfel strips

83

Chapter 6

Appearance Preserving Rendering of
Large Point-Based Surfaces

Very dense point-based surfaces, composed of hundreds millionspfess are more and more frequent
and tend to become the typical output of modern geometry acquisition pipdliR€sQ0]. Offering an
interactive visualization of such objects is fundamental in various situatioclsding preview at high
screen resolution, merging in polygonal 3D engines and 3D databasesihg. Indeed, many of these
applications share a common context: the rendering has to be performeal-timre and to remain
as visually plausible as possible. Considering the rich surface descrtiwided by large models,
appearance-preserving methodee particularly well adapted: these techniques perform a conversion
from high resolution geometries to lower resolutions ones, equipped withraggitution normal and
color maps. They often provide a very similar rendering to the original modige their low poly-
gon count ensures high framerates at high screen resolution. Umditety, such methods usually rely
either on a global parameterization of the object or a full resolution mesikegeptation, which are
both incompatible with direct visualization of large sampled surfaces. In tlaipteh we address the
lack of efficient visualization techniques for large sampled surfaces wifir@liminary full-resolution
reconstruction.

We propose a fast processing pipeline enabling real-time appearesgsrpng polygonal rendering
of large point-based surfaces. Our goal is to reduce the time-slot eelgb@tween a point set made
of hundred of millions samples and a high resolution visualization taking bexfafibdern graphics
hardware, tuned for normal mapping of polygons. Our approach eaivied in two steps:

1. We starts with a combination of two elements already presented in this thesisit-itieoore sim-
plification in streaming presented in Sectidi3 and the Surfel Stripping discussed in Chagger
for providing a polygonal rendering of a lower resolution version ofléinge object.

2. Therefore, the resulting coarse geometric representation is entighapplying a set of maps
which capture the high frequency features of the original data set. dsetas an example the
normal component of samples for these maps, since normal maps prdiéiEndf an accurate
local illumination. We call the resulting rendering primitivéN@rmal Surfel Strip Nevertheless
our approach supports straightforwardly other surface attributel,asicolor.

The main contribution takes place in the second step, during which we effffagieconstruct the normal
maps from a stream of sampled normals. Sampling issues of the maps argsaddrging an efficient
diffusion algorithm in two dimensions. As a result, we obtain a set of enri€uefel Strips, recovering
the essential part of the original feature wealth present in the large @ata.out-of-core process is

84

able to directly handle large unorganized point-based surfaces wittetitrth-consuming full resolu-
tion meshing or parameterization steps, required by current state-afith&h resolution visualization
methods. Contrary to pure point-based methods, our approach takebdultjit from the hardware
graphics pipeline, particularly efficient with normal mapping. One of the madwatages is to express
most of the fine features present in the original large point clouds asé¢extuthe huge video memory
usually provided by graphics devices, using only a lazy local paramatieriz Our technique has been
tested on various very detailed scanned objects and statues, for whicter@active visualization has
been obtained with a global preprocessing time that represents only e cdupinutes.

6.1 Context: Large Object Rendering

Visualization systems designed for large 3D objects (tens or hundreds ofnwmilebmples) can be di-
vided in two categories: mesh-based and point-based systems. We eafeader toTol99, Lin03] for
an introduction to out-of-core methods and visualization.

Mesh-based system These systems require two specific preprocesses: first, the pointtesud be
reconstructed at full resolution, which can require upon days of ctatipus, and second, they have
to be converted in an out-of-core format allowing fast disk-to-GPU tgsdd-or instance, the Adaptive
Tetra-Puzzles of Cignoni et alC[zG"04] propose to construct a diamond-based hierarchy over a large
mesh, storing on disk set of geometric attributes directly in the GPU format, edokirig them on
demand during the interactive visualization which can even be real-time (8PWikh models like the
David (56M triangles). Since we rather seek for a system able to handtglgithe point-based surfaces,
we refer the reader to this paper for additional references.

Itis interesting to note that even if working in a mesh context, several sysadmbenefit from the point
primitive for saving rendering workload. For instance, since many neigidp samples of a gigantic
object are often rendered over a single pixel, Gobetti e@(5] have developed thigar-Voxelsystem,

a hybrid mesh-point rendering system, where a cluster of polygonsecagnblered as a single point,
with a specific shader approximating the appearance of the underlyifags@area. Raytracing has also
been used for interactive exploration, but it often requires a clustmmputers\WDS04 or a very long
preprocess for out-of-core level-of-details constructigh§106]. Whatever the case, the framerate is
not competitive with rasterization, and the main benefit of raytracing, sastativanced visual effects
produced by secondary rays, restricts inevitably both frameratescasehsresolution.

Point-based system QSplat RLOQ] was the very first system designed for rendering large data set
coming from 3D scanners. The algorithm starts by clustering the inputf Setnaples in a bounding
sphere hierarchy, which is a binary tree carrying a representatifel,sabounding sphere and a visi-
bility cone on each of its nodes. The nodes attributes are quantized in a nolltires fashion over a

32 bits word (48 bits with color), and stored on-disk in a cache coherdept.oThen, at rendering time,
sub-parts of the tree are loaded according to the point-of-view andhduaimg OpenGL point primi-
tives. According to the computer capabilities, the tree is more or less refineactive framerates,
offering a surfel for each single pixel after few seconds. Note thaidba of compressed point format
for rendering has then inspired several systems, using o&W&D2, DD04], hexagonal KSWO05 or
wavelet [GM04] quantization.

The main advantage of the QSplat algorithm is its scalability, since even art objeposed of several
hundreds of millions nodes can be visualized at interactive framerate ostedamocomputer. However,

85

its main drawback is its highly dynamic nature, not easily amenable to a good @#drs. In fact,
apart of the final point drawing, QSplat is intrinsically a software/CPUlegimg system. As a result,
even on a powerful computer, the rendering quality remains poor whemgthe viewpoint, and the
user has to stop its interaction for obtaining an high resolution renderingsafteral refinements.

To overcome a part of this problem, Dachsbacher eD®I903 have introduced the Sequential Point
Tree, which performs most of the hierarchical culling on the GPU. Unfatiely, since all the infor-
mation is kept at the original format, the size of the object is restricted to m+vadels. Therefore,
Wimmer and ScheiblaueWyS0§ have proposed an out-of-core implementation, using a nested octree
for managing an out-of-core forest of enhanced Sequential PaesTable to perform rendering with-
out the normal information.

These GPU rendering systems clearly outperform the original QSpldérieg, but inherits its main
weakness: their pure tree-based multi-resolution rendering does nes #fle GPU to run in an optimal
context, leading to either poor framerates or visible temporal artifacts.

Appearance-Preserving methods In the case of objects exhibiting an important surface coherency
such as human bodies, statues, cars, and so on (a tree with a low samiglibging a perfect counter
example), it is possible to perform a local analysis for converting the sang@emetry into a more
GPU-friendly format: arappearance-preservingepresentation. Contrary to previous rendering tech-
niques, appearance-preserving meth@@®y198 CMRS9§ do not try to render the whole original
geometry. Instead, the object is dramatically simplified, and the features atgdbst in this process
are reintroduced in a set of high resolution normal maps, which will offeerg similar shading to
the original object. This principle can be applied directly on a single simplifigelctbor combined
with a multi-resolution structure, such as tmgressive Meshd$lop96 SSGHO0], for enhancing the
different level-of-details.

Nowadays, the main advantage of appearance-preserving methods@Rblesupport: considering the
fragment shader leveT[CS03, the only thing to do to use normal maps is to fetch normal fragment from
on-board texture memory and to use it for shading the fragment insteaslioféinpolated Gouraud value
or Phong vector. Concerning adaptivity, normal map rendering difeysadvantages: 2D normal maps
can be compressed more efficiently than 3D geometries, using for instamchkffdrential encoding
proposed by Munkberg et alM[AMSO06] or their fixed rate compression schend(@SAMO7], and
multiresolution filtering can be cast as a simple mip-mapping process. Of cogisg normal mapping
involves meshes and some kind of parameterization, two notions preseet @thédr extreme of the
spectrum when dealing with PBS. In this chapter we fill this gap in a matter of nsifiotescanned
objects composed of several hundred millions samples.

86

High-Res| . Normal Map Normal Mapped
PB Reconstruction Surfel Strips

A
/
Surfel Stripping Sur'fel Appearance-preserving
Strips Visualization

(_) Out-of-Core ~ =----- Streaming

Figure 6.1: Overview of our approach for interactive visualization of large model® Udual expensive
step, thaneshingis only performed on a very reduced point cloud, and is no more the betike Most
of the fine details are expressed through the normal maps, genenai@ger-surfel strip basis witBD
diffusion, a faster process than 3D geometric reconstruction.

6.2 Appearance Preserving Surfel Stripping

6.2.1 Overview

Our algorithm is described on Figuéel and runs out-of-core with the following two-passes sequence:
e pass 1:0ut-of-core simplification and fast meshing
1. we perform an out-of-core simplification of the huge model using vettestering

2. the resulting simplified point based surface is quickly convertedSntfel Stripsorganized
in a Stripping Treefollowing the fast lower dimensional meshing of Chagier

e pass 2:Normal field streaming and reconstruction

1. all the points of the original model astreamedhrough the stripping tree and distributed
to their corresponding leaves, where the point normal is projected ontadchtgxture asso-
ciated to each Surfel Strip (see Sect®@.3. This streaming process is the key step of our
technique, as its output sensitivity allows us to handle large models with limited memory.
At the end of this step, each leaf of the Stripping Tree contains a low resolbstidel Strips
and a high resolutioaparsenormal map

2. the holes present in sparse normal maps are filled dijfision algorithm, reconstructing
a continuous normal fields which interpolates the original normals of the faig¢-based
surface (see Sectidh?2.4.

The resulting rendering primitive, present on each leaf, is cli@anal Surfel Strigi.e a coarse piece
of mesh plus a high resolution continuous normal map) and is rendered in ardesitéon to usual
surfel strips, with an additional fragment shader for exploiting the nonmaed.

6.2.2 Out-of-Core Simplification and fast meshing

Out-of-core simplification has already been discussed in SedtRr\fter many experiments, we have
found that two algorithms can be used in the present context:

e when the input topology is simple and the sampling density uniform enouglid-®ased clus-
tering, similar to the work of BorrelRB93 and Lindstrom Lin0Q], offers a convincing enough

87

result. This is the fastest simplification and it is known that it results sometimesadaragpality.
However, this not a problem in our case, since the resulting sampling issedt“as-is” but is
then enriched with normal maps, which will be responsible for most of thedp@earance

e when the input PBS has a more complex topology and density distribution or améigher
quality is mandatory, an adaptive sampling performs better, although in arlémge and we
reuse the simplification algorithm presented in Secddd (VS-Tree forest built using spatial
finalization).

Actually, a precise down-sampling is not mandatory in our particular caseara not looking for the
n bestpoints to represent a given large model, we just need a point cloud repteasonably the
original shape of the large PBS and which can be quickly tessellated wital Siripping. So, we use
mainly grid-based simplification, for which we have determined that a gridutso of 21090 with

n the total number of points, offers good results in practice and is extrenst|yafit processes up to 5
millions points per second on our workstation.

Note that in all the cases, we maintain a counter of the original point samplelsaya intersected a
given cell: this information will then be used for choosing a normal map résalin the second pass.

Finally, the resulting simplified point-based surface is augmented with SurfpsSdistributed on the
leaves of a Stripping Tree (see Fig@).

@) (b) ()

Figure 6.2: First pass of our appearance preserving surfel stripping procéssThe simplified PBS
obtained after the out-of-core simplification. (b) The set of local meshiekly generated thanks to the
Stripping Tree patrtitioning (in green). Each colored patch correspdnds surfel strip, locally gener-
ated in 2D. (c) The coarse polygonal representation obtained, madealftriangle strips interpolating
the input points.

6.2.3 Streaming Normals
At this point, the Stripping Tree of the down-sampled point-based surfasaikble, and can be visu-
alized as a coarse representation of the original model (see FBdlrén order to recover the original

appearance of the large modeha@mal mapwill be associated to each Surfel Strip. These normal maps
are generated duringreormal streamingprocess, where all points of the initial large object are streamed

88

through the Stripping Tree, performing an hierarchical classification ickiyufind the set of Surfels
Strips they belong to. This second streaming of the large model is purely d@ading with one single
point sample at the same time in the main memory.

One key idea in this part is that we generate latigjoint normal maps (one for each Surfel Strip),
and ensure gisual continuity by enlarging their support: similarly to thelate-and-decimatprocess
used in the surfel stripping, we consider, for each leaf partitionnfated normal field, made of all
the normals belonging to the considered leaf, plus some normals belonginighboréng clusters. In
practice, we actually use ongggressivenflations, by just scaling leaf bounding boxes until embracing
their whole associated Surfel Strip, including the overlaps with neighimssequently, a single normal
vector may belong to more than one Surfel Strip. Latter, at rendering timeZ-théfer tests will
selects one instance of this vector in overlapping zones for shading tttessjgonding pixel. As can be
observed in Sectiof.3, the thousand pixels coming from these overlapping areas do not &waifier
visual artifacts. Algorithn# summarizes the normal streaming:

Algorithm 4 Normal Streaming

Require: T the stripping tree at low resolution
Require: {p,n} a sample from the input stream
Leaf nodec, «— depthFirstTraversal (p, T)
Projectn on ¢, normal map
for each Leaf nodeip in the e-neighborhood o€, do
if pninflatedBBoxc)) then
Projectn onc, normal map
end if
end for

Normal maps For each intersected leaf, the local parameterization of the point relatite $orfel
Strip is computed by projecting the point on the average plane used famgrehe strip (see Sec-
tion 5.2.1). Actually, we parameterize the projected point according to a boundiad gfithe inflated
partition and aligned to the two eigen vectors associated to the two highestveiges of the covari-
ance matrix, previously computed and stored on leaves during Surfgbitgiprhis parameterization is
used to fill the relative pixel value of the associated normal map with the naentir of the streamed
surfel. We use floating point textures, so if more than one normal is prdject® the same pixel, we
just add the normal vector value to the existing pixel, and normalize all the honagss after having
processed all the points of the original model. This also prevents fronirgliagifacts that may occur.
We refer the reader to the frequency analysis of Han eH8RGOT for a discussion on better choices
than average normals.

The resolution of each normal map is proportionattthe counter mentioned earlier and stored on each
leaf, but is also rescaled according to the user-specified texture meodggth . We define the average
side resolutiors for a texture map as:
s— /0T
n
with n the total number of samples. Similarly, its aspect rafies equivalent to the bounding rectangle
of its Surfel Strip, leading to the final resolutianx h:

S
w=S-a andh= —
a

Using a flat parameterization of a non-flat Surfel Strip may generate sistoetidns, especially in areas
of high curvature that would result in a global loss of details. Neverthglagpractice, the constraints

89

imposed during the construction of the stripping tree lead to close to plarfat Strips, which limit dis-
tortion and no artifacts were visible in our experiments. Since the normal mageaerated on a quad
basis, they are easily packed into few large textures, eventually coragrp48MS06, MOSAMO7]
and stored in the graphics card memory.

(a) Surfel strips (b) Sparse normal map

Figure 6.3: After the normal streaming step, a sparse normal map is attached to eafdl Strip.
(a) Coarse topology computed from the sub-sampled point cloud. (loy @sualization of the spare
normal map: pixels color is set with the XYZ coordinates of the normalsckBlaints corresponds to
pixels of the normal map where no surfel as been projected.

6.2.4 Normal Map Reconstruction

After the normal streaming process, each surfel strip is enriched witaraespormal map since several
pixels may not have been filled by projected normals (as shown in F&8reFor using this map as a
texture for our coarse surfel strips, holes need to be filled (black gix€lgure6.3). Many approaches
have been developed over the years to fill holes in an image, which is adyasiation for image
repairing. Exploration-based approaches suclB&¢G03 directly compute an illumination value for a
pixel given by exploring its neighborhood. On the other hand, iterativE-Based approaches such as
[PGBO03, spread existing color in the image using PDEs such as Poisson equatiiffysion equation.
We use the PDE-based diffusion technique presenteX®9§, for its guarantees of continuity and
smoothness. The implementation is based on a multigrid resolution scheme tisat¥iestthe problem
at a coarser resolution, and then uses this coarse result to initialize thighalgat finer resolution:

Solve (h,Ax, = b)
1. Pre-smoothing stepsx="b
2. Downsamplex, 1 = Dx,
3. Solve (h-1,A%,—1 =Db)
4. Upsamplex, =UXy_1
5. Post-smoothing step8x= b

whereAx= b corresponds to the matrix formulation of discrete diffusion equation with fiiffeerences,
andh corresponds to the quadtree level associated with the resolution of ttespeal image (see also
the Push-Pull algorithm inGGSC9§).

The approach offG0J corresponds to a multigrid iteration with no pre-smoothing step, a single post-
smoothing step and a specific down-sampling algorithm that only takes intargtcexisting samples.

90

We inspire from PGOJ by skipping the pre-smoothing, and only using existing samples for down-
sampling, but run the post-smoothing iterations until the convergence aniterimet. Indeed, with-
out these extra iterations, some blocky interpolations are present in theetesdwobtained, especially
around holes.

The multigrid resolution algorithm proved to be very efficient in practice {(&d#e6.5), only a few
iterations (e.g. 5) were needed for convergence with®Xror bounds in most cases. Note that the
same approach can be used to create maps for other scalar or vecton@éd values, like colors or
displacement vectors.

Figure 6.4 shows the resulting set of high resolution normal maps attached to the coafslestrips.
Our reconstruction-by-diffusion process provides normal maps taess the essential part of the
original large model appearance. These maps are stored as texturesGRthmemory, and benefit
from theautomatic filtering provided by the hardware mip-mapping. This property is quite interesting,
since it can be interpreted as both an anti-aliasing process and an rasiyegorted multiresolution
rendering, thanks to the different levels of the mip-mapping. Again, thentestudies in the frequency
domain HSRGO7 open a higher fidelity filtering to normal maps.

91

(b)

Figure 6.4: Diffused normal map rendering. (a) The Omphalos model (11 664468s). (b) Close-
up. Left: coarse surfel strips quickly generated after the out-of-coréndion of the large point
cloud (random per surfel strip color). Right: real-time rendering, with-p&el illumination using the
reconstructed normal maps. Note the nice automatic filtering of the mggelasance, thanks to the
intrinsic hardware mipmapping of the normal maps.

92

6.3 Results

We have implemented our system under Linux on an Intel PIV 3.2 GHz, 1GBI,R&0GB UDMA

HD, NVidia Quadro FX 4400. We use C++ and the OpenGL Shading Lagey(far normal mapping).

We consider input binary files where points are encoded as an umzeddist of chunks of 6 floats (3

for the position and 3 for the normal). Tales summarizes the preprocessing times of our system.
Figures6.6, 6.10 and 6.12 shows the real-time rendering obtained on various large objects with our
approach.

Models Omphalos| Column Dancers | St Matthew Atlas
Num. of points 11 664 466| 22 877 845| 31 620 449| 186 810 938 250 000 000

| TIMINGS H | | | | |
Simplification 5s 10s 14s 61s 81s
Surfel stripping 2s 4s 5s 7s 7s
Normal streaming 45s 151s 213s 667 s 890 s
Normal reconstruction 35s 35s 34s 152 s 170s
Total 100 s 201s 274s 887s 1148 s

| RENDERING | \ \ \ \
Num. of Surfel Strips 1602 1721 2013 2457 2516
Num. of triangles 45 504 51012 66780 79030 79967
Textures memory (MB) 68 71 94 185 201
Frames per second > 200 > 200 198 165 164

Figure 6.5: Preprocessing time and rendering framerate for various large moddie t@tal timing
represents all the steps needed for the preprocessing, starting fromaganized point cloud on disk
up to a ready-to-render data structure in memory. The framerates mengor 1600x1200 screen
resolution.

It appears that the normal map initialization is the main bottleneck. Obviouslytrareersal and lo-
cal projections involved in this out-of-core streaming remain costly sinceaheyerformed for each
sample of the large model. Nevertheless, all the different stages involeed approach are highly par-
allelizable (each point sample is treated separately), and can take beafiteicent multi-core CPUs
(an improvement factor of.& can reasonably be considered for dual-core CPUs). Note also¢hatev
a pointer-based implementation of the Stripping Tree, which could be ertha@ce resolution criteria
for the normal maps works quiet well in most of the cases. Actually, eveamwathigh density variation
occurs inside a leaf of the tree, aliasing is prevented in the normal map ttwatilesiterative diffusion
step (see Figuré.7). Note that the memory usage for textures is measured without compre$sien.
hard-drive latency strongly influences the performancesoofal streamingandsimplificationpasses
(we measure performances with the grid-based simplification, we referctm&d.6 for the adaptive
case) . Better performances can be reached by using high-spekdrivas (U-SCSI) and a dedicated
workstation, where useless processes are stopped (usually betvaed 20 on our Linux system).

The excellent framerates given in Talfié are reached thanks to the highly optimized polygonal hard-
ware graphics pipeline, particularly adapted to display low resolution poblgoodels with high defi-
nition textures at high screen resolution.

93

(a) Column (22 877 845 points)

(b) Dancers (31 620 449 points)

Figure 6.6: Visual quality for various large models. Antialiased rendering with 3 colortligburces

on a 1600x1200 screen resolutioheft: the sub-sampled point cloud decimated at the first out-of-
core reading passMiddle: the coarse Surfel Strip collectioRight: the interactive rendering of this
collection, enhanced with normal map expressing the fine details, gededaring the second reading
pass of the point cloud (models courtesy EDF).

94

6.4 Discussion

Comparison The critical point in our work was to reduce as much as possible the poegs time
needed for obtaining a convincing visualization of large point clouds. GoeatoQSplat[RLOQ], our
preprocessing is faster (one order of magnitude in the worst experincast) and it does not require
a previous surface reconstruction (huge additional processing tin@hpé&red to thd.ayered Point
Clouds[GMO04], although we did not implement it, our preprocessing seems to be about textéister,
according to the paper timings. Of course, these multiresolution methodsresercative, and do not
perform a low pass filtering on the geometry such as ours, but from thalization point of view, we
keep the essential appearance thanks to high resolution normal mapstrected in 2D (see Figure
6.10.

Figure 6.7: Upper part of the St Matthew model with our method rendered at 165 wRISout (left)
and with (right) the normal maps. The maps are recreadedctly from the point cloud, providing
a convincing appearance, while using less than 80k triangles (left imade3t of the “appearance”
information carried by the original point cloud is directly stored through thesrmal textures on the
GPU memory (185 MB) and used for the per-pixel lighting.

Note also that our system providespalygonal rendering, highly optimized on today’s GPU. This
allows us to reach high framerates at high resolution. Clearly, our apipqmavides results that also
confirm [PGKO0Z: performing decimation on the point cloud and then applying reconstructidinads
is definitely more efficient than meshing and optimizing the full resolution pointd;lat least for our
visualization purpose.

Finally, the diffusion process of normal maps can be seen as a kind fatsweconstruction, where
not the geometry, but the normal field is reconstructed from points, in therldimension (the average
plane of the leaf node). Figum®8 shows our normal mapping reconstructed directly from original
samples: the same order of visual quality is reached when comparing tagriaethods where a full
resolution surface reconstruction and parameterization were necbsfare performing the appearance
preserving simplification.

95

LB T . :

Figure 6.8: Left: Surfel Strips renderingRight: Normal Surfel Strips rendering. High frequency
details of large scans models are preserved, using detailed normatdexnstead of huge polygons
sets. Globally, our approach provides similar results to usual appeggireserving methods that
require full resolution tessellation, parameterization and simplification, whided®al only with the
point samples.

Limitations We have made the choice to use a very simple a grid simplification scheme in most
cases at the beginning of our algorithm. This choice has been made aftarsvexperiments with

real data sets, which show essentially that most of the time, large scarsnseeehough to support, in

the particular case of appearance-preserving conversiomgthitar decimation, allowing a faster pre-
process. Nevertheless, complex topologies and highly varying denditipdi®ns require to switch to

an adaptive simplification, such as the one we proposed in Se&tpmhich usually means a much
longer pre-process (upon twice longer in our experiments).

The reader must also note that our approach is still a “simplification” oniehveixhibits drawbacks and
advantages. On one hand, even if most of the fine visual details aréhkeyis to the high resolution
normal maps (see Figufe9), a slight shrink effect can appear in silhouettes because of theeonash
definition. This is the price for reducing the time preprocessing and imprakiegendering framerate
compared to “multiresolution” approaches such as QSplat or SequentiillPees. On the other hand,
this low-pass filtering has frequently removed tlegistration noisepresent in our examples. Figure
6.9 shows the rendering of the St Matthew model with the publicly available QSpfavae. We
can observe that our method provides a globally equivalent appeanaitc a much higher framerate,
even under a strong close-up. Note that we have compared with QSptatdeeit is the only publicly
available software for large dataset.

Note also that QSplat is not tuned for recent graphics hardware, velxiglains the poor framerate
obtained. One of our future experiments will be to compare our results witthdioation of the
DuoDecim compression scheme of Krueger et EEWO05 and the GPU splatting of Botsch et al.
[BSKO05, which should be the state-of-the-art large point-based surfaderieg system.

Finally, our algorithm works for objects which exhibit an important surfaa®erency, for which a single
normal map can be shared by numerous neighboring sample for captwgingrthal field they defined.
For instance, our approach is not adapted for complex objects poonlylsad, like trees, for which our
method would require several hundreds of samples by leaf for runoimgatly.

96

Figure 6.9: Eye of the St Matthew. Visual quality comparison between our appradat®sa-PS (left)
and the QSplat rendering (right), obtained at 0.3 FPS. Even under agttose-up, our method keeps
the fine visual details as well as the QSplat system, but with a much highesrage.

Figure 6.10: Real-time visualization of the St Matthew model (186 810 938 poihts}: the sub-
sampled modelMiddle left: the coarse polygonal representation generated in the leaves of the Strip-
ping Tree (in green)Middle right: final Normal Surfel Stripping under one white light sourggght:
under 3 colored light sources.

97

Applications Our method has been intensively used on scanned archaeologicaittsyamshown all
along this chapter. Their high resolution and need for quick interactiveliation represent a typical
application of our system (see FiguBell). However, although originally designed for appearance
preserving visualization of large point-based surfaces, we have effmriments alternative uses:

e Appearance preserving visualization of large meshesour algorithm performs very well by
considering the set of vertices of a large mesh as the input point cloute lcase of a polygon
soup, triangles can be reindexed over the simplified point cloud for geéngrthe Surfel Strips
connectivity in place of the Delaunay triangulation. Consequently, we oataist way to convert
large meshes to coarse ones with normal maps.

e Color preserving visualization: when a per-sample color is provided, we reconstruct color maps
on top of normal maps, and this represent a convenient way to obtainekmidtion textured
models from large scans.

e Conversion for interactive applications: obviously, Normal Surfel Strips succeed as well as
original Surfel Strips in merging acquired objects in interactive applicatmuspolygonal ren-
dering engines. In particular, by specifying a fixed amount of authdrzemory, our conversion
process is output sensitive, and can fulfill the constrains of a partiapfarcation, ranging from
preview on mobile devices toward high-quality offline rendering on PC alsis@ur system can
also offer a fast transition to common mesh-based software, by keepintpgusonnectivity of
Surfel Strips as a mesh and exporting normal textures. Finally, our methddllyerun in stream-
ing, including the progressive output of normal maps, using final spatiedizfor establishing as
soon as possible when a given normal map can be reconstructed amdesiren the output (i.e.,
no more sample coming). This solution entitles a low memory footprint, is highly plzralée
and can be seen as tweak of ammpling-reconstructioprinciple presented in Chaptér

Figure 6.11: Application to archaeological visualization: interactive inspection of the Na8ahinx,
originally captured with 15M point samples (model courtesy Ausonius).

98

Summary We have proposed an efficient conversion process to obtain an iinterappearance-
preserving visualization of large 3D objects represented by point clahitsh exhibit a surface co-
herency. The main advantages of our technique are:

e Direct processing of unorganized point clouds, avoiding any kindidase reconstruction of the
large model.

e No complex data structure or complex processing is needed on the largé mode

e The idea of inflated support for normal map reconstruction allows consisterlapping and
avoids global parameterization of the model, enabling appearancevpngsaormal map conver-
sion of large point-based surfaces and (non-manifold) meshes.

e The pre-process is very fast as it basically only requires two outwd-passes, which makes it
usable in various applications where quick preview is mandatory

e The final in-core model is entirely stored on the GPU memory, large enougbday graphics
devices to handle efficiently appearance attributes of hundred millionsvgdles, through, for
instance, normal textures.

e Since all details are stored as normal maps, the rendering takes automatcefij bf the hard-
ware mip-mapping for filtering details at a given screen resolution.

e The output sensitive nature of our approach, as well as its polygppabach, allows to tailor
precisely the size of the final appearance-preserving representatia allows to rule correctly
the inclusion of scanned objects in interactive applications.

The whole pipeline is easy to implement, and has provided very convincingseghen applied on
a large variety of acquired point-based surfaces. We hope that iteonie a good complement to
existing high quality but slower visualization methods of large models.

Figure 6.12: Our largest data set, the Atlas, featuring half a billion samples, demonstifa¢gescala-
bility of our appearance preserving method for large objects.

99

Perspectives As mentioned in the limitations, our approach still performs a simplification on the orig
inal data. In fact, normal maps offer convincing shading and are adlépt®odern GPUs, but the ul-
timate rendering solution for large objects would be to perform an adagdiometry synthesgior to
rendering, performed on the fly according to the various renderirappeters (geometry, point-fo-view,
hardware capabilities, semantic, etc...). This would be possible with our systeaplacing normal
maps by displacement maps, for truly recovering the geometry, and obtairénge silhouettes and
shadows. Our reconstruction by diffusion supports such attributesinigyly storing the vectors from
the projected to the original points in the textures. Unfortunately, one foadeal problem remains: if
we want to keep a coarse polygonal representation, we have tompeaf@al-time mesh refinement
We address this problem and its applications from a more general poiigwofitv the last part of the
this thesis.

100

101

Part Il

Toward Real-time Geometry Synthesis

102

103

After having developed new efficient solutions for processing, editingemdkring large sampled
models, it appeared that the next step in the understanding and useafiaically acquired 3D shapes
wasGeometry Synthesis Looking back to our appearance preserving conversion, the didraof a
displacement map is straightforward. But its use is not. In fact, the main clyalés related taeal-
time mesh refinementand is more general than the precise topic of this thesis. Thus, we haigede
to address directly this general problem, and our results are stated in tinisphrt.

104

105

Chapter 7

Generic Mesh Refinement

(a) CPU (b) GPU

Figure 7.1: By using only a dynamic coarse mesh (1246 triangles) animated on the(leR),) our
GPU kernel generates an adaptive frame-by-frame tessellation and déspknt (right), and provides
an extremely detailed rendering (1.1M triangles at 263 FPS).

For the wide range of applications discussed in this thesis and beyond, Byatiesis techniques
leverage the amount of information required for creating realistic animatéar@sc In particular, for
real-time rendering, the application has just to provide a set of polyg@swidimg the geometry of a
scene, and the graphics hardware will automatically produce a colygi@atf pixels through the usual
rasterization pipeline. Howeveflat descriptions of surface, such as surfel lists or polygons meshes,
quickly exceed the capabilities of the rendering hardware, since eagle $iame requires to browse
and display the whole list. In the two previous chapters, we have showrahoulti-resolution struc-
ture can be generated and enriched with high-resolution textures, toydeffitaently large sampled
surfaces. Now, going further in the direction of high-quality interactivepe reproduction, we believe
that recovering not only the appearance, but also the geometry offfardels at rendering time is a
key problem. The is even a more general problem than the precise cofthid thesis: the geometry

106

of a model may not be static, and the bandwidth bottleneck between the appliaatiahe graphics
hardware limits the size of geometric description that can be transmitted folimeatendering, and
thus also limits the realism of the rendered pictures.

On-the-fly geometry synthesis addresses this issue by allowing an addigéeslzof abstraction in the
graphics pipeline. For interactive applications, geometry synthesis ilyusaat as anesh refinement
process Rather than enumerating the huge number of polygons that would bee@tpiget an accurate
discrete approximation of a complex shape, mesh refinement techniqudbesplirface representation
into acoarse polygonal mesh combined with a continuous displacement fundiieen, at rendering
time, mesh refinement basically performs two successive operations ooatse enesh: tessellation
step followed by alisplacemenbne.

During the first step, a refined mesh topology is generated at a targeodfedetail, simply by splitting
each coarse polygon into a set of finer ones, without any actual ggommetdification. Then, during
the second step, each newly inserted vertex is translated to its final posititained by sampling
the continuous displacement function. Many existing computer graphicsitees can be expressed
under this paradigm, such as spline-based or wavelet-based s@faesantation, subdivision surfaces,
hierarchical height fields, etc. The key feature that makes this proge&swell, is that the continuous
displacement function can usually be defined by providing a smaller amowatafcompared to the
size of the huge refined mesh. Examples of such additional data includeisidn masks for smooth
surface generation, bitmap textures for displaced meshes, or a bunamefical data for procedural
geometry synthesis.

However, performing a full GPU implementation of this two-step process reraginoblem with current
devices. While graphics hardware offers a fleximetex shadestage that allows an efficient implemen-
tation of the displacement step, the lack of geometry creation on GPU makes teenempation of the
tessellation step really tricky. Last generation devices, launched at thef @006, embed geometry
shaderstage Bly06] which has been specifically designed for geometry upscale. Unfdeiynaven

if the geometry shader clearly represents a step in the right direction,strameprovide the ultimate
high-level flexible solution demanded by many applications. One of its main limitatdhat the ge-
ometry shader cannot output (i.e. generate) more than a fixed amouo&tiridgl point numbers (1024
in the original specification), which means that only about 2 or 3 levelsfioferaent can be applied on
each coarse triangle. If deeper refinement is required, multi-pass gg@hading has to be employed,
which obviously reduces overall performances.

The lack of flexible geometry synthesis on GPU, has led some reseatottas the mesh refinement
problem as a general purpose computation problem, using a GP-GPaaapsPG0§: by converting
the coarse mesh as a standard rectangular image, the tessellation stepstsesonpde image upscaling
operator, and the displacement step can be implementedfiragmeent shadestage. However, such an
approach induces several strong restrictions. First, it requirestitnoae| preprocessing step to convert
the mesh into an adapted image format. Second, it involves intensive use opasgsdtrendering and
fragment shading, while the vertex shading stage is greatly under-expblaget only has to process a
few full-screen quads. Third, the whole process has potentially to berted for each frame in the case
of dynamic meshes. Fourth, additional hardware pipelines (e.g. physiatation hardware) are not
directly compatible with such an approach, since no object space geometajlysproduced. And last,
multiresolution and adaptivity cannot be easily handled by such a process.

In this chapter, we propose an alternative approach callieghtive refinement kernfARK)), based on
three key features. First, a flexible control of the adaptive level-tdildis obtained by a simple and
genericdepth-tagging processSecond, a set addaptive refinement patterf&RP) is employed to
allow crack-free adaptive multiresolution refinement. And third, a spedifgiespass vertex program,

107

calledadaptive refinement shadéhRS), performs both tessellation and displacement steps involved in
mesh refinement. By combining all three ingredients, we obtain a flexible|Kerreedaptive on-the-fly
mesh refinement on GPU.

This kernel does not involve any preprocessing of input coarseeseah it directly processes the basic
mesh representation used in low-level APIs, such as polygon soupsexeiah triangle sets, without
requiring additional high-level data structures (e.g. half-edge reptason). With our kernel, the final
mesh is never generated on the CPU, never transmitted on the graphiesesien never explicitly
stored on the GPU. All the refinement is performed by our single-passrigarertex program, which
totally frees the fragment shaders for including additional visual enrialend his kernel offers a flexi-
ble way to perform geometry synthesis based on displacement maps ekfranteacquired geometry.
It is also particularly well-suited for dynamic meshes which are deformed foanae-to-frame basis
(animation of characters, physics simulation, etc.) and for proceduspkeshthat usually include high
frequency features and require fine tessellation at rendering time.

7.1 Context: Real-time Mesh Refinement

Existing mesh refinement methods can basically be divided in two main categeiilesr direct or
indirect refinement.

Direct Refinement This first category includes pure geometry synthesis approachese Wieein-
put coarse mesh is directly refined in object-space, without addition&kcsion steps. Multi-scale
rendering of numerical models of terrains are maybe the most classicapesof on-the-fly direct re-
finement AHOY5], but the involved algorithms are usually limited to height-field configuratiomstAer
well-studied topic includes all the techniques that target an efficient GPU ingpi@ation of subdivision
surfacesZS04Q, as pioneered by Pulliand Seg$9§. They introduced a memory-efficient depth-first
algorithm for refining an arbitrary triangle mesh toward the subdivisiofasarit defines. They ugee-
computed tables of basis functicius a prefixed refinement depth, one for each possible configuration
of the one-ring neighborhood. At rendering time, these tables are aseddh coarse triangle according
to its one-ring neighborhood. A uniform triangle refinement at a prefidegath is then performed, and
the generated vertices are projected on the limit surface. Such a refinisrspecific to each subdivi-
sion scheme, and can benefit from low level implementations, using eithé Bidtructions of modern
CPUsBS07 or programmable GPUB[S03. Unfortunately, theselirect approaches are limited by
the the set of precomputed tables, restricted in term of topology and dbesldress the problem of
tessellation (pre-tessellated coarse meshes are usually stored ongraphiory). Specific hardware
has also been proposed in order to reduce the bandwidth between @RBPENBKS00 dRBABOZ.

Alternatively to true subdivision surfaces, Vlachos et ¥PBMO01] have proposec€urved PN Trian-
gles a fast spline-based mesh smoothing based on the 3 positions and normdfs&aafle. We will

show in the next chapter how Curved PN Triangles can be implemented witemel, and how they
can be controlled by scalar tags.

Indirect Refinement This second approach casts mesh refinement as a kind of image prgadssin
gorithm [BWO6]. Before the introduction of recent unified architectures, fragmestgssing was much
more flexible than vertex processing. Thus, several algorithms havegreposed, again mostly fo-
cused on subdivision surfaces, which consider meshes as textilveistrean geometry. Basically, these
methods work in three steps: first the input mesh is converted on CPU to ae-imaagd representation.

108

For instance, Shiue et &hJP0% start with a two-step subdivision of the initial mesh on the CPU (basi-
cally to sufficiently separate vertices with extraordinary valence), ang th@old each original vertex
with its two-ring neighborhood in a 1D texture. Similarly, Bunn@&Ljn03 breaks the original surface
into small pieces, projecting them on 2D textures which provides a limited GPhbsufor displaced
subdivision surfacelq]MHO0O]. With such an approach, the "geometric” texture can then be upscaled,
by applying scaling and filtering operations (multi-pass rendering) quoreting to the usual tessella-
tion and averaging steps in subdivisidop00, WS04, which is implemented using a render-to-texture
function and replacing the usual image filtering kernel by the mesh sulwivase. This is done recur-
sively until reaching a given depth or an error bound. Finally, upscateges are converted back to
geometry, rasterized and rendered on screen. These algorithmswadrksr small refinement depths,
but inherit the intrinsic limitations of GP-GPU approaches: they require @ecsion of the input model

to a specific format and employ intensive multi-pass rendering. When theisipot a mesh but an
object with a global parameterization, such as NURBS or T-Spline su;féloe indirect method pro-
posed by Guthe et alGBK05, GBKO06] is more efficient, as the parameterization already acts as image
coordinates. Note that thenified shader architecturef recent GPUSs, that offers efficient vertex texture
fetch, coupled with the additional topology information provided by recd?iisABIy06] now permits

to process geometry directly at vertex/geometry shader level, without asty-toémage conversion.

Adaptivity and Local Control Including adaptivity within mesh refinement can strongly improve
the overall performance, by reducing the number of polygons in atassified as less important (e.g.
flat areas, far areas, partially hidden areas). Multiresolution meshsemiation flop9q is based on

this notion. Kahler et al. KHS03 have proposed an interesting curvature-based approach for CPU
adaptive mesh tessellation. Nevertheless, adaptive refinement metbous aansily amenable to GPU
implementation, due to their highly dynamic adjacency information.

Local control of a given mesh refinement process has been frigsetved by including additional
per-[vertex/edge/face] boolean or scalar tags, which can be uselit theeshape (e.g. crease, tension,
bias, etc) of the refined surface around the tagged sim@&eh BMZB01]. Here, we introduce a
similar tagging scheme, but this one is not intended to control the geometnathet the topology
of the refined mesh. This per-vertex tagging scheme is then used to sigtiva tessellation in the
parametric domain (barycentric coordinates of the triangles), “mapping” ltgitlyp onto each original

polygon.

109

7.2 Adaptive Refinement Kernel

CPU 5. |GPU

Wing ¢

Fasy
| Coarse Mesh [—\T~| Vertex Buffers
Coarse Polygon
Attributes

[Displacement]\ ~
Data —

N) L

[Vertex Shader)
Interpolation

[Displacement |— Refined Mesh
Function

Adaptive
Refinement
Pattern

D

7/

Figure 7.2: Architecture of our adaptive refinement kernel (ARK). For eachrsso@olygon to refine,
we first transmit its geometric attributes as well as the displacement fundtigiouges to the adaptive
refinement shader (ARS). Second, a drawing call is performeds#hactts the correct adaptive refine-
ment pattern (ARP) according to the desired level-of-detail. All the trianigilsided in the selected
ARP (implemented as a vertex buffer object) are then translated by ldirigcmterpolation from the
polygon attributes, and warped according the displacement attributesall¥sirthe set of so-mapped
refined triangles are rasterized and passed to the fragment shadenenfidering on screen.

7.2.1 Overview

The Adaptive Refinement Kern@RK) presented in this chapter offers the following properties:

e Standard geometry structures used by rendering APIs (polygon soupdexed triangle sets)
can be employed as-is, without any preprocessing (e.g. global ordacameterization) nor any
additional data structures often required by refinement techniquehéfgedge structure).

e Only the coarse mesh is transmitted from the CPU to the GPU. The only reqdué@baal data
is a simple per-vertex scalar attribute, caltigpth-tag that indicates the level-of-detail desired in
the vicinity of each vertex. Note that this depth-tagging may be generated &ittoenatically or
under user supervision.

e As mesh refinement is performed on-the-fly, on a frame-by-frame andjteidoy-triangle basis,
arbitrary level-of-detail can be obtained, even for animated meshes.

e The whole two-stage adaptive mesh refinement (tessellation and displdrésrmerformed on
the GPU, by a single-pass vertex program, which totally frees the fraggshaders for additional
visual enrichments.

The workflow architecture used by our ARK is described in Figug The key idea is to precompute
all the possible refinement configurations of one single triangle, for waper-vertex depth-tags, and
encode them using barycentric coordinates. Each possible configusatialled aradaptive refinement
pattern(ARP) and is stored, once for all on the GPU, as a vertex buffer object., Hteandering time,
the attributes of each polygon of the coarse mesh, as well as the attribtitesdi$placement function
are uploaded to the GPU and the adequate ARP is chosen according tptthedrs. Finally, the vertex
program simultaneously interpolates the vertices of the current coalggoppand the displacement
function, by using the barycentric coordinates stored at each node GARIP to “map” the refined
connectivity on the coarse one. The first interpolation generates tit®pas the node on the polygon
(i.e. tessellation step) and the second one translates it to its final positiorigpcgément step).

110

Y {l Distance

Curvature
{ i I BN Il T 1
! ‘[Min Max

I Far Near

iy

Figure 7.3: Examples of depth-tag configurations (color code) and adaptive tefopology generated
on the GPU.Left: Initial coarse mesh transmitted from CPU to GPMiddle: Adaptive refinement
using distance-based depth-taggifight: Adaptive refinement using curvature-based depth-tagging.

7.2.2 Topology Control with Depth-tagging

On the CPU-side, the application specifies the usual per-vertex attrifutesmesh (position, normal,
color, etc) as well as a specific one: tertex depth-taghat indicates the level-of-detail desired in the
vicinity of each vertex. The depth-tagging process can either be pagtbonce for all for static meshes,
or dynamically recomputed at each frame for animated meshes.

Once this vertex depth-tagging has been set, it is employed at rendering @deptively refined each
coarse polygon, according to a set of precomputed configurationee Mecisely, the depth-tags will
be used for selecting a per-edge tessellation rate. To ensure ceadlefinement, the tessellation must
be consistent on the two sides of a given edge. Thus a conststgatdepth-tags computed by simply
taking the arithmetic mean of the two adjacent vertex depth-tags. Moreowsstly manage general
non-triangulated meshes, a centroid split is performed for each coalsgpp withn vertices to get a
set ofn triangles. The depth-tag of the centroid, calfade depth-tags computed as the mean of the
surrounding edge depth-tags.

Such a tagging approach is very generic, as the tag values can beaatiag to any metric. In this
article, we do not propose new metrics, but rather show how to set th-tspaccording to any
existing one. For instance, Figure3 shows a static tagging generated by using a modified version of
the curvature estimator proposed by RusinkiewiRrg04, as well as a dynamic tagging generated by
using a simple camera-to-vertex distance metric.

111

7.2.3 Refinement Patterns

{u,v,w}={0,1, 0}

NN\
YAVAVAVAVAVAN

{u,v,w}=1{0,0,1} {u,v,wl={1,0,0} /=

Figure 7.4: Principle of Uniform Refinement Patterns. (a) Coarse mesh stored du. @5 Uni-
form Refinement Pattern (URP) stored as a vertex buffer object on @Rére each node is stored as
barycentric coordinates. (c) Final refined mesh rendered on scrédée URP is used to tessellate all
triangles at a uniform level-of-detail. In this example, the URP is a tessellatetigleaencoded as a
single degenerated strip, composed of 8 different regular parts (eactas a different color).

According to the classification of Shiue et &JP0%, our technique can be considered as a patch-based
refinement. We start by explaining the principle in the uniform case and tlveraggeneralization to
adaptive refinement.

Uniform Refinement Patterns (URP) In the case of uniform tessellation rate, our approachonse
singleUniform Refinement Pattern for the whole mesh. This refinement pattermsnitied once for
all, from the CPU to the GPU, as a vertex buffer containing a few stripsHisgege7.4).

Let Ar be the set of attributes of a coarse triangle Typically Ay contains the 3 vertex positions, 3
vertex normals, 3 vertex colors, and 3 texture coordinates. We proposader the refined mesh with
the following algorithm:

GLuint URP;
void precomputeURP () {
generateAndStripURP (URP);
sendURPVertexBufferToGPU ();
bindVertexBuffer ();
sendURPIndexBuffersToGPU (URP);
bindIndex (URP);
}
void render (Mesh M) {
for each CoarseTriangle T of M do {
sendToGPU (A(T));
drawElement ();
}
}

Basically, at rendering time, the attributes of each coarse triangle aredeplt@athe GPU and the URP
is drawninstead ofthe coarse polygon. The barycentric coordinates stored at eachohtlue URP
are used to interpolate the per-vertex attributes (e.g. positions, normals) obarse triangle, and to
output each refined vertex in tigeaphic contexof the currently processed coarse triangle. This virtually
generates vertices on GPU and can be seen as a procedtaatiationrmethod for refinement purpose.

112

Another way to see this method is to consider that the URP is “mapped” ontoceacke polygons,
enriching their connectivity.

More formally, let suppose that a functionfal, : [0,1]2 — R® can be constructed ové¥, the simplest
case being the identity function, i.e. linear refinement, without displacemdnt@nesponding to the
tessellation. To evaluat&, at each verteX of URP, we have to recover its parameterizatifumn v}
ontoT. Actually, we need to know the position of a refined vertex “relatively” todhiginal triangle.
Since theJRPis only used for the topological storage of the tessellation, we propose tim @ncode
the usebarycentric coordinatesfV as its position vectoNyy, := {w,u,v} wherew=1—u—v.

Now, during the vertex shading pass, the GPU can clearly identify thengteazation{u, v} for each
vertexV of RP, and thus evaluate its functional valdig (u,v). Of course, each attribute in the gt
may eventually be interpolated by a different functional.

Let us consider the position attributé&y, P, P>} of the current coarse triangle drawn and the parame-
terization{w, u, v} (encoded as the position of inner vertices) of each vé&ftekRP. In order to perform
the tessellation, we just have to interpolate betwgnP;, P>} to obtain the output positiov, of V:

The URP technique strongly reduces the CPU-GPU bottleneck, as onlgdhgeanesh is transmitted,
while the GPU synthesizes the high-resolution mesh on a per-triangle basspproach is particularly
well-suited for dynamic objects that cannot be refined and stored on tbhleo@€e for all, as well as for
procedural displacement textures, that usually require highly tesseffasides. In this case, the URP
technique enables to stream more geometry toward the screen than coulibestered on the CPU or
the GPU.

Unfortunately, providing only uniform refinement is a major drawbacknmast applications, as it is
almost impossible to avoid either over-tessellated or under-tessellated meses the easy case of
a moving camera in a static scene. Therefore, we propose to extend ttoseppy generating a set of
Adaptive Refinement Patter(sRP).

113

Adaptive Refinement Patterns (ARP) Basically, the idea of ARP is to precompute all the different
topological configurations of a refined polygon both for regular areyular situations, still encoding
the nodes in the plane parametric space with barycentric coordinates. akliendering time, the low-
level API can select the correct ARP, according to the depth-tag emafign of the coarse polygon.

.l.'!'l AT AT AN AT AT AN AT AV AN AT AN AV al
i s O O o O O (0 0

Figure 7.5: Left: The matrix (or pool) of adaptive refinement patterns, in the barycentricdinates
system, stored as vertex buffer objects on GPU, with its 3 dimensionsgon@ing to the 3 depths tags

of a coarse triangle Right: Two different ARPs with different support sizes for the adaptive topology
of a triangle. The largest support offers better transitions between tiferatit edge resolutions, but
requires more vertices.

ARP for Triangular Meshes For triangular meshes, itis possible to encode all configurations up to an
upper bound of the refinement depth. Since different tessellation rajeappaar for different edges of
atriangle, the set of ARPs is implemented as a matri® phtterns, witH being the deepest refinement
level allowed (left part of Figur&.5). This matrix is precomputed and uploaded to the GPU once for all.
The quality ofadaptivityfor a given refinement scheme is usually rated with its support &iab(QJ.

The larger is the support, the “smoother” will be the transition between twerdiit tessellation rates,
but additional vertices are required (see right part Figus The pseudo-code of the algorithm used
on the CPU-side for triangular meshes is presented below:

GLuint ARPPool[MaxDepth] [MaxDepth] [MaxDepth] ;
void precomputeARPs () {
generateAndStripARPs (ARPPool);
sendARPVertexBufferToGPU () ;
bindVertexBuffer ();
sendARPIndexBuffersToGPU (ARPPool);
}
void render (Mesh M) {
if (dynamic)
for each Vertex V of M do
V.tag = computeRefinementDepth (V);
for each CoarseTriangle T of M do {
sendToGPU (A(T));
bindIndex (ARPPool [T.v0.tag] [T.v1.tag] [T.v2.tagl);
drawElement ();
}
}

114

Our system thus allows any kind of adaptive transition, as soon as itsrsippim the area of the coarse
triangle. Possible adaptive refined topologies range fommuer-split patterns tovariational angle-
maximizingone. In most cases, simpt®rder-splittopologies as the one presented at the upper-right
corner of Figurer.5 offer good results. Note that the APRs might be harder to convert intaytéan
strips (lossless topology compression) than regular ones. Thus, anaigstripping is performed
using the STRIPE algorithnE[SV96 RBA0S]. Algorithm 5 gives a border-spliter adaptive tessellation.

Algorithm 5 Border-splitter Adaptive Refinement Generation

Require: input triangleT = {[0,0],[1,0],[0,1]} // barycentric coordinates
Require: mandatory refinement edge degtif, d7, d5}
Amin = Min(dg, df, d5)
T" « uniform refinement of at depthdnin
for each edgédo
i — die — Omin
for each refined triangleon edgd do

TN —T"—t
T" «— splitt rj times along edgée
end for
end for
return T'

ARP for General Polygonal Meshes While the memory footprint remains low when storing refine-
ment patterns for triangles, it becomes a problem for more general pdydbno care is taken, the
number of different configurations to store may quickly become impracticahwhe tessellation levél
increases. Indeed, as each edge of the polygon includes its own tikmse#ite defined by its depth-tag,
the number of different tessellation patterng3gor a triangle ¢* for a quadrangle and more generally
¢" for a polygon withn vertices or edges. One possibility which strongly reduces the total nuriber o
configurations is to useonstrained depth-taggindor which the variation among the depth-tags for
each polygon is clamped to one level up or one level down. Unfortunaiehgtrained depth-tagging
requires additional non-trivial work on the CPU-side, which may havesteepeated for each frame, in
the case of dynamic tagging.

We propose a alternative solution for efficient encoding and proaggesihe set of ARP without requir-

ing any limitation on the vertex depth-tag configurations, and only involving iraited CPU overhead.
This solution is illustrated on Figuré.6. Let us take the general case where the CPU has to manage
a polygon withn vertices. First, each couple of adjacent vertex depth-dag.1) is converted into

an average edge depth-tdgby computing the arithmetic mean. An average face depttdtegalso
computed from the set a. This double averaging acts as smoothing process of the initial vertex
depth-tags, which will naturally soften abrupt variations of the tessellatitsn ISecond, the polygon

is split into a set oh triangles by linking each pair of adjacent vertices to the centroid of the pnlyg
The depth-tag of each inner edge of these triangles is st Tthis guarantees that each triangle only
contains two similar depth-tagsand & because they have been smoothed by double averaging. The
inner part of the triangle (green area on Figdré) will be uniformly tessellated at the rate provided
by the face depth-tag, while the outer part strip will generate a crack-free junction between Beve
and leveld,. All the (very reduced) number of possible configurations for this tdafriangle strip are
concatenated at the end of the uniform tessellation of the inner part ofadhgle&, and the whole data is
stored on the GPU as a single index buffer. Each specific configuraiothas be simply retrieved by
providing an offset in that buffer.

115

Basically, with our solution, one single strip of tessellated triangles at the owffitiee initial coarse
polygon is used to manage the crack-free junction between differeptiaeldevels, while most area
of the polygon is tessellated according to the face depth-tag. In otheswerlsolve the adaptivity
problem on a per-polygon basis, which can thus be done without comiglexdvel data structures to
encode the neighboring topology for each polygon. For pathologicgscachered and & differ too
much, two border strips instead of one may be employed to create smootlsitidrabetween coarse
and fine tessellation, and thus better avoid elongated triangles. Finally, abtsintbhe all ARPs are
precomputed and uploaded once for all on the GPU, rendering onegmolyigh uniform tessellation,
and one with adaptive tessellation, takes exactly the same time, for a eqtiteatsilation rate. This is
far from being true with existing adaptive mesh refinement techniques.

2

5

Figure 7.6: ARP factorization for non-triangular patterns.

116

7.2.4 Adaptive Refinement Shaders

Our kernel uses a specific single-pass vertex program catiegtive Refinement Shad€ARS), that
successively performs the tessellation and the displacement steps. Dwritggsellation step, the co-
ordinates of the curreftRPare used to generate a barycentric interpolation of the standard pex-ver
attributes (position, normal, etc). Then, during the displacement step sthlémg vertices are displaced
using additional attributes (e.g. textures for displacement mapping).

Note that since all ARPs are encoded in the barycentric space, refinginaglers are totally independent
of the topology of the patterns. So, the same shader is used, whatevieth&BP. Here is an example
in GLSL [KBRO04] of a refinement (vertex) shader which performs a simple procedefiaement with
linear tessellation:

const uniform vec3 pO, pl, p2, n0, nl, n2;
float displace (vec3 p) {...}
void main (void) {

// Tessellation by barycentric interpolation

float u = gl_Vertex.y;

float v = gl_Vertex.z;

float w = gl_Vertex.x; // 1-u-v

gl_Vertex = vecd (pO*w + pl¥u + p2xv, gl_Vertex.w);
gl_Normal = nO*w + nl*u + n2xv;

// User Defined Displacement
float d = displace (gl_Vertex.xyz);
gl_Vertex += d * gl_Normal;

// Shading and Output

J

Note that the barycentric coordinates may be used for non-linear intégmo{a.g. quadratic interpola-
tion for normals YPBMO01]). Moreover, in addition to vertex displacement, the same process daeifur
be used to interpolate any other per-vertex attribute during the refinemeetgs. Finally, as the refine-
ment is totally performed on a per-polygon basis, meshes with arbitrarygyandieven non-manifold
can be directly processed (see Figidrd.

Figure 7.7: Adaptive refinement of a deformable genius-4 shape. The refingnoeided by the ARK
is not restricted to a particular topology, nor manifold conditions.

117

7.3 Refinement Zoo

In this section, we present various examples of on-the-fly mesh refinegenithms which have been
implemented with our kernel.

7.3.1 Bezier Smoothing

Figure 7.8: Left: Coarse mesh (1246 triangles on CPW)iddle: Adaptive interpolated smoothing
by Curved PN Triangles (1.1M generated triangles on GRRIght: Sharp features, tension and bias
control with Scalar Tagged PN Triangles (similar number of generatea¢fies on GPU).

Curved PN TrianglesMPBMO01] are an efficient alternative to usual subdivision surfaces. This rdetho
generates an interpolated “visually” smooth refinement over an arbitresly just by taking into account
positions and normals stored at each triangle vertex. The basic idea isrie deafubic displacement
field and a quadratic normal field, each of them being defined by a simplgutarBezier patch. Scalar
Tagged PN Triangles, presented in Chagtémprove this scheme by allowing accurate control of sharp
creases, local tension and bias with additional vertex attributes. The tatiopuof the corresponding
Bézier control points can be done on CPU and transmitted to the GPU as addigaea attributes.
But, as the involved computation is very light and does not involve specifecsteuctures, the whole
process can be implemented on the vertex shader. Fig@shows two results obtained with our GPU
implementation of these techniques. It should be noted that compared tanwahkshprovided by our
graphics device manufacturer, the framerates we obtain for deepmefmshow that the ARK saturates
the GPU vertex processing horsepower, which means that no bottlepeeara neither on CPU nor on
the graphics bus.

118

7.3.2 Full GPU Displacement Mapping

Figure 7.9: Real-time displacement mappingop Left: Coarse mesh streamed from CPILB(4
polygons).Bottom Left: Displacement map stored on GPRight: Displaced Adaptive PN Triangles,
generated on the fly in real-time by our GPU Kernel (3.6M polygons). fitéd rendering (58 FPS)
includes the use of displacement map with our kernel on the vertexrshadeell as normal, color and
shadow maps on the fragment shader (data courtesy Cyberware).

Recent graphics hardware allows vertex-texture fetcheg0H. This means thadisplaced subdivision
surfaceg LMHOQ] can be easily implemented by storing the displacement in a floating point texture,
and accessing it in the second stage of the refinement shader. HoG&\&evaluation of subdivision
surfaces can be expensive on the vertex shader because it secpiinplex computation for vertices
with high valence (we address this particular problem in ChafjtefFortunately, in the work of Lee

et al. LMHOOQ], the subdivision process is only used for smoothly sampling a base doorarertex
displacement, while the final geometric continuity is expressed by the displatantnot the subdivi-
sion. In this case, Curved PN TriangladBMO01] can provide a smooth enough base domain in many
cases compared to genuine subdivision surfaces, with the additioredlttibat no local neighborhood
has to be transmitted to the vertex shader to achieve the refinement of @garse triangle. Figuré.9
gives an example of the rendering of suzisplaced PN Triangles

119

7.3.3 Procedural Refinement

@4

Figure 7.10: Few examples of complex shapes defined by a simple mesh with an higinfrggproce-
dural displacement. Deep refinement can be reached efficiently.

Geometry synthesis by procedural refinement is clearly one of the kastpées that enlightens the
strength of our ARK. These techniques often define a very coarse, mwéshcomplex displacement
functions, potentially requiring a very high tessellation rate to correctly saaliptegh frequency fea-
tures. Figure/.10shows several examples of such refinement, which only require to traamsmitll set
of user-defined parameters to define the corresponding procelilspiicement function.

7.3.4 Adaptive Terrain Rendering

Figure 7.11: This terrain has been rendered at an average framerate of 44 FP$r{§Mvy using a sin-
gle height-map texture to displace the refined tessellation. The refinentzivigs by a view-dependent
depth-tagging.Left top: Topology for input groundLeft middle: uniform on-the-fly refinement with
the URPsLeft bottom: adaptive on-the-fly refinement with the ARRgght: Final adaptive real-time
rendering.

While dedicated systems exists for efficiently adaptive rendering of terfAld05, LC03], the ARK

allows very simple adaptive refinement of height-field models. We use a pasiod made of few
hundreds polygons as a coarse mesh, and upload an high resolutibi-frediyas a floating point
texture to the GPU memory. Then, at rendering time, we tag the vertices ofdngecground using a

120

view-dependent distance metric. Finally, the coarse ground is adaptisdgllated on-the-fly by the
ARK and displaced using vertex texture fetch from the height-field texage Figure’.11).

7.3.5 Animated Mesh Refinement

Figure 7.12: Dynamic refinement of an animated medteft: Frame 1. Right: Frame 12. The
coarse mesh is animated on the CPU, and the GPU maintains an adaptivemefih driven by dynamic
tracking of curvature modifications.

Animated meshes are another important application that could significantlfitdfes our ARK. In-
deed, as mesh refinement is performed on-the-fly, without storage itrmutvspecific per-object pre-
computation, an animated mesh just requires a frame-by-frame update optitstdg configuration,

in addition to usual vertex position update by the application. An adequapiaaefinement will
then be generated at each frame. FighE2 presents two frames of a face animation sequence with
dynamic adaptive refinement. The depth-tagging is based on a localunenestimation performed
frame-by-frame, while the refinement process uses smoothing by CBNeédiangles over the coarse
mesh.

3500

" Uniform Refinement ——
Adaptive Refinement - -

3000 | 1
2500 | 1

2000 & .

FPS

1500 |- 1
1000 - 1

500

0 200 400 600 800 1000 1200 1400 1600 1800
Input Coarse Mesh Triangles

Figure 7.13: Comparison between the frame rate obtained with uniform mesh refinebiRRY) @nd
our new adaptive refinement (ARP). For the largest coarse me&Beg pn-CPU triangles), more than
two million triangles are generated on-the-fly by the vertex shader. Notethanethod is between one
and three orders of magnitude faster than the equivalent CPU-basqatigeaefinement.

121

7.4 Implementation and Performance

Our implementation runs under Linux, using OpenGL and GLSL. All tests haea performed on an
nVidia GeForce 8800 GTX with 768MB of memory, on an Intel P4 2.4GHz witlB i&memory.

GPU Implementation of ARP: The ARP is the central structure of our system. In order to tightly
reach the maximum performance at rasterization time, the ARP is encodethdsxed vertex buffesf
degenerated triangle stripS\WNDO0], directly on the GPU memory. Moreover, because we use dyadic
refinement, each refinement level is actually a superset of the previeyus@we can further reduce the
global memory footprint by separating the geometry from the topologsergex buffeis used to encode
all the geometry by storing the set of barycentric coordinates for thesnih@é¢ belong to the deepest
uniform ARP. Then the topology of any given ARP is encoded by using@ex buffer as an indexed
strip over this maximum configuration. So, at rendering time, when the applicagiects a given
ARP for refining a coarse triangle, the only action performed by the API srid the corresponding
index buffer and set the correct offset, while always keeping the sanex buffer, which guarantees
cache-friendly access.

Regarding memory usage, on the CPU side, the only memory overhead comethé storage of the
set of ARP identifiers. This overhead is extremely small and totally indepéradehe current 3D
scene. For instance, if the maximum refinement level is set to 10 (whicts @ffmaximum refinement
of 1024x1024 sub-triangles for each coarse triangle), the precomputation (&lg&Reration) time is
less than half a second and the main memory overhead is less than 4kB. Ogi@&Rthe memory
overhead required to store the set of ARP at this resolution is about 26 MB

For either uniform or adaptive refinement patterns, we have obstratith the case of deep refinements,
rendering performances were very close to the one obtained with statiesn@shrefined during a
preprocessing step and stored on the GPU one time for all). This can lagnexiby the small memory
requirement of our method, which maintains a good cache coherency.

Note that in restricted conditions, with 16-bit precision (e.g. PDASs), ouP/A&Rcoding allows a max-
imum refinement level of 256 256 for each coarse triangle. At the other extreme, with a modern
GPU and very high resolution displays, we have experimented real-timerpenice when using up to
2048x 2048 tessellation for each coarse triangle. Even higher resolutionsasiy lee reached, since
the ARK fully runs in object space.

Figure7.13presents the rendering frame rate obtained for various models. Thenmaé&ategrates the
tessellation step and a simple procedural displacement step for an animateddnggmamic adaptive
refinement has been performed frame-by-frame, based on an appted local curvature estimation,
combined with a view-dependent refinement bound. Compared to our dRRdee, our ARP scheme
offers a gain ranging from 250 to 460% depending on the model, whilegingvthe same final image
quality. This can be explained by a finer gradation of the tessellation, agaigimering of unnecessary
small triangles (e.g. flat areas, far areas). In many cases, the qualitgridetter, since the aliasing
of over-tessellated meshes (more than one triangle for a pixel) is strortfilged. In extreme cases,
the gain can even reach one order of magnitude, when the depth-taggitagiésand the input mesh
is very coarse (see FigurelQ for instance). Compared to our optimized CPU implementation of
adaptive refinement, our GPU refinement kernel improves the frameettedn one and three orders
of magnitude, depending on the overall complexity of the refinement.

Figure7.14 shows the frame rate obtained for a target refined mesh made of 1M triangtber var-
ious input size vs refinement depttios. It clearly appears that coarse meshes with high refinement

122

depth totally outperforms medium meshes with low refinement depth, for the stahaumber of tri-
angles. This comes from the fact that for the latter, transmission of inpyfgqs attributes becomes a
bottleneck on the graphics bus. At the other extreme of the spectrum, wihéardglet shape can be de-
scribed by a very coarse mesh with deep refinement, the ARK runs in an bptintaxt and completely
saturates the GPU vertex processing horsepower.

350 - Input Size

325 VS

300 | Refinement Depth
275
250
225

FPS
3
(%2}

0,
Ref. Depth 1 2 3 4 5 6 7 8 9 10
Input Size 262k 65k 16k 4096 1024 256 64 16 4 1

Figure 7.14: This diagram shows frame rate measures for a target refined meshtiesocof 1M
triangles under various input size vs refinement depth ratio.

7.5 Discussion

Limitations The technique presented here has essentially two main limitations. First, the@mefin
depth must be sufficient to avoid the bottleneck involved in the transfer opeheertex attributes.
Second, on elder graphics hardware, vertex texture fetch is slowhvimdés applications such as
terrain rendering and displacement mapping. Fortunately, this restrictsorebantly disappeared with
the introduction ofunified shader architecturesn graphics hardware. For instance, the terrain render
application at Figur&.11, which uses intensively texture access from vertex shader, rubsat 2FPS

on an nVidia Geforce 6800 and 44 FPS on an nVidia Geforce 8800 (disifiader architecture), for an
average refinement depth of 8, which produces about 6M polygons.

Another concern may be the question whether the depth tagging shoultidrepeeformed on the GPU
instead of the CPU. This could be done by using a preliminary renderirggtpaswould store vertex
depth-tags in a texture. However, this would involve a strong limitation on the dintpth-tagging
that can be implemented, as many useful information may only be available fapptieation running
on the CPU. Moreover, as the depth-tagging is performed on the coasée tine computation overhead
remains negligible, particularly in the case of deep refinements.

Refinement Kernel vs. Geometry Shader DirectX 10 technology Bly06] has introduced a new
geometry shadefGS) stage in the hardware rendering pipeline. The first graphics devickgling

123

these functionalities have been launched at the end of 2006. Even if tlraris&viously be used to
perform mesh refinement, its features are quite different from the wdnawe structured our ARK. The
main limitation when using the GS to perform mesh refinement is that the level ofeggoupsampling

is hardware limited and fixed. For instance, only 1024 floating point nuntagrbe output with current
specificationsBly06]. This is far from being able to tessellate up to 2048048 triangles per coarse
polygon for instance, as with our ARK. Multi-pass GS rendering may be graglto reach deeper
refinement, but it would obviously strongly reduce overall performariggractice, as mentioned by
hardware manufactureGfe0§, it is not even possible to reach the single pass upper bound, without
observing a huge performance degradation.

Even without the limit of geometry upsampling, implementing adaptive mesh refinenitbrthe GS
would also require to correctly manage crack-free junctions betweesrddiff tessellation rates. With
our precomputed ARPs, this problem is solved once for all and storeite thie GS would have to
generate consistent topologies on-the-fly and thus require complerrstade. Notice that, as the
GS implements a superset of the vertex shader functionalities, the solutiadgudy the ARPs can
straightforwardly be implemented on the GS.

Actually, we consider that the GS stage represents a complement to the atR&t, than an alternative.
By combining both approaches, one may generate more complex refinengmivinstage process.
First, at the VS stage, the ARK tessellates and displaces a base domainpfdygBé&zier smoothing
on very coarse meshes) and then additional vertices are inserted & $tage (e.g. local extrusion to
create hairy objects). We can also imagine using the GS for low refinemthit\wiere the ARK is less
efficient, and then switch to ARK to get high refinement depth when needed.

Low level API extensions The presented kernel can be integrated at the driver level, in anyastind
graphics API such as OpenGL, without any additional hardware défeah In this case, the control
interface is a reduced set of functions:

e glARKinit(GLuint maxLevel): builds the set of ARP (special indexed vertex buffers) on GPU,
and stores the corresponding identifiers, indexed by depth-tags.

e glEnable (GL_ARK): when activated, the ARK refinement will replace any triangle drawing call
by the corresponding ARP.

e glDisable(GL_ARK): restore usual OpenGL behavior;
e glDepthTagli(GLuint d): setthe current vertex depth-tag state (for upcoming vertices).

The fixed pipeline would provide a simple linear refinement, which can thenrtesel ty setting user
specific adaptive refinement shaders. With this set of functions plus additonal commodity call-
backs, the use of the ARK is totally transparent to programmers (direcbpexisting source code).
Alternatively, finer control of refinement can be provided throughciiefunctions @irawARP () for
instance) in order to mix refined and regular drawing calls without switchiagrtbde.

Summary We have presented a simple and efficient GPU kernehfaptive geometry synthesis by
mesh refinemertiased on a generic depth-tagging process, that makes it suitable foefalgment
control that can be expressed on a per-vertex basis (e.g. curvatwedependent LOD, area of inter-
est penalty, local estimation of displacement variation, etc). We have inedddaptive Refinement
Patternsand Adaptive Refinement Shadeand have shown that their combination allows the imple-
mentation of various kind of dynamic refinement, with almost no modification ofehdaring loop at

124

application level. The CPU processing is reduced to the transmission @rdghcoarse meshes to the
GPU, eventually combined with additional dynamic data for driving the refiméme

The kernel allows very deep adaptive refinement, using a single-peex program. It does not impose
any conversion of input mesh (such as local or global parameterizatiahgllows further on-GPU
geometric processing, since it consistently performs geometry synthedigect space. The solution
is more efficient and even more flexible than prior software-based metlhogsactice, the benefit of
the ARK is proportional to the depth of the adaptive refinement. The keerehits to “saturate” the
GPU with geometry to draw, and with its intrinsic CPU-to-GPU streaming principls, pbssible to
draw a refined surface almost independently of the amount of available mesitber on CPU or GPU
(the ultimate limitation is represented by the storage on GPU of the set of ARPa@dor the chosen
depth).

Our refinement kernel exhibits an interesting collaboration between thes@BGPU (the global anal-

ysis at coarse resolution is let to the CPU for depth-tagging, while locatééimement is performed

on the GPU, driven by these tags). This corresponds to the idea eftsteardering workload between
powerful multi-core CPUs and GPUs, as stated by PHainap§. Future graphics hardware and API
developers seek for refinement methods based on generic baryéetrpolation, as mentioned by
Sloan Blo0d. Thus our kernel can also be considered as a first step, perfoarsnffware emulation

of such future on-boarcefinement shadestage.

Perspectives: With this kernel in hand, we can address various applications of geomaettiyesys.
First, we have shown how easy and efficient can be the PN triangle mefirtevith the ARK, so we
will discuss the local control that can be performed on that kind of sarfa Chapte8. Second,
one important mesh refinement method that need to be developed for ivemgtilication is mesh
subdivision.

Figure 7.15: Refinement of Loop subdivision surface with the ARK. From left to right: the toarse
triangle (with its neighbors in dashed lines), the synthetized piece of subdigigrface at depth 2 (1-16
refinement) and 4 (1-256).

As already mentioned above, genuine subdivision surfaces are ifenedt to mesh smoothing tech-
nigues based on&ier patches, as the refinement of each coarse polygon is usually impenea
recursive procedure depending on its one-ring (or even two-rilghherhood). We have studied two
single-pass approaches to this problem:

e exactsubdivision surface renderings stated by Stan8fa99, an exact evaluation of limit sur-
faces at arbitrary parameter is possible by tilling the parameter values donaesetf triangular
patches and performing an eigen analysis of the so-defined parametarizinfortunately, in the
case of a triangle indexing an extraordinary vertex, the implementation esqauinuge amount
of additional data for each triangle, which is no more compatible with efficiemdering. So,
we have tried to develop a hybrid CPU-GPU implementation which delays a larjefpthe
computation on the ARK, keeping the horsepower of modern multi-core CRUsoforegular

125

cases. Figur@.15gives a preliminary example of our current work on a Loop subdivisidh w
our kernel. However, this solution is still development, and seems to notrbpetiive with the
second one.

e approximate subdivision surface renderingve have developed an approximation of subdivision
surfaces for interactive applications, which can be implemented efficieithiythre ARK, reaching
real-time performances for millions of polygons output while being visually genilar to exact
subdivision surfaces.

We discuss this application in the Chap@er

126

127

Chapter 8

Controllable Mesh Smoothing with
Scalar-Tagged PN Triangles

This chapter presents a new fast mesh enhancement technique basedatining by refinement. This
technique can be applied on the simplified geometry obtained at the end ofjthisitan pipeline for
improving on-the-flythe surface quality for rendering. We improve the principle proposedlaghés
et al. in their “Curved PN-Triangles”. The key idea is to assign to each medbx, a set othree
scalar tagsthat act as shape controllers. These scalar tags (called shargassand tension) are used
to compute a procedural displacement map that enriches the geometrypamckdural normal map
that enriches the shading. The resulting technique offers two majorgdeatiirst, it can be applied
on meshes of arbitrary topology while always generating surfaces wiistent behaviors across edge
and vertex boundaries, second, it only involves operations that ae¢/pacal to each polygon, which
means that it is very well suited for GPU implementation, with for instance the ARKemted in the
previous chapter.

8.1 Curved PN Triangles

Compared to true subdivision schem&s0(J or mesh smoothing techniqueSurved PN-Trianglesa
totally local refinement scheme introduced by Vlachos et\dPBMO01], is much better suited to hard-
ware implementation, since no adjacency information between triangles hastréé and managed.
More precisely, starting from an input coarse mesh equipped with veoe®als, an interpolating re-
fined mesh is generated on-the-fly at rendering time by replacing eardeddangle with a Bzier patch
driven by the 3 positions and normal of the triangles vertices. The mostatine idea of PN-Triangles,
compared to previous work, is to relax the constraint of high-order ge@muoentinuity, and to show
that a simplevisual smoothnesds sufficient for several applications. This visual smoothness is obtained
by computing, simultaneously but independently, a displacement field, defsha cubic Bzier patch,
used to enrich the geometry of each triangle, and a procedural norfdatiéfined as a quadraticRier
patch, used to enrich its shading. Note that an hardware implementation earilyedesigned for such
an empirical local smoothing metho@K03hb, CK034. In order to offer a greater control on the initial
coarse mesh, this chapter proposes to assign to each vertex of thie ntesls, a set dhree scalar
tagsthat act as intuitive shape controllers, namely sharpness, tension and bearea of influence of
these shape controllers is very local but is sufficient to guaranteéstemtdocal surface features, such
as curvature values around vertices or tangent plane discontinuitessaiges.

128

8.2 Description of Scalar Tags

8.2.1 Local surface analysis

Indexed faces sets have become the most common data structure to stoomalotygshes, as it avoids
the duplication of the vertex coordinates. But it has also one major coaseguthe only adjacency
relationship stored in the data structure are the indices of common vertiaesl flyatwo neighboring
polygons. Thus the only way to get a consistent behavior of the sugfear@ss polygon boundaries
is to store the shape parameters on a per vertex basis and to ensure thliiéinee of all the shape
parameters is strongly localized around each vertex.

Unfortunately, if a per-vertex storage is well-adapted to per-vertgxesparameters such as local tangent
plane or local curvature, it is much less adapted to per-edge featutesahaxist in the geometry, such
as creases or straight lines. So, to be able to correctly account fedpgerfeatures, we impose some
constraints on thene-ringneighborhood of each vertex. Let us consider Fijife a crease passes
through the vertexO and cuts the underlying triangle fan in two sub-fans. An average noretabr
N* andN~ can be computed for each sub-fan, by simply averaging the normal sexttire included
triangles. The sharp crease is then implicitly defined by the three taggedegekti© andB. The
corresponding normal discontinuity can be simply encoded, by applyimgdeok Haar filtering on the
two normal vectordN™ andN~: we store the average normal vectdre= N* + N~ (which is normalized
to unit length) and a difference vectr= N™ —N~. SoA = 0 corresponds to a smooth vertex. In
the remainder of the chapter, we will use the word “tagged” to specify @wevith a non-nullA and
the word “untagged” otherwise. To be able to always keep a local dac@siout per-edge features, we

(@) (b)

Figure 8.1: (a) Atthe vertex level, the green sharp crease can be encoded bple siectorA. (b) This
additional per-vertex data locally controls the underlaying per-triangl@sth surface generation.

impose the following restriction on the local configuration:
1. Atagged vertex can have 2 tagged neighbors at most.
2. Atriangle can have 2 tagged vertices at most.

The first restriction ensures that only one crease passes througéravgrtex. If not, this would mean
that we need more than one vecfoto encode the normal discontinuity at this vertex. As an extension,
encoding several vectofswould allow to represent multiple sharp creases, but at the price of a more
important per-vertex data set. The second restriction make unambiguod#f¢ihence between two
distinct creases that are separated by only one triangle, and a cretle®fis around a single triangle.
Note that some simple local remeshing step can remove this limitation (split for ie¥tanc

129

8.2.2 Shape parameters through scalar tags

Compared to the original PN-Triangle model, the inclusion of the normal diseaty vectorA allows

us to generate different displacement fields and normal fields on boshdfidecrease edge. We propose
now to define additional per-vertex scalar values §alar tag3 to offer an even more accurate control
of the local geometry. We have selected three shape parameters thattemdarly well adapted to the
control of sharp creases. We first describe these three shapegtara independently of the underlying
refinement technique.

The first scalar tagr € [0, is calledsharpnessit defines the divergence of normal vectors across
the two sides of the crease, by interpolating between totally smaoth @) and totally sharpd =)
configurations (see Figug2(a).

The second scalar tag € [—1,1] is calledtension it corresponds to the usual tension parameter that
has been defined in the spline literatuBBB3, Far03. It is used to locally control the curvature of all
Bézier boundary curves that are starting from on a given tagged \(sgexrigure8.2(b), and allows to
interpolate between three different configurations: tenseddB @ > 0), standard Bzier @ = 0) and
relaxed Ezier @ < 0).

The third scalar tagg € [—1,1] is calledbias it also corresponds to the usual bias parameter that has
been defined in the spline literaturBB83, Far0j. It is used to locally control the direction of all
Bézier boundary curves that are starting from a given tagged vedex{gure8.2(c). Here again three
different configurations are interpolated: bias towllrd (8 > 0), no bias g = 0) and bias toward\~

(B <0).

ol
N= N+
o

(a) Sharpness (b) Tension (c) Bias

Figure 8.2: The role of scalar tags. (a) Sharpness controls the normal deviatioshanp creases.
(b) Tension controls the curvature of boundary curves in the vertighherhood. (c) Bias controls the
direction of boundary curves in the vertex neighborhood.

These three scalar tags are used as shape controllers and they cordpilegehye mesh refinement. Our
experiments have shown that these values, defined by the user, aiatuéive and predictable, even
for users not familiar with geometric modeling software.

To sum up, an enriched coarse meSh (Meshn the remainder) can be defined by using a set of two
tablesV andT. Each line of table/ stores all the data relative to a vertex: the positirithe average
normal vectorN, the normal discontinuity vectdk, and the three scalar tags 6, and. Similarly,
each line of tabld stores only the three vertex indic@sj, k) relative to a triangle.

8.3 Mesh generation

8.3.1 Combining shading and smoothing

As said above, our technique is strongly based on the PN-trianglesprdday Vlachos et al. The
reader unfamiliar with this work may refer tt/PBMO1] for details on the construction of PN-triangles.

130

In order to obtain a coherent effect of the shape parameters detioee,aheir influence has to be
accounted both for the shading and the geometry of the surface geheuaiteg the rendering process.
As shown in Figure.3, in the case of a sharp crease, this approach ensures a cohd&@rohédoth on
the silhouette and at the interior of the object.

@) (b) (© (d)

Figure 8.3: (a) Coarse mesh with a ring of vertices tagged as sharg-(0.7). (b) Result obtained with
standard PN-Triangles. (c) Result with sharpness only in shadingRégult with sharpness both in
shading and geometry.

The shape factors described in the previous section can now be usfidiemity generate a surface
with sharp features. Globally, we can make a distinction between:

e the sharpness value which mainly acts on the shading,

e the biasf and the tensior® which mainly act on the silhouette of the object, and so on the
underlying geometry.

We propose to generate a coherent shading for ST-Meshes iticadural normal magonstructed
with the modified normals, and a smoothing algorithm for the geometry that caorimellated as a
procedural displacement maBoth of them are computed with one triangulaaZier patch, similarly
to PN-Triangles. The combination of these two procedural maps produegd-time piecewise smooth
visualization that is accurately controlled by the simple per-vertex scalaofdlye ST-Mesh.

8.3.2 Generation of the normal field

The normal field constructed across a triangle has to be smooth in the infdhiertdangle, continuous
across an untagged edge (i.e. without normal discontinuity) and corigsthe discontinuity encoded
by the o values of tagged vertices.

To account for tagged vertices, the three original normal vectors adifigtbin the following way:
sincel; represents the direction of the discontinuity at veitexe defineN{" (resp.N{~), by N'" =

(Ni + i) /|| (Ni + aiyi)|| (resp.Ni~ = (Ni — 6ii) /|| (Ni — 6idi) ||). The choice ofN/* or N/~ is made
according to the classification of the triangle against the triangle-fan sptidinted by a sharp crease
(see FigureB.1). A linear or quadratic (Bzier) interpolation between these normals can produce a
visual smoothness over the refined megRBMO1]. In the remainder of the chapter, we will ndtg,

the normal of theurrentside of a crease for verteéx

131

8.3.3 Generation of the displacement field

As proposed by Vlachos et al., the displacement field will be computed hyirigfh triangular Bzier
patch. But the shape modifications generated by the scalar tags at e@ehhave to be accounted for,
when generating the displacement field, so the process has to be slightlyaaodifi

A set of 10 Bezier control points have to be computed to define a cubic triangular paterigures.4),
to define the displacement fietidu, v):

b(u,v) = bzoow?®+ bosou® + bgoav®
+3b210W2U + 3b120WU2 + 3b201W2V

+3bg21U?V + 3b1gaWVP + 3bp1 UV (8.1)
+6b111wuv
To simplify the upcoming notations, we propose to decompose each conimbbgo
b=d-+e (8.2)

whered; corresponds to the position of the control point when the patch is in a fidiigooation (i.e.

all control points are lying in the plane) aedis the displacement vector whenis projected onto the
plane defined by the normal and the position of the closest vertex. AsHBYI01], we classify the

control points into 3 main categories:

e vertex coefficients bzpo, boso, Poos
e tangent coefficients b0, 120, Bo21, Po12, b102, P201,

e center coefficients b1 is procedurally obtained by the formulation proposed by Farin to ensure
guadratic precisionqar03.

Figure 8.4: A cubic triangular E2zier patch replaces each input triangle. Each control point of this patch
can be decomposed in a parameter positipartt a displacement edefined using vertex positions and
normals, and in our case, additional scalars tags.

The scalar tags should neither affect the vertex coefficients (as vegslmwant an interpolating surface)
nor the center coefficient (as Farin’s formulation always maintains a higpesfor the interior of the
patch). So, we propose to reduce the geometric expression of the teggamly through the tangent
coefficients. Moreover, to preserve coherence across triangledades, the scalar tags carried by a

132

vertex will only affect the two nearest tangent coefficients. For exantipdescalar tags ofy will only
affect the coefficientby1g andbog;.

In the remainder of this section, we consider the case of a coeffigiewhich is computed using the
scalar tags o¥; = (P;,N;,Aj, 0y, 6}, Bj), and the position of the opposite edge verfgexWe have also
to determinate whether the coefficient is on a sharp edge or not. For thissereepredicatg which is
true if the two relative edge vertices are tagged.

LetM(p,n,q) = —n.(q— p) be the signed distance operator of projection ohto the plane defined by
the pointp and the normah. We can write the EquatioB.2 as:

bi = di +M(P;,Nj,di)N;
with d; = Pj —|—(H(—Pj)/3.

For instance, with the coefficiebgi of Figure8.4, we havej = 1 andk = 2; &1 will be true if V; and
V, are tagged, false otherwise. The formulation of this coefficient becomes:

b210= dz10+ M(P1, N1, d210)N1

with da10= P14+ (P, — P1)/3. Let us now describe how to modify the geometric definition for a tangent
coefficientl; associated with a tagged vertéx

G P EEED
re e e

Figure 8.5: Transmission of the scalar tags of two vertices to adjacértidd patches(a) o = 0.2,
6=0,=0Mb)0=1,06=0,=0(c)0=026=02B=0(d)c=026=-06B=0(
0=02606=0p3=-1,(Hoc=0206=0,(3=1

Sharpness:To get a consistent silhouette for the refined surface, we have to trahsrshiarpness value
o of a vertex to its relative tangent coefficients. This meanshkihhas to express the “flatness” of the
Bézier patch near the sharp crease (see Figu)and8.5(b), which is actually the only important
aspect for its perception. So, we just have to act on the projection,ristraiingb; to the plane of the
“sharp” normal, according to, with the following formulation:

(1—0j)N; —i—GjNJ(

e = (1-&)N(P;, X, d)X; with X; = [I=a)N, +o;N]
J

If g; =0 we are in the “smooth” case. Otherwise, the modified normal will flatten théx petar the
tagged edge by reducing the elevation produced by

Tension: As usual in tensed &ier splines, the tension around a vetgxwill be controlled by the
distance between its associated tangent coefficigrasd its positiorP; (see Figure.5(c)and8.5(d).

133

With our formulation, this leads to simply translatebefore evaluating the projectia We want the
tension to be maximal wheth = P}, so the tangent coefficient will simply be computed by:

(1-6))

d =P,
|] + 3

(R—Py)

Bias: The bias factor is independent of the crease side: two triangles shacomgraon vertey/; of a
sharp crease have to conform the&zZBer patches in the same direction, defined by/thésee Figure
8.5(e)and8.5(f)). This time, we want the bias to be expressed only for sharp edges,eaptbpose to
act again org;, by using a projection direction that directly takes into accdyniVe obtain:

Nj + B4,

J 1=

By stitching all together, we obtain the following final formulation for the tangeefficients:

bi = d+e
d = P+ 3 AP (®:3)

e = (1-38)N(P;,Xj,d)X;+ aM(P,N;j, di)Y;

The remainder of the process is totally similar to the one used with PN-triangie&0tBezier control
points do totally define the continuous displacement field. This field, and Hoeiated normal field,
can thus be directly sampled in real-time by the ARK (Chap}er

8.4 Summary

In this chapter, we have shown how to easily control some useful lodacgusingularities through a
reduced set of scalar shape parameters encoded in a per-veiitexTids work enriches the original
PN-Triangle model, and allows the user to design more complex shapes atsa ¢tevel that will be

dynamically refined preserving these shape parameters, which is arsiimgneroperty for real-time

applications and compression. For instance, the models obtained afterithes\@mplification algo-

rithms proposed in the first chapters of this thesis can be enhanced easily.

However, PN triangles remain en empiric approach to surface refinemeaartioular, the final quality
is not competitive with true subdivisions surfac&spd. In the following chapter, we propose a new
mesh refinement process which approximates true subdivision synfsodscing convincing, visually
plausible, rendering and very fast to compute once implemented on GPU witiRtke

134

Figure 8.6: Original meshes (left) and realtime refinement (right) expressing tharstzey configura-
tion.

135

Chapter 9

Real-time Quadratic Approximation of
Subdivision Surfaces

Subdivision surfaces are undoubtedly the most flexible smooth geomgiresentation. By only ma-
nipulating a carefully designed low-resolution mesh, an high-resolutiontbnvecsion is automatically
generated using a set of local recursive rules applied on each ioprgecpolygon. However, while
being intensively used in CAD and SFX industries, they have not yet dairsgnificant interest for
interactive and real-time applications. In fact, their recursive definition s@pa non-trivial CPU over-
head, difficult to hide in interactive applications. We propose to avoid tkisrseon by introducing an
efficient approximation of subdivision surfaces which offers a vdéoges appearance compared to the
true subdivision surface, while providing at least one order of magafaster rendering. Our technique
uses enriched polygons, equipped with edge vertices, and replacesitke-fly with low degree poly-
nomials for interpolating positions and normals. By systematically projecting ttiee®of input mesh
at their limit position on the subdivision surface, the visual quality of the@ppration is good enough
for imposing only a single “true” subdivision step, allowing real-time perforceaneven for million
polygons output. Additionally, the parametric nature of the approximation akbowefficient adaptive
sampling for polynomial adaptive rendering and displacement mapping.

9.1 Context: Subdivision Surfaces for interactive rendering

Subdivision SchemesA subdivision schem@S0(defines a smooth surface using a coarse n\d$h
and a subdivision operat& that combines various refinement rules (odd vertex, even vertegehor
crease, etc). For most of subdivision schemes such as Lam87] or Catmull-Clark [CC79, these
rules are local, and only require the one-ring-neighborhood forigiglinty each polygon of the coarse
mesh, quickly converging to the limit surface. Thus, the application of theemant rules is done
recursively, generating a set of mg@vi®, M, ..., M"} with M+ = S(MK) until the chosen deptin The
linear combination of neighboring vertices for computing the next positiongdfen vertex are usually
illustrated with a subdivision mask. For stationary schemes, limit masks existitbatly provide the
projection of a vertex on the limit surface.

Efficient Rendering of Subdivision Surfaces:Since a decade, subdivision surfaces have been inten-
sively used for offline rendering and high end modeling, and havergssiyely replaced NURBS in
many areas, as they are able to represent smooth shapes with arbit@ogyop/ith the increasing
demand in realism for interactive applications, efficient rendering odlisigion surfaces has become

136

a major research area in recent years. However, the lack of geonsgteyagion on GPU, as well as
the reduced knowledge about local neighborhood allowed in the gsaphiciware pipeline have led
researchers to tackle efficient rendering of subdivision surfageswo different approaches. We have
already stated the main classification of refinement methods in Chgated according to this classifi-
cation, direct real-time synthesis of subdivision surfaces is donepréttomputed tables of basis func-
tions[PS96 BS02 BS03, while indirect synthesis is done usiilgages-based methof8JP05Bun0y.
These methods are able to reproduce exactly subdivision surfacesmins slow.

In Chapter8, we have discussed howsually smoottrefinement can be tailored at low cost by using
triangular Bezier patches locally generated on triangles. This kind of refinementysefficient and
purely local but its empirical generation only provides poor to averagabgguality.

The method we propose in this chapter combines a low computationnal casthetter than PN Tri-
angles, with a visually plausible approximation of true subdivision, offeangery similar rendering
guality compared to exact subdivision schenlesoB7], far better than PN refinements. We use limit
projections for driving a local polynomial approximation of the surfadeictvallows a direct evaluation
at arbitrary location without recursion, in the spirit of the work done byr§%ta98 Sta99, but efficient
enough to be done in real-time. In fact, by considering both positions amdafsy we produce a visu-
ally smooth rendering adapted to interactive applications using simple quaBéaier patches, which
makes adaptive sampling straightforward. We call our approximation “@éxS’Quadratic patches for
Approximation of Subdivision surfaces”.

Figure 9.1: . Left: Coarse mesh (546 trianglesMiddle Our real-time GPU approximation of the
subdivision surface (527 FPS - depth 5 - 500k triangl€&ght: True Loop subdivision performed on
CPU at same depth.

137

GPU: Quadratic
CPU: Single subdivision + Bézier for position

Projection on limit surface and normal

Coarse Mesh Triangle

Figure 9.2: Approximation principleLeft: Coarse triangle T of M. Middle: Enriched hexagon [
sampled on M. Right: Final smooth patcheéPr,Nr} generated on GPU.

9.2 Approximated Subdivision

9.2.1 Principle

The very first subdivision step provides a crucial information on theetaagnooth surface, particularly
when usinglimit rules: it indicates in which direction the surface will converge for all its edgeg. B
studying the different subdivision schemes developed over the ywearsan observe that the variation
they produce on edges is a good indicator of their smoothness and cargaality. This information is
even more accurate with limits masks (i.e. when projecting each vertex at its lirtibpds We propose
to use this initial guess of the first subdivision step performed on the CPahpute a local quadratic
Bézier approximation on the GPU. Instead of using an empirical estimatieB§101] of the Bézier
coefficients for producing theisual continuity we fit two Bezier patches on the limit positions (resp.
normals) provided by the single subdivision step with projection on the limiasai* (see Figure
9.2). With these two patches in hand, we can sample (uniformly or adaptivelyjeice of subdivision
surface belonging to each input coarse triangles using eithgettex shadewith our ARK (Chaptef?)

or thegeometry shadgBly06].

9.2.2 CPU Support

The algorithm starts by applying a single subdivision step using limit masksh tHaagleT is thus
split into 4 sub-triangles, with vertices on the limit surface. These sub-taastare 6 vertices (Figure
9.2) and the sub-mesh can thus be organized in an hexagonal Biape{vo,Vv1,Vo, Vg, V§,V5} with

vi = {pi,ni} being the limit positions and normals (using tangent masks for instance) at¢httolo
This structure is adapted to recent graphics hardware including a gg@hatter stage, which allows to
transmit triangles with edge neighbors: here we transmit edge verticetenhggrthe subdivision pass
instead. Note that we focus on triangle meshes, since they are ubiquitousrective applications.
Thus, we use the Loop schemsop87] as a basis QAS. The Modified Butterfly schenZ&596 can
be used when the interpolation of the coarse mesh is mandatory. We péinferstep on CPU in our
implementation. However, a GPU implementation can be considered.

9.2.3 GPU Polynomial Approximation

OnceHr is transmitted to the GPU, a shader (either vertex shader on old devicesmetg shader on
recent ones) automatically fitst@angular Bézier patcheso Ht: Pr(u,Vv) for positions and\Nr (u, v) for

138

AR

&
i

g

Figure 9.3: Adaptive Subdivision Renderingeft: Input coarse mesh (703 triangled)liddle Left:
View-dependent distance-based adaptive depthNhddle Right: Underlying adaptive topology pro-
duced on-the-fly (620k triangles at 499 FHS8yht: Final rendering.

normals. In other words, we produc@@cedural displacement mamd aprocedural normal maphat
approximate the variation of the limit subdivision surface. Both patchesedireed by:

Q(U7V3W) = Z(bizjk(u7VaW)Cijk
i+j+k=2

with
2 2!

2 viw —1—_u—
uk—”j!k!UVW andw=1-u—v

In practice,G;jx is replaced bypjjx or njjx (see Figured.2). We use quadratic patches as they provide a
good trade-off between curvature reproduction and computational cos

Now, we have to define the 6 control points required by bahi& patches, such as they interpolate the
limit vertices (either positions or normals). These control points are orgdrig an hexagon (middle
part of Figure9.2): three of them correspond to the original vertides, v1,v2} projected at the limit
and are naturally interpolated by the triangul@zir patches at control poin{szoo, Co20, Cooz}, While
{C110,Co11,C101} correspond to edge verticgsg, Vi, v5} and arenot interpolated. So, we need to de-
fine them such as the actual geometry definedpyresp. Nr) interpolates the edge positions (resp.
normals). Actually, a linear collocation is possible in this case. For instanosjdering the first edge
vertexpg, we have to solve:

11 1 .
P (27270) - Z(po—i_ pl+2p110) = Po
which implies that
1
P110= 5 (4p5— Po— p1)

Other edge coefficients are simply obtained in a similar fashion, and the samoeleris used for
computing the Bzier patch for normals. Separating the position field and normal field defare
each patch allows a local computation of the approximation (on a per-hexegis), without dealing

with high order cross-edge continuityPBMO1]. By interpolation, the normal field defined Nt is
guaranteed to b&° on edges, which produces a visually smooth shading.

139

9.2.4 Adaptive Rendering

By substituting recursive rules withéRier patches, we can directly evaluate the surface approximation
at arbitrary parameter values. So not only uniform tessellation is done witboursion, but adaptive
refinement is also made easier. This adaptivity can be performed by setigigvartex subdivision
depth, either on CPU or GPU, using for instance a view-dependent netyiccparse triangle to camera
distance) or a view-independent one (e.g. curvature approximatibehn, Bdaptive tessellation can be
obtained with either two implementations:

e Geometry Shader Hy can be directly transmitted to the GS using the DX10 pipelBigQ6].
A simple loop evaluates points and normals udiigand Nt and output a stream of triangles.
Unfortunately, this solution only holds for low subdivision depth, as the gizbe GS output is
hardware limited.

e Vertex Shader. For higher subdivision depth (3 and more), the adaptive refinemenelki&tro-
duced in Chapter offers an efficient way to render our subdivision surface appriximatitote
that the transfer cost éit is not a bottleneck for deep subdivision levels.

Figure 9.3 gives an example of an adaptive on-the-fly QAS rendering. In the folpwsting, we
provide a generic GPU implementation of QAS in GLSL for on-the-fizr patch fitting and adaptive
sampling. This simple shader runs on any GPU equipped with vertex shapagitities:

const uniform vec3 n0O, nl, n2, pO, pl, p2;
const uniform vec3 neO, nel, ne2, pe0, pel, pe2;
vec3 edgeCP (vec3 e, vec3 p0, vec3 pl) {
return (e * 4.0 - p0 - pl) * 0.5;
}
vec3 Q (float u, float v, float w,
vec3 p0, vec3 pl, vec3 p2, vec3 e0, vec3 el, vec3 e2) {
vec3 n200 = p0, n020 = pl, n002 = p2;

vec3 nl110 = edgeCP (e0, pO, pl);
vec3 nl01 = edgeCP (e2, pO, p2);
vec3 n011 = edgeCP (el, pl, p2);

return w * (n200*w + n110%*2*u) +
u * (n020*u + nO11*2xv) +
v * (n002%v + nl101%2%w);
}
vec3 P (float u, float v, float w) {
return Q (u, v, w, pO, pl, p2, peO, pe2, pe2);
}
vec3 N (float u, float v, float w) {
return Q (u, v, w, n0, nl, n2, ne0, ne2, ne2);
}
void main(void) {
float u = gl_Vertex.x; // barycentric coordinates
float v = gl_Vertex.y; // as position in the
float w 1.0 - u - v; // RP drawn
gl_Vertex.xyz = P (u, v, w);
gl_Normal = normalize (N (u, v, w));
[...]1 // Shading

140

Property Shiue’s kernel QAS
H | |

CPU Preprocess (Subdivision) 2 passes (1x16) 1 pass (1x4)
GPU Input process (CPU) 2-ring unfold none

Number of Rendering pass depthx num. of tri. 1

GPU Workload FS VS/IGS
Reproduction Exact Approximate
Adaptive Refinement Difficult Trivial

Type of Coarse Polygons All All with pre-tessellation
Subdivision Scheme All Dyadic with limit masks
Performances (4k tri., depth 5) Interactive Real-Time

Table 9.1: Comparison of QAS with Shiue’s kern&8JP0% for the subdivision of a dynamic mesh.

9.3 Results

We have implemented QAS on an AMD Athlon 3500, with 2GB of memory and an n@dfarce 8800
GTX, using C++, OpenGL and GLSL. While being geometrically odfy the resulting surface has an
appearance almost indistinguishable from the equivalent true subdigsiface (see Figui®4). This

is due to the combined fitting of positions and normals, which ensures both @rsshaaling and curved
silhouettes. Considering performances, our technique outperformimgrgslutions BS03 SJP0%for
three reasons: we only perform a single true subdivision pass on\W@#Uke a single rendering pass on
GPU whatever the depth (i.e., constant processing cost per-vergxhere is no geometry-to-texture
conversion. Note also that the mesh is always synthesized on-the-fsr, esting Geometry or Refine-
ment Shaders, without storing the topology of the high resolution mesh. ésu# we obtain real-time
performances (more than 120 FPS) for objects composed of sevarstits of coarse polygons, subdi-
vided at depth 5 (more than5M tessellated triangles). Performances degrade linearly with the number
of triangles created and transmitted at CPU level. As a limitation, note that ther ighe vertex va-
lence, the less accurate becomes QAS. However, this can be prevgmeddrming remeshing. Last,
the direct adaptive rendering allowed by our technique, combined with itClew overhead makes
this approximation particularly suitable for high quality interactive application, @ffers much better
results than purely empirical smoothing methods. Figubsgives additional examples of our approxi-
mation: we can observe that high framerates can be reached even witreflaement levels, since our
pure parametric evaluation does not access texture memory.

9.4 Discussion

Comparison: We compare QAS to the GPU kernel of Shiue et 80P0%as it is one of the best solution
so far. Table9.1 states advantages and weaknesses of our approach compared tOrledinteresting
property of our implementation is its single pass vertex shading principle:rdzent graphics hardware
with unified architecture will automatically allocate additional shader units fdaexeshading to obtain
optimal balance between vertex and fragment processing, avoiding dlaé amversion required by
fragment-based processing of geometry.

The local nature of our kernel makes it also easily comparable to CuMedriangles YPBMO1].
Formally, the two approaches differ in the computation &£i8r control points: an empirical estimation
based on tangent plane for PN Triangles, and a true limit subdivisioacgunfiterpolation in our case.
As a result, we obtain a far better quality since limit projection may create |agerpther and more

141

consistent variation of the geometry that the simple normal-based appsmEscRigure.4). This also
allows us to simply use a quadratic polynomial instead of a cubic one.

/

| oy '-:j N ...--
=y ;Iht] | |

4 T \
3(I _

¥ ‘.II'.'x A ,.4 1 |
-"'E--r 1_‘1 (A T il% T [\ I='|_
*f/ \%nuﬂ T "A\ 1 |

Figure 9.4: Comparison with Curved PN Triangle Smoothingeft: Coarse MeshMiddle: Curved
PN Triangles (cubic patchesRight: QAS (quadratic patches).

Summary We have proposed QAS, a simple and visually convincing approximationbafivégion
surfaces using a combination of single limit subdivision pass on CPU ardtajicaBezier patch fit-
ting on GPU. Our method is easy to implement, avoids recursion and reaciéisne performances
for several thousands of input polygons per-frame, outputting milliontesdellated triangles. Our
method is generic in the sense that arbitrary depth and arbitrary vertexcealan be handled and adap-
tively subdivided. This approximation imposes less CPU workload, leghmpsbus bandwidth and is
more efficient than exact GPU subdivision kernels, while providing beiseral results than empirical
smoothing VPBMO01] and lower memory footprint than table-based methods. While CAD applications
may benefit from more precise and more costly approximation techniqubsasube recent work of
Loop and SchaefeidS07, QAS represents a solid choice for interactive applications, such ae vid
games and virtual reality software, and can also be considered faakp#ects, as a large upsampling
can be done adaptively. As an application, high resolution displacemermgimgaiakes benefit from
this efficient approximation for sampling the maps that can be extracted difestiylarge point-based
surface with the algorithm presented in Chaiter

Perspectives As future work, we plane to perform the limit projection at GPU level still pregg a
single pass rendering. It is interesting to note that we have solved armparfoe problem of subdivi-
sion schemes using local polynomial fitting, while Levirey0g has recently solved a quality problem
(continuity) of these schemes near extraordinary vertices using a simpevag of local polynomi-
als fitting. We believe that such hybrid polynomial-subdivision representwtioe a major research
direction in the field of smooth surface modeling.

142

(c) 1246 coarse triangles adaptively refined at depth 6 (2.6M trigngl&2FPS
Figure 9.5: Additional examples of real-time approximation of subdivision surfate$t: On CPU

dynamic coarse mesRight: Realtime QAS geometry synthesis on GPU. Note that all input meshes are
dynamic.

143

Chapter 10

Conclusion

In this thesis, we proposed techniques for fast processing, editingeaddring of acquired geometry.
These techniques offer memory and computational efficient solutions itmuggproblems that occur
when using acquired geometry in computer graphics applications. Theyldlbm a set of new concepts
and data structures that are generic enough to be used in other costeseis a

First, we have introduced the Volume-Surface Tree, and show thataadtieral space partitioning struc-
ture can better take into account the geometry of a 3D surface by usingoad partitioning scheme,
melting 3D and 2D decomposition. As hierarchical partitioning is a fundamernbirtgeometry pro-
cessing, we have then been able to apply this structure to the problemssfrfase simplification and
fast surface reconstruction. The resulting algorithms increase the qoedityspeed ratio compared to
state-of-the-art methods and clearly illustrate that not only the geometricineesasd quantities, but also
the underlying architecture of a partitioning structure has to be consiadred performing hierarchy-
based surface processing. Furthermore, the Volume-Surface Tgerdsal enough to be used in other
surface processing, including texturing and compression.

Second, we have presented the first interactive editing system whictsatiqrerform high level inter-
active modifications, such as appearance and shape editing, of largésmatth or without the connec-
tivity information. This is obviously particularly interesting in the context of @ogd geometries for
which the accurate local features captured by the scanner need tedsevad, even when interactive
editing is mandatory. This system is based on a sampling-reconstructioipfajnehere two algorithms
ensure the “dialog” between the out-of-core large model and a givadasta texturing or deformation
tool. The first algorithm acts as pre-process and performs an ouwtrefaclaptive simplification of the
large model. Then, the simplified model is deformed and textured interactiieéysecond algorithm
acts as a post-process and applies the modification undergone by the sinmptifie! onto the original
large one. Both algorithms work in streaming and use point-based methods, eviables the manip-
ulation of very large, unstructured sampled surfaces. Moreover,\thiera remains active during the
interactive session and allows to refine the in-core geometry on-demavitipg virtually an out-of-
core multiscale layer to any interactive editing tool. Note that the various iexpets presented in this
thesis show also that point sets are well suited to capture and transmitsprégperties (appearance and
deformation). Therefore, they represent a solid alternative to usgalar 2D textures, which becomes
obvious in an out-of-core context.

Third, we have addressed the problem of point-based surfaceriegdehich is necessary for visu-
alizing acquired models before reconstruction. Indeed, we have stih@tthe point-sampled surface
representation can be interfaced at low cost with polygonal renderatgras and hardware, performing
a fast lower dimensional meshing organized in a multi-resolution structureSutfel Stripping. This

144

approach enables the large repository of polygonal rendering teeksigithout performing full sur-
face reconstruction, and comes as an alternative to surface splattipgiatdased surface raytracing.
Moreover, when the input is too large, we have proposed an appeapaeserving enhancement of our
technique, which captures, in a streaming process, the essential pihet wkually richness present
in the large sampled surfaces, and expresses it in a set of high-resalotimal and color maps for
rendering.

Last, we have focused on geometry synthesis for interactive applicat@bave introduced a generic
adaptive mesh refinement kernel which runs on the GPU and allows te @atiitrary meshes, with
arbitrary displacement, offering real-time high-resolution mesh synthesis Kernel allows to deal
directly with high-level representations, like subdivision domain meshethe@PU side, letting the
GPU creating a refined surface in single rendering pass, at vertdinghavel. With this kernel, we
have then been able to propose an evolution of the Curved PN Trianglemefnt, by taking into
account surface features described by scalar tags. Finally, wealdavessed the problem of real-time
subdivision surface rendering, and proposed a plausible approximtatibavoids recursion and enables
deep adaptive refinement at high framerate.

This last contribution opens a way to data driven geometry processingh@ven all along this thesis,
the acquired models need to trade efficiency for quality in order to use thexoniputer graphics
applications. We have developed three kinds of analysis:

e ahierarchical volume-surface decompositimhich improves hierarchical processing of 3D sur-
faces and allows lower dimensional methods

e asampling-reconstruction in streamimghich structures out-of-core editing
e asynthesis by instancinghich offers flexible geometric refinement for real-time applications.

These three general approaches, combined with the genericity of EsattHbechniques, can be applied
to various other problems, including surface compression, large objectotyy editing, aggressive
visibility computation and data-driven geometry synthesis. This last topiesepts probably the most
promising research direction, as the growing size of 3D content data will isopose the development
of suitable higher-level representation that both allows highly dynamictateiéor rich editing and
accurate on-demand sampling for real-time geometry synthesis. Finallylieegithat one major open
problem remains the gap that exists between raw data sampling and palaeguiesentations: the
former is the only information we can get from the real world, and the latterisétive language of
computers. We will try to build the missing bridge in future work.

145

Bibliography

[AAO3]

[ABCO*01]

[ACKO1]

[Ad006]
[AGP*04]

[AHO5]

[AKO4a]
[AKO4b]

[AKP*05]

[Ali06]

[AWD *04]

[BB83]

[BCOO]

[BDO2]

[Bec94]
[Ben75]

ADAMSON A., ALEXA M.: Ray tracing point set surfaces. Rroceedings of Shape
Modelling International2003). 65

ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SiLvA C. T.: Point
set surfaces. IFEEE Visualization(2001).17, 38, 47, 65, 82

AMENTA N., CHOI S., KOLLURI R. K.: The power crust. Ir'Bymposium on Solid
Modeling and Application§2001). 16

ADOBE: Photoshop, 200668

ALEXA M., GROSSM., PauLy M., PFISTERH., STAMMINGER M., ZWICKER M.:
Point-based computer graphidsCM SIGGRAPH 2004 Course Noi@904).42, 46, 63

ASIRVATHAM A., HopPPEH.: GPU Gems 2Addison-Wesley, 2005, ch. Terrain render-
ing using GPU-based geometry clipmapf8 120

AMENTA N., KiL Y. J.: Defining point-set surface&CM SIGGRAPH?2004).17

AMENTA N., KiL Y. J.: The domain of a point set surfacdsurographics Symposium
on Point-based Graphio®004).17

ADAMS B., KEISERR., PauLy M., GuiBAS L. J., GRossM., DUTRE P.: Efficient
raytracing of deforming point-sampled surfacesPhceedings of Eurographig¢005).
65, 83

A LIASWAVEFRONT: Maya, 200641

ADAMS B., WICKE M., DUTR P., GRossM., PauLy M., TESCHNERM.: Interactive
3d painting on point-sampled objects. Roint-Based Graphic€004).40

BARSKY B., BEATTY J.: Local control of bias and tension in beta-splina&M SIG-
GRAPH(1983).130

BoissONNATJ.-D., CazaLs F.: Smooth surface reconstruction via natural neighbour
interpolation of distance functions. Bymposium on Computational geomgi2000).
16

BENSOND., Davis J.: Octree textures. IACM Siggraph(2002).40
BECHMANN D.: Space deformation models surv€omputer and Graphic&l994).41

BENTLEY J. L.: Multidimensional binary search trees used for associative lsagrc
Commun. ACM 181975).25

146

[BKO3]

[BKO4]

[BKOS]

[BKS00]

[Blo88]

[Bl094]

[Bly06]

[BM92]

[BMZBO1]

[Bot05]

[BPGKO6]

[BPK*07]

[BRO2]

[BS95]

[BS02]

[BS03]

[BSO07]

[BSKO04]

[BSKO5]

BoTscHM., KOBBELT L.: High-quality point-based rendering on modern GPPa-
cific Graphics 20032003). 64

BoTscHM., KOBBELT L.: An intuitive framework for real-time freeform modeling.
ACM SIGGRAPH?2004).41

BoTscHM., KOBBELT L.: Real-time shape editing using radial basis functidasro-
graphics(2005).41, 57

BISHOFF S., KOBBELT L., SEIDEL H.-P.: Towards hardware implementation of loop
subdivision.ACM SIGGRAPH//Eurographics Graphics Hardw#&900). 108

BLOOMENTHAL J.: Polygonization of implicit surfacesComputer Aided Geometric
Design 5(1988), 341-35516

BLOOMENTHAL J.: An implicit surface polygonizer. IGraphics Gems IVAcademic
Press, 199426, 33

BLYTHE D.: The direct3d 10 systemACM Siggraph(2006). 107, 109, 123 124, 138
140

BeEsL P. J., McKAY N. D.: A method for registration of 3-d shapd&EE Trans. Pat.
Anal. and Mach. Intel. 142 (1992), 239-25616

BIERMANN H., MARTIN |., ZORIN D., BERNARDINI F.: Sharp features on multireso-
lution subdivision surfaces?acific Graphicg2001).109

BotscH M.: High Quality Surface Generation and Efficient Multiresolution Editing
Based on Triangle MesheRhD thesis, RWTH Aachen, 20026

BOTSCHM., PauLy M., GROssM., KOBBELT L.: PriMo: Coupled prisms for intuitive
surface modelingeurographics Symp. on Geom. Procesdipg06).41

BoTscH M., PauLy M., KOBBELT L., ALLIEZ P., LEVY B., BISCHOFFS., RssSL
C.: Geometric modeling based on polygonal mest#SM SIGGRAPH Course Notes
(2007).17

BERNARDINI F., RUSHMEIERH.: The 3d model acquisition pipelin€omputer Graph-
ics Forum 212 (2002).14

BLANC C., ScHLICcK C.: X-splines: A spline model designed for the end-usstM
SIGGRAPH(1995).109

BoLz J., SSHRODERP.: Rapid evaluation of catmull-clark subdivision surfac8®
Web Technolog{2002).108, 137

BoLz J., SSHRODERP.: Evaluation of subdivision surfaces on programmable graphics
hardware, 2003108 137, 141

BoTscH M., SORKINE O.: On linear variational surface deformation methotsEE
TVCG(2007).41

BoTscH M., SPERNAT M., KOBBELT L.: Phong splatting. IrSymposium on Point
Based Graphics 2002004).64, 67, 77

BoTscH M., SPERNAT M., KOBBELT L.: High quality splatting on today’s gpu. In
Symposium on Point Based Graphics 2(0R805).64, 77, 78, 96

147

[Bun05]

[BWOE]

[BWGO03]

[BWKO2]

[CAZO1]

[CBO4]

[CBC*01]

[CCT8]

[CGG 04]

[CHO2]

[CKO3a]

[CKO3b]

[CLO6]

[CMRS98]

[CNO1]

[COMO8]

[Coq90]

[CS00]
[CS07]

BUNNELL M.: Adaptive Tesselation of Subdivision Surfaces w/ Displacement Mapping
nVidia, 2005, ch. GPU Gems 209 137

BOKELOH M., WAND M.: Hardware accelerated multi-resolution geometry synthesis.
ACM I3D (2006).108

BALA K., WALTER B., GREENBERGD. P.: Combining edges and points for interactive
high-quality renderingACM SIGGRAPH 223 (2003), 631-64090

BoTscHM., WIRATANAYA A., KOBBELT L.: Efficient high quality rendering of point
sampled geometry. IBurographics Workshop on Renderi(®002). 85

COHEN J. D., ALIAGA D. G., ZHANG W.: Hybrid simplification: Combining multi-
resolution polygon and point renderindgEE Visualization(2001).64

CHRISTENSENP. H., BATALI D.: Anirradiance atlas for global illumination in complex
production scenegsurographics Symposium on Render{@2§04).41

CARR J. C., BEATSONR. K., CHERRIEJ. B., MITCHELL T. J., RRIGHT W. R., Mc-
CaLLum B. C., BEvans T. R.: Reconstruction and representation of 3D objects with
radial basis functions. IACM SIGGRAPH?2001).16

CatmuLL E., CLARK J.: Recursively generated b-spline surfaces on arbitrary topologi-
cal surfacesComputer-Aided Design 16 (1978).136

CIGNONI P., GANOVELLI F., GOBBETTI E., MARTON F., PONCHIOF., SCOPIGNOR.:
Adaptive TetraPuzzles — efficient out-of-core construction of gigaaiggonal models.
ACM SIGGRAPH 200£004). 20, 85

CocoNu L., HEGE H.-C.: Hardware-accelerated point-based rendering of complex
scenesEurographics Workshop on Rendering 2q@R02).64

CHUNG K., Kim L.-S.: Adaptive tessellation of pn triangle with modified bresenham
algorithm. SOC Design Conferen¢2003).128

CHUNG K., Kim L.-S.: A pn triangle generation unit for fast and simple tesselation
hardware lEEE International Symposium on Circuits and Syst€a093).128

CURLESSB., LEvoY M.: A volumetric method for building complex models from range
images. ACM SIGGRAPH1996).16

QGNONI P., MONTANI C., ROCCHINI C., ScOPIGNOR.: A general method for pre-
serving attribute values on simplified mesheslHEE Visualization(1998). 86

CHEN B., NGUYEN M. X.: POP: a Hybrid Point and Polygon Rendering System for
Large DatalEEE Visualization 20012001). 64

COHEN J., OLANO M., MANOCHA D.: Appearance-preserving simplficatiodCM
SIGGRAPH 9§1998).86

GOQUILLART S.: Extended freeform deformation: a sculpturing tool for 3D geometric
modeling. ACM SIGGRAPH1990).41

QURLESSB., SEITZ S.: 3d photographyACM SIGGRAPH Coursg000).14

C.LoOR SCHAEFERS.: Approximating Catmull-Clark Subdivision Surfaces with Bicu-
bic Patches Tech. rep., Microsoft Research MSR-TR-2007-44, 2Q0%2

148

[CSADO4]

[CSD02]

[DD04]

[Devos]

[DGHO1]

[DHO2]

[DQO1]

[dRBAB02]

[DVS03]

[DYQS04]

[EDD*95]

[ESV96]

[Far02]

[FCOS05]

[Fer05]
[FKN80]

[Flo03]
[For87]

[GBKO5]

COHEN-STEINER D., ALLIEZ P., DESBRUNM.: Variational shape approximation. In
ACM SIGGRAPH?2004). 25, 28, 29, 45

COHEN-STEINER D., DA F.: A Greedy Delaunay Based Surface Reconstruction Algo-
rithm. Tech. rep., INRIA Sophia Antipolis, 20026, 70

DUGUET F., DRETTAKIS G.: Flexible point-based rendering on mobile devicksEE
Computer Graphics and Applications,24(2004).85

DevVILLERS O.: Improved incremental randomized delaunay triangulation AQM
Symposium Computational Geometry 199898).68

Dey T. K., GIESEN J., HUDSON J.: Delaunay based shape reconstruction from large
data. INEEE Symposium on Parallel and Large-Data Visualization and Grap(2ie81).
16

Dey T. K., HubsonJ.: PMR: Point to mesh rendering, a feature-based appr¢BaEE
Visualization(2002). 64

DUAN Y., QIN H.: Intelligent balloon. INACM Symposium on Solid Modeling and
Applications(2001).16

DEL RO A., Boo M., AMOR M., BUGUERA J.: Hardware implementation of the
subdivision loop algorithmACM SIGGRAPH/Eurographics Graphics Hardw4g902).
108

DACHSBACHERC., VOGELGSANGC., STAMMINGER M.: Sequential point tree ACM
SIGGRAPH 20082003).57, 64, 74, 86

DUAN Y., YANG L., QIN H., SAMARAS D.: Shape reconstruction from 3d and 2d data
using pde-based deformable surfacesEGCV (2004). 34

Eck M., DEROSE T., DucHAMP T., HOPPEH., LOUNSBERY M., STUETZLE W.:
Multiresolution analysis of arbitrary meshes.AGM SIGGRAPH1995). 26

EVANS F., XIENA S. S., VARSHNEY A.: Optimizing triangle strips for fast rendering.
IEEE Visualization 19961996).66, 71, 115

FARIN G.: Curves and Surfaces for CAGD (Fifth EditioMlorgan Kaufman Inc., 2002.
130,132

FEEISHMAN S., COHEN-OR D., SILvA C.: Robust moving least-squares fitting with
sharp featuresACM SIGGRAPH?2005).17

FERNANDO R.: Shader model 3. nVidia, 200519

FucHsH., KEDESZ. M., NAYLOR B. F.: On visible surface generation by a priori tree
structures. IPACM SIGGRAPH1980).25

FLOATER M. S.: Mean value coordinate€&omp. Aided Geom. Design,2D(2003).49

FORTUNES.: A sweepline algorithm for vorono diagran#dgorithmica 2(1987), 153—
174.78

GUTHE M., BAaLzs ., KLEIN R.: Gpu-based trimming and tessellation of nurbs and
t-spline surfacesACM Transactions on Graphics 23 (2005).109

149

[GBKO6]

[GBP04]

[GBPO5]

[GBPO6]

[GD98]

[gDGPRO2]

[GGO7]

[GGSCY6]

[GHO7]

[GKS00]

[GMO04]

[GMO5]

[Goe04]

[GPO3]

[GPGO6]

[Gre06]

[Gro06]

[HDD*92]

[HDD*93]

GUTHE M., BALzs ., KLEIN R.: Gpu-based appearance preserving trimmed nurbs
rendering.Journal of WSCG 142006). 109

GUENNEBAUD G., BARTHE L., PAULIN M.: Deferred SplattingEurographicg(2004).
64

GUENNEBAUD G., BARTHE L., PAULIN M.: Interpolatory refinement for real-time
processing of point-based geometBurographicg2005).49

GUENNEBAUD G., BARTHE L., PAULIN M.: Splat-mesh blending, perspective rasteri-
zation and transparency for point-based renderindRoint-Based Graphic&006). 64

GROSSMANJ. P., DrLLY W. J.: Point sample renderindgzurographics Workshop on
Rendering 19981998).63

GRUE) DEBRY D., GiBBS J., FETTY D. D., RoBINS N.: Painting and rendering
textures on unparameterized modelsAlDM Siggraph(2002).40, 57

GUENNEBAUD G., GROSSM.: Algebraic point set surface®ACM SIGGRAPH2007).
47

@RTLER S., GRZESzZCZUKR., SELISKI R., COHEN M.: The lumigraph. INnACM
SIGGRAPH(1996).90

GARLAND M., HECKBERTP. S.: Surface simplification using quadric error metrics. In
ACM SIGGRAPH1997).25, 29, 31, 43

GoPIM., KRISHNAN S., SLVA C.: Surface reconstruction based on lower dimensional
localized delaunay triangulation. Eurographicg2000).16, 27, 28, 35, 65

GOBBETTI E., MARTON F.: Layered point clouds. IEurographics Symposium on Point
Based Graphic$2004).85, 95

GOBBETTI E., MARTON F.: Far voxelsACM SIGGRAPH?2005).57, 64, 85

GoESELEM.: New Acquisition Techniques for Real Objects and Light Sources in Com-
puter Graphics PhD thesis, Max-Planck-Institut fr Informatik (MPII), Saarbrck&er-
many, 200415, 40

GUENNEBAUD G., FauLIN M.: Efficient Screen Space Approach for Hardware Accel-
erated Surfel Renderingy/ision, Modeling and Visualizatiof2003). 64

GPGPU: General-purpose computation using graphics hagdtgp://www.gpgpu.org,
2006.107

GREEN S.: Next generation games with direct3d 1Game Developer Conference
(2006).124

GROSsSM.: Getting to the point. IEEE Computer Graphics and Applications,26
(2006).16

HopPEH., DEROSET., DUCHAMP T., MCDONALD J., STUETZLE W.: Surface recon-
struction from unorganized points. ACM SIGGRAPH1992). 16, 17, 25, 27, 28, 32,
45

HopPEH., DEROSE T., DUCHAMP T., MCDONALD J., STUETZLE W.: Mesh opti-
mization. INACM SIGGRAPH1993).25

150

[HDD*94] HoppPE H., DEROSE T., DUCHAMP T., HALSTEAD M., JN H., McDONALD J.,
SCHWEITZER J., STUETZLE W.: Piecewise smooth surface reconstruction. AGM
SIGGRAPH(1994). 16, 25

[Hec864a] HECkBERT P.: Survey of texture mappindEEE Computer Graphics and Applications
(1986).40

[Hec86b] HECKBERT P. S.: Survey of texture mappingEEE Computer Graphics and Applica-
tions 6§ 11 (1986).64

[Hei05] HeIDRICH W.: Computing the barycentric coordinates of a projected pdiatirnal of
Graphics Tools 103 (2005).49

[HHOO] HANRAHAN P., HAEBERLI P.: Direct wysiwyg painting and texturing on 3d shapes. In
ACM Siggraph(1990).40

[Hop96] HopPEH.: Progressive mesheACM SIGGRAPH1996).86, 109

[HSRGO7] HaN C., SUN B., RAMAMOORTHI R., GRINSPUNE.: Frequency domain normal map
filtering. INnACM SIGGRAPH?2007).89, 91

[ILO5] | SENBURGM., LINDSTROM P.: Streaming meshel=EE Visualization(2005).42

[ILSS06] ISENBURGM., LIU Y., SHEWCHUK J., SNOEYINK J.: Streaming computation of de-
launay triangulationsACM SIGGRAPH?2006).42, 44

[Jen96] ENSENH. W.: Global illumination using photon map&endering Techniqug&996).
40

[JKO2] JEONG W., KiMm C.: Direct reconstruction of displaced subdivision surface fronr-uno

ganized points, 2002L.6

[JT80] JACKINS C., TANIMOTO S.: Oct-trees and their use in representing three-dimensional
objects.CGIP 14(1980).25

[JZHO7] L T., ZHou Q.-Y., HU S.-M.: Editing the topology of 3d models by sketchirACM
SIGGRAPH(2007).58

[KAG *05] KEISERR., ADAMS B., GASSERD., BAzz| P., DUTR P., GROSSM.: A unified la-
grangian approach to solid-fluid animation.|[EEE/Eurographics Symposium on Point-
Based Graphic$2005).83

[Kaz05] KazHDAN M.: Reconstruction of solid models from oriented point setsSymposium
on Geometry Processin@005). 16

[KBO4] KOBBELT L., BOTSCHM.: A survey of point-based techniques in computer graphics.
Computers and Graphics, v28, (B004).63

[KBHO6] KAZHDAN M., BOLITHO M., , HOPPEH.: Poisson surface reconstruction. Sgmpo-
sium on Geometry Processi(g006).16

[KBRO4] KESSENICH J., BaLbwIN D., RosT R.: The opengl shading language.
http://www.opengl.org, 2004117

[KHSO03] KAHLER K., HABER J., SIDEL H.-P.: Dynamically refining animated triangle meshes
for rendering.The Visual Computef2003). 109

151

[KKDHO7]

[Kob0O]
[KS06]

[KSWO05]

[KVO03]

[KZB03]

[LC87]

[LCO3]

[Lev98a]

[LevO8Db]

[Lev06]

[LHO4]

[LHNO5]

[Lin0O]

[Lin03]

[LKS*06]

[LMHO0]

[Loo87]

[LPO3]

K AzZHDAN M., KLEIN A., DALAL K., HoPPEH.: Unconstrained isosurface extraction
on arbitrary octrees. I8ymposium on Geometry Processiag07). 33

KoBBELT L.: Sqrt(3) subdivisionACM SIGGRAPH2000).109, 114

KRAEVOY V., SHEFFERA.: Mean-value geometry encodingnternational Journal of
Shape Modeling 121 (2006).48, 49

KRUGER J., SCHNEIDER J., WESTERMANN R.: Duodecim - a structure for point
scan compression and rendering. Barographics Symposium on Point Based Graph-
ics (2005). 85, 96

K ALAIAH A., VARSHNEY A.: Modeling and rendering of points with local geometry.
IEEE Trans. Visualization,al (2003).63

KRIVANEK J., ZARA J., BouAaTouCH K.: Fast depth of field rendering with surface
splatting. Computer Graphics International 20¢2003). 64

LORENSENW., CLINE H.: Marching cubes : a high resolution 3d surfaceconstruction
algorithm. Computer Graphics 2(1987). 16

LARSENB. D., CHRISTENSENN. J.: Real-time terrain rendering using smooth hard-
ware optimized level of detailournal of WSCG2003).120

LEVIN D.: The approximation power of moving least squaviathematics of Computa-
tion 67, 224 (1998).17

LEVIN D.: Mesh-independent surface interpolatiddeometric Modeling for Scientific
Visualization(1998).17

LEVIN A.: Modified subdivision surfaces with continuous curvatud€M SIGGRAPH
(2006).142

LosAssoF., HopPE H.: Geometry clipmaps: Terrain rendering using nested regular
grids. ACM SIGGRAPH?2004).41

LEFEBVRES., HORNUSS., NEYRET F.: GPU Gem'’s 2: Octree Textures on the GPU
2005.40, 57

LINDSTROM P.: Out-of-core simplification of large polygonal models. AGM SIG-
GRAPH(2000). 20, 25, 43, 87

LINDSTROM P.: Out-of-core construction and visualization of multiresolution surfaces
In Symposium on Interactive 3D graphi@003), pp. 93-10285

LEFOHNA. E., KNISSJ., STRZODKA R., SENGUPTAS., ONENSJ. D.: Glift: Generic,
efficient, random-access gpu data struct&€M Transaction on Graphio®006).57

LEe A., MORETONH., HopPEH.: Displaced subdivision surfaceACM SIGGRAPH
(2000).41, 109 119

LoorC.: Smooth subdivisions surfaces based on triangiésster’s thesis, Department
of Mathematica, University of Utah, August 19833, 136, 137, 138

LINSEN L., PRAUTZSCH H.: Fan clouds - an alternative to meshe®/orkshop on
Theoretical Foundations of Computer Visi{#2003). 49, 65, 82

152

[LPC*00]

[LSLCOO05]

[LSS*98]

[LW85]

[MAMSO06]

[MJ96]

[MKO4]

[MOSAMO7]

[NRDRO5]

[OBA*03]

[PGO1]

[PGBO3]

[PGKO2]

[Pha06]

[Pix06]
[PKKGO3]

[PS96]

[Pul99]
[PZvBGOO]

LEvoy M., PuLLl K., CURLESSB., RUSINKIEWICZ S., KOLLER D., PEREIRA L.,
GINZTON M., ANDERSONS., Davis J., GNSBERG J., HADE J., FULK D.: The
digital michelangelo project : 3d scanning of large statueAGM SIGGRAPH?2000).
20, 64, 84

LIPMAN Y., SORKINE O., LEVIN D., CoHEN-OR D.: Linear rotation-invariant coordi-
nates for meshefACM SIGGRAPH?2005).48, 49

LEE A. W. F., SVELDENS W., SCHROEDERP., CowsAR L., DoBKIN D.: MAPS:
Multiresolution adaptive parameterization of surfacesAGM SIGGRAPH1998).26

Levoy M., WHITTED T.: The use of points as display primitivdR 82-022, Univ. of
North Carolina at Chapel Hil(1985).63

MUNKBERG J., AKENINE-MOLLER T., STROM J.: High quality normal map compres-
sion. INEUROGRAPHICS/SIGGRAPH Graphics Hardw&2606). 86, 90

MACCRACKEN R., Joy K. I.: Free-form deformations with lattices of arbitrary topol-
ogy. ACM SIGGRAPH1996).41

M ARINOV M., KOBBELT L.: Optimization techniques for approximation with subdi-
vision surfaces. IPACM Symposium on Solid Modeling and Applicati¢2804). 26,
34

MUNKBERG J., OL.SSONO., STROM J., AKENINE-MOLLER T.: Tight frame normal
map compression. IEUROGRAPHICS/SIGGRAPH Graphics Hardwé2607).86, 90

NEHAB D., RUSINKIEWICZ S., Davis J., RAMAMOORTHI R.: Efficiently combining
positions and normals for precise 3d geometryAGM SIGGRAPH2005).17, 32

OHTAKE Y., BELYAEV A., ALEXA M., TURK G., SEIDEL H.: Multi-level partition of
unity implicits. INnACM SIGGRAPH?2003).16, 26, 32, 35, 36

RwULY M., GROSSM.: Spectral processing of point-sampled geometryAGM SIG-
GRAPH(2001).28, 32, 67, 90, 91

FEREZ P., GANGNET M., BLAKE A.. Poisson image editingACM SIGGRAPH 223
(2003), 313-31890

PauLy M., GROssM., KoOBBELT L.: Efficient simplification of point-sampled surfaces.
In IEEE Visualization(2002). 25, 32, 46, 74, 95

RIARR M.: Interactive rendering in the post-gpu ekeynote at the 2006 Eurographic-
s/ISIGGRAPH Conference on Graphics Hardwgdeptember 20061125

PixoLoaGIc: Z brush, 200641

PauLy M., KEISER R., KOBBELT L. P., GRosSsM.: Shape modeling with point-
sampled geometn ACM SIGGRAPH?2003).51, 52, 54, 75, 76

RuLLl K., SEGAL M.: Fast rendering of subdivision surfacdsurographics Workshop
on Renderind1996).108, 137

PuLLl K.: Multiview registration for large data sets. Rroceedings of 3DIM1999).16

FrISTERH., ZWICKER M., VAN BAAR J., GROSSM.: Surfels: Surface elements as
rendering primitivesACM SIGGRAPH?2000).40, 63, 64

153

[RBO3]

[RBAOS5]

[Rig06]

[RIT-05]

[RLOO]

[RPZ02]

[Rus04]

[Sam89]

[SFS05]

[SGO1]

[SJ00]

[SIPO5]

[SIWO07]

[SLCO"04]

[SI006]

[SLS*06]

[Sor06]

[SP86]

[SPOK95]

RosSIGNACJ., BORREL P.: Multi-resolution 3d approximation for rendering complex
scenesModeling in Computer Graphicd 993). 25, 43, 87

ReEUTERP., BEHRJ., ALEXA M.: Animproved adjacency data structure for fast triangle
stripping. Journal of Graphics Tools 1@ (2005).71, 115

RIGHTHEMISPHERE Deep paint 3d, 200641

REUTER P., bYoT P., TRUNZLER J., BOUBEKEUR T., SCHLICK C.: Surface recon-
struction with enriched reproducing kernel particle approximatiofEEE/Eurographics
Symposium on Point-Based Graph{€05), pp. 79-8717

RUSINKIEWICZ S., LEvOoYy M.: Qsplat: a multiresolution point rendering system for
large meshesACM SIGGRAPH 200(2000). 20, 57, 64, 73, 74, 85, 95

REN L., PFISTERH., ZWICKER M.: Object space ewa surface splatting: A hardware
accelerated approach to high quality point rendergrographicg2002). 64

RUSINKIEWICZ S.: Estimating curvatures and their derivatives on triangle me§yes-
posium on 3D Data Processing, Visualization, and Transmis&604).111

S\MET H.: Quadtree, Octrees, and Other Hierarchical Methodddison Wesley, 1989.
25

SHEIDEGGERC. E., FLEISHMAN S., SLvA C. T.: Triangulating point set surfaces
with bounded error. licurographics Symposium on Geometry Procesgi0g5s). 32

SHAFFER E., GARLAND M.: Efficient adaptive simplification of messive meshes. In
IEEE Visualization(2001). 25

SHAUFLER G., ENSENH. W.: Ray tracing point sampled geometBendering Tech-
niques(2000).65

$IUE L.-J., ONESI., PETERSJ.: Arealtime gpu subdivision kerneACM Siggraph
(2005).109 112 137,141

SHAEFERS., U T., WARREN J.: Manifold dual contouringlEEE Transactions on
Visualization and Computer Graphi¢2007).33

SORKINE O., LIPMAN Y., COHEN-OR D., ALEXA M., ROssL C., SIDEL H.-P.:
Laplacian surface editingsymp. on Geometry Processif&§04).41, 49

S 0AN P.-P.: Direct3d 10 and beyon#eynote at the 2006 Eurographics/SIGGRAPH
Conference on Graphics Hardwa(8eptember 20061125

SHARFA., LEWINERT., SHAMIR A., KOBBELT L., COHEN-OR D.: Competing fronts
for coarse tofine surface reconstruction HHROGRAPHIC$%2006).16

SORKINE O.: Differential representations for mesh processit@pmputer Graphics
Forum 25 4 (2006).41

SDERBERGT. W., PARRY S. R.: Free-form deformation of solid geometric models.
ACM SIGGRAPH1986).41

S\WCHENKO V. V., PAsSkO A. A., OKUNEV O. G., KuNll T. L.: Function repre-
sentation of solids reconstructed from scattered surface points atmlicenComputer
Graphics Forum 144 (1995).16

154

[SSGHO1]

[Sta9s]

[Sta99]

[STKK99]

[SWO03]

[SWNDO5]

[TBHO6]

[TCS03]

[TM91]

[TO02]

[Tol99]

[TRS04]

[Tur91]

[VKO3]

[VPBMO1]

[Wal05]

[WDS04]

[WHA*07]

S\NDER P. V., SNYDER J., GORTLER S. J., HOPPEH.: Texture mapping progressive
meshes. IIACM SIGGRAPH '0X2001). 86

SAM J.: Exact evaluation of catmull-clark subdivision surfaces at arbijpargmeter
values. ACM SIGGRAPH, 1998137

Sam J.: Evaluation of loop subdivision surfaces. ACM SIGGRAPH Coursgeb|
1999.125 137

Suzukl H., TAKEUCHI S., KIMURA F., KANAI T.: Subdivision surface fitting to a
range of points. IfPacific Graphicg1999).16

SCHAEFER S., WARREN J.: Adaptive vertex clustering using octrees. Geometric
Design and Computin(2003).25, 43, 57

SHREINERD., Woo M., NEIDER J., Davis T.: OpenGL(R) Programming Guide: The
Official Guide to Learning OpenGL(R), Version 2ddison-Wesley Professional, 2005.
122

TRIFONOV B., BRADLEY D., HEIDRICH W.: Tomographic reconstruction of transpar-
ent objects. IrEurographics Symposium on Render{2606).15

TARINI M., CIGNONI P., SSOPIGNOR.: Visibility based methods and assessment for
detail-recovery. INEEE Visualization2003).86

TERzOPOULOSD., METAXAS D.: Dynamic 3d models with local and global deforma-
tions: Deformable superquadriciEEE Trans. Pattern Anal. Mach. Intell. 13 (1991).
16

TuRK G., O’BRIEN J. F.: Modeling with implicit surfaces that interpolate. vol. 28,
46

TOLEDO S.: A survey of out-of-core algorithms in numerical linear algelEaternal
memory algorithm$1999), 161-17985

ToBOR I., REUTER P., SHLICK C.: Multiresolution reconstruction of implicit sur-
faces with attributes from large unorganized point set$SHape Modeling International
(2004).16, 26, 36

TURK G.: Generating textures on arbitrary surfaces using reaction-diffudinACM
Siggraph(1991).40, 46

VANECCEK P., KOLINGEROVA, |.: Fast delaunay stripification. IBRCCG '03: Proceed-
ings of the 19th spring conference on Computer graptd€3).71

VLACHOS A., PETERSJ., BoyD C., MITCHELL J. L.: Curved pn triangles. IACM
I3D (2001).33,108 117,118 119 128 130 131, 132 138 139, 141, 142

WALD I.: Interactive ray tracing of point based models. Rroceedings of the Euro-
graphics Symposium on Point Based GrapRE05). 65

WALD I., DIETRICH A., SLUSALLEK P.: An Interactive Out-of-Core Rendering Frame-
work for Visualizing Massively Complex Models. IRroceedings of the Eurographics
Symposium on Renderii§g004).85

WEYRICH T., HEINZLE S., AILA T., FASNACHT D. B., OETIKER S., BOTSCH M.,
FLalG C., MALL S., ROHRERK., FELBER N., KAESLIN H., GRosSsSM.: A hardware

155

[WOGO05]

[WPK*04]

[WS04]

[WS06]

[XP98]

[YLMO6]

[YZ06]

[YZX *04]

[ZPKGO2]

[ZPVBGO1]

[ZPVBG02]

[ZRB*04]

[2S00]

[2SS96]

[2SS97]

architecture for surface splattingACM Transactions on Graphics (Proc. SIGGRAPH)
26, 3 (2007).64

WICKE M., OLIBET S., GROSsM.: Conversion of point-sampled models to textured
meshes. IIBymposium on Point-Based Graph{2605). 65

WEYRICHT., PauLY M., KEISERR., HEINZLE S., SCANDELLA S., GROSSM.: Post-
processing of scanned 3d surface d&arographics Symposium on Point-Based Graph-
ics(2004).16

WARREN J., SSHAEFER S.: A factored approach to subdivision surfac€omputer
Graphics and Applications 24 (2004).109

WIMMER M., SCHEIBLAUER C.: Instant points. Iiymposium on Point-Based Graphics
2006(2006).86

Xu C., PRRINCE J. L.: Snakes, shapes, and gradient vector fl®&E Transactions on
Image Processing, B (1998).90

Y OON S.-E., LAUTERBACH C., MANOCHA D.: R-lods: Fast lod-based ray tracing of
massive models the visual computer.Pacific Graphicq2006).85

YANCI ZHANG R. P.: Single-pass point rendering and transparent shadingoiit-
Based Graphic$2006).64

YU Y., ZHou K., Xu D., SHI X., BAo H., Guo B., SHuM H.-Y.: Mesh editing with
poisson-based gradient field manipulati®dM SIGGRAPH2004).41

ZWICKER M., PauLy M., KNOLL O., GROssM.: Pointshop 3d: an interactive system
for point-based surface editingCM SIGGRAPH 20022002).40, 52, 54

ZWICKER M., PFISTERH., VAN BAAR J., GROSSM.: Surface splatting ACM SIG-
GRAPH(2001).64, 67

ZWICKER M., PFISTERH., VAN BAAR J., GROSSM.: EWA splatting. IEEE Trans.
Visualization 8 3 (2002).77

ZWICKER M., RASSNENJ., BOTSCHM., DACHSBACHERC., PauLYy M.: Perspective
accurate splattingGraphics Interface 2002004). 64

ZORIN D., SCHRODERP.: Subdivision for modeling and animatioACM SIGGRAPH
Courses Note000).41, 108 128 134, 136

Z0RIN D., SCHROEDERP., SVELDENS W.: Interpolating subdivision for meshes with
arbitrary topologyACM SIGGRAPH1996).138

Z0RIN D., SCHROEDERP., SNVELDENS W.: Interactive multiresolution mesh editing.
ACM SIGGRAPH1997).26, 34, 41

156

157

Annex: Scalability and Antialiasing of
Point-Sampled Textures

Texture Antialiasing The up-scaling of the PST does not exhibit artifacts thanks to the smooth filter
ing provided by the kernel function. However, in the case of ray-tggaivhen the texture is directly
used for evaluating the color of a pixel, the down-scaling of the PST maytteakibsing. Using cone
tracing instead of ray tracing is a common (but expensive) solution tomireueh aliasing. In our case,
cone intersection can be speeded up by replacing the evaluatigfp)fby the average of the samples
falling in the spherab, centered at the intersection point. The diametePa$ chosen as the object-
space size of the pixel at the intersection point. This special evaluatiomfsrped as soon as more
than one ray sample interseds

Full Scalability At any time, if the in-core model becomes itself too large for maintaining an inter-
active frame-rate, a down-sampling is performed, again on a per-d-pasis, by replacing thieeast
Recently UsedLRU) area by a unique sample, and storing the edited piece of surfabe aiisk. Lat-

ter, if the user comes back to this part of the object, the area is reloadkdndrRU down-sampling is
again performed until reaching interactivity. In practice, it can be Usefmaintain a ring of 1-nodes at
current resolution around the currently edited piece of surface (ireidhborhood safe, whatever the
LRU selection). This simple LRU down-sampling rule makes the PST iselfable

158

159

About models and software

We would like to thank the following organizations for providing the various et®dised to test the
algorithms of this thesis:

e Stanford University and the Digital Michelangelo Project
e Aim@Shape Network
e Cyberware
e Ausonius
e EDF and L'Ecole de France D’Aémes.
We also would like to thanks the following organizations for their free 3D tools:
e Computer Graphics Group of ETH Zurich for PointShop 3D
e Blender Foundation for Blender 3D
e Stanford University for QSplat
All along this thesis we have developed 3 software tools:
e OSIRIS for processing and rendering sampled surfaces
e SIMOD for size-insensitive editing

e ARK/GLRK for real-time adaptive refinement.

160

161

Translation in French

Introduction et Contexte

La mocklisation nungriquerepiesente les objets et phonenes du mondeelle par une suite de valeurs
nunmériques @rivant leurs propétes. Parmis ces progtes, laformea une importance fondamentale
dans toutes les applications mettant en oeuvre une simulation, la plus &taptda synthse d’'une
image capturant une approximation déclairage subit par I'objet, en d’autres mots :rémdu En
amont de ce prd@e, lamocklisation geongtriqued’un objet en 3 dimensions utilise une grande &iri

de fonctions pour &crire cette forme : elle sont struckas par des relations spatiales, spectrales ou
sémantiques, et diéirent selon I'application, les contraintes de temps de calcul eédeaine, le niveau

de pEcision souhad, voire néme les egles artistiques impéss.

Le champ d’application de la métisation gonetrique et de la syn#se d’'images &tends de la sim-
ulation aux applications de divertiseement, en passant par la concepticeffdes spciaux, letude
archeologique, les jeux vigb, I'apprentissage et I'animation. Avec léwv&lopementé¢ des tech-
nologies nurariques, motié en grande partie par I'essor d’Internet, toutes ces applicationsndoive
désormais affronter une demande grandissante sur une plage de éshps, imposant de complexes
sysémes multingdia, tels que par exemple lemdeleurs CAQesmoteurs des rendu tempéealou bien
encore lesimulateurs de vol Cependant, bien que de nombreuses technologies existent aujourd’hu
pour gerer ces ofrations, un cruel manque demeure concernanélation de ce qui comptéellement

. le contenu.

Depuis des écennies, les mades 3D sont @s par des inforgraphistes, utilisants de complexes outils
informatiques afin de reproduire les objets du mordé et d’en inventer de nouveaux. Bien que certains
domaines, en particuliers dans I'industrie du divertissement, tirent pateeideompetences artistiques,
les infographiste ne peuverégondre rapidemeng‘la main” aux demandes de n@idation pecise de
surfaces&elles.

Récemment, une nouvelle technique de &l@ation aémerg: lamocklisation automatiqueou com-
ment gerérer une surface 3@ 'aide d’un scanner, exactement comme I'@nére une image avec un
appareil photo. A l'aide de ces nouvelles machinéséger des millions de polygorechantillonnant un
visage humain ne demande que quelques secondesaegla gonetrie d’un batimena une pécision
infra-millimétrique se fait en quelques heures.

Malheureusement, cette nouvelle source de demrarBne de nouveaux praighes, lesa deux car-
acéristiques essentielles de I'acquisition:

e |'acquisition est un processus discret qui ne produit qu'un ensenblhantillons. Ainsi, la
notion de surface, intrikgjuement continue, doéitre reconstruite, induisant un ensemble de
décisions plus ou moins arbitraires paiablir la connexion entre lé&chantillons ;

162

la haute pecision des feuilles de scan implique des masses deédsmmon triviales, difficilea
manipuler néme sur les machines les plus puissantes, et paéieatient lorsque un comporte-
ment ineractif est Bcessaire (traitemergédition et syntkse).

Dans cette thse, nous proposons de nouvelles structures deédsret de nouveaux algorithmes pour
les grands objets, architecisrpourétre efficicace en temps et en espace, et capables dlapmaer les
formes complexes provenant directement du pipeline d’acquisition 3D.

Descriptions des Contributions

Tout au long de ce travail de recherche, nous nous sommeséaitaiyers prokldmes les au traitement
géeonetrique eta la syntlesea partir de @onetries nunéristes. Nous m@sentons plusieurs contribtu-
ions originales dans les domaines du traitement rapide éd@itn in€ractive et du rendu de surface
échantillon@es. Voici la liste des principales contributions:

Traitement

une nouvelle structure déiarchique de partitionnement spatial, I'’Arbre Volume-Surface, sdisubs
tuant avantageusement octree pour un partitionnement efficace, et offrant une meilléaodpe
par I'erreur.

un nouvel algorithme de simplification rapide de surfaceg Isas I'Arbre Volume-Surface ;
un nouvel algorithme de reconstruction rapide de surfacessad’Arbre Volume-Surface ;

un noyau @rérique pour la simplification horsmoire.

Edition

un syséme insensibla la taille pour I&dition ingractive de grands objets;

deux algorithmes en flux pour le transfert de I'apparence et de lardafamn entre diferents
échantillonnages d’'un @me objet.

Synthese

une structure multi@solution offrant un rendu polygonal de surfaces de points ;

un enrichissement de cette structuré&garvant I'apparence des grands obgeffaide de textures
de normales ;

un noyau @rérique pour le raffinement de maillages en tenfs-avec un @placementgonétrique
arbitraire ;

un contdle des singularés de surfaces dans le raffinement ;

une approximation temp£el des surfaces de subdivision.

163

Organisation

Parmis les divers sujets ab@sgldans cette #se, une grande partie des travauxgpdents sont discés
en péambule. Afin de g@server une certaine clartnous ne msentons pas I'ensembles des travaux
précdents en un seul chapitre, et leépartissons, selon le contexte, awbdts des diffrents chapitres.

Ce manuscrit est orgai@®n 3 parties :
Part | : nouveaux traitementéaprétriques et rathodes céditions pour les grands objets.

Chapter 3 : introduction de I'Arbre Volume-Surface et de ses applicatiaria simplification eta la
reconstruction de surfaces.

Chapter 4 : description d'un sy&time insensibla la taille pour I&dition ineractive de grands objets.
Part Il : une nouvelle structure mulésolution pour le rendu polygonal de surfaces de points.
Chapter 5 : gérération et rendu en-emoire de la structur& partir d’'un nuage de points.

Chapter 6 : enrichissement hors&moire de cette structure pour leépervation de I'apparence des
grands objets.

Part lll : synthese @onetrique tempséel par raffinement pour les applicationsirsctives.

Chapter 7 : description d’un nouveau noyau pour le raffinement adaptatif et le displent en une
seule passe de rendu.

Chapter 8 : contile des singularéts de surface pour la régsentation des ates vives, de la tension et
du biais au cours du raffinement.

Chapter 9 : approximation des surfaces de subdivision pour la ®sglgonetrique tempséel.

Chaque chapitreabute par une description du contexte et dtaf de I'art du sous-domaine relatif.
Chaque contribution est sgshatique accompage d’une discussion sur lessultats, les performances,
les limitations et les perspectives d’avaes lees au domaine.

Reésultats et Conclusion

Au cours de cette &€, nous avons progmde nouvelles techniques pour le traitement rapiééjtion

et le rendu de gonttrie nunérisces. Ces techniques offrent des solutions efficaces @naine et

en tempsa de nombreux probmes apparaissant lors de I'acquisition de surfaces pour les applications
graphigues. Elles sont toutes construites sur un ensembles de nouweaagts et structures de dé@as

qui sont suffisammentéagériques pouétre utilises dans d’autres contextes.

Premerement, nous avons introduit I’Arbre Volume-Surface en montrantguatructure lérarchique

de partitionnement spatiale peut mieux prendre en comptedaggjrie d'une surface 3D en utilisant un
sckema hybride de partitionnementgiangeant dcomposition 3D et&omposition 2D. Le partition-
nement hierarchiquétant au coeur de nombreux algorithmes de traitemeatrgtrique, nous avons
ensuite appligé cette structure aux prashes de la simplification de surface et de la reconstruction de
surface. Les algorithmes obtenusé&liorent le compromis temps-quaite I'etat de I'art et illustrent
clairement le fait que les quaré& et mesuresagnetriques ne sont pas seules en charge de la gualit
du résultat d’un traitement, et que la structure uéiégpour localiser les calculssgalement une grande
influence.

164

Deuxiemement, nous avonsgsenter le premier sysne dédition in€éractive pour grands objets. Ce
systme autorise une manipulation de haut niveau de I'apparence et de lasfdenggandes surfaces,
sans @&cessiter d'information topologique sur les retas. Bien entendu, ce sgste trouve sa premie
utilité dans le cadre des objets scasypour lesquels on souhaité&perver toute larichesse de I'information
geonetrique. Ce sy&ime est bas sur un principe @&chantillonnage-reconstructigorou deux algo-
rithmes en flux assurent le “dialogue” entre un programme et les massesmb®ed en stockage externe.
Le premier algorithme effectue une simplification adaptive en flux. L'apparet la forme du made
simplifié peuvent ensuitétreédites. Enfin, le second algorithme transfert ces modifications au grand
objet original. Les deux algorithmes fonctionnent en flux sonébamints, ce qui permet de manipuler
de grandes masses de déaa non structées. De plus, le syisine reste actif pendangtition, offrant

la possibilig de raffinea la demande lagpnétrie manipukea partir du grands mades, et fournissant

un syseme multiéchelles hors-émoire grérique. On notera que la ré&sentation simpliée, baée-
points a offert toute la flexibilé requise en terme @dition durant les nombreuses éxjmmentations
merees : les moeles de points prouvent ainsi leur gujprité aux textureségulieres, et plus encore
dans le cadre des grands objets.

Troisiemement, nous avons abérkk probéme de la synése d’'images partir de surfaces de points,
une étape Bcessaire pour visualiser les nédeks nurgrises avant reconstruction. En fait, nous avons
monte gu'une surface de points pektre interfaéea faible cdit avec le systme de rendu polygonal
maeriel (GPU), en grérant localement un maillage en deux dimensions orgaséss une structure
hiérarchique: leSurfel Stripping Cette approche ouvre la voiel'utilisation du large &pertoire de
techniques de rendu polygonal aux surfaces de points eésermie comme une alternativesplattinget
auray tracing De plus, @&s lors que I'objet en eréie est trop grand, nous avons prapons algorithme en
flux capable de capturer la plus grande partie de la richesse visuelldbi,l'en extrayant directement
un ensemble de cartes de normales (et couleurs) en hfiriéidn a partir du moéle de points, utilies
ensuite sur lesurfels strips

Finalement, nous nous sommes orégeners la snytbse @onetrique pour les applications &ractives.
Nous avons introduit un noyaw@gerique de raffinement de maillage sur GPU qui autorise le raffinement
de maillages arbitraires avec displacemenarbitraire, offrant des performances tempgstpour une
synthese @onetrique haute éfinition. Ce noyau permet de traiter directement leséasgntations de
haut niveau, telles que les surfaces de subdivision, au niveauammitCPU, laissant le GPU@er une
surface raffi@e en une unique passe de rendu, au nivearedex shaderA l'aide de ce noyau, nous
avonsété en mesure de proposer un cohipcal des singularits de surfaces, en legaivanta haut
niveau par des facteurs de formes scalaires. Enfin, nous avordedbé@robéme du rendu temp®el

de surfaces de subdivision en proposant une approximatid@vdaila €cursion tout en offrant un rendu
adaptatif tempséel.

Cette derniére contribution ouvre la voia la syntlese @onetrique dirigce par les doreges. Comme
mont© tout au long de cette ése, les mogles nungrises doiventequilibrer qualié et efficacié afin
d’étre implanés dans les applications infographiques. Pléigement, nous avonségelopg trois
types d’analyse:

e unedécomposition tararchique volume-surfaagui aneliore le traitement gonétrique des sur-
faces 3D, tout en offrant la possibéitle mettre en oeuvre des algorithmes de dimensi@niéufr

e un sclema déchantillonnage-reconstruction en flux qui structuéelition hors-némoire

e une syntesepar l'instance qui offre un raffinement gonétrique flexible pour les applications
temps-eel.

Ces trois approcheségérales, combigesa la ¢erérictié des néthodes par points, peuveétre ap-

165

pliquéesa divers autres probimes, notamment la compressioggdition de topologie, le calcul de visi-
bilité et la syntbse g@onetrique par les dorées. Ce dernier sujet ré&ggente probablement la direction
de recherche la plus prometteuse, puisque la taille grandissante desis@ierecessitera rapidement
le developpement de repsentations de plus haut niveau permetdatfois une structuration dynamique
pour I'édition et uréchantillonnage j&cisa la demande pour la syritbe tempséel.

Enfin, nous pensons que le lien entre deesechantilloniges et proedurales demeure un préhe
majeur : les prengires sont les seules informations capés du mondeéel, et les secondes sont le
langage natif des machines. Nous aborderons cegmrabtans les travauxvenir.

166

167

Author’s Publications

e Publications in 2007:
— A Flexible Kernel for Adaptive Mesh Refinement on GPU Tamy Boubekeur, Christophe Schlick
Computer Graphics Forum, Volume to appear
— QAS: Real-time Quadratic Approximation of Subdivision Sufaces on GPU Tamy Boubekeur,
Christophe SchlickProceedings of Pacific Graphics 2007 to appear
— SIMOD: Making Freeform Deformation Size-Insensitive Tamy Boubekeur, Olga Sorkine, Christophe
Schlick IEEE/Eurographics Symposium on Point-Based Graphicg #®@ppear
— GPU Gems 3: Generic Adaptive Mesh RefinemenTamy Boubekeur, Christophe Schligiddison-
Wesley, page 93-104 2007 to appear
— Approximation of Subdivision Surfaces for Interactive Applications, Tamy Boubekeur, Christophe
Schlick ACM Siggraph 2007 - Sketch Program to appear
— Scalable Freeform Deformation Tamy Boubekeur, Olga Sorkine, Christophe Schlii&M Sig-
graph 2007 - Sketch Program to appear
— On-the-fly Appearance Quantization on GPU for 3D Broadcashg, Julien HadimTamy Boubekeur,
Mickal Raynaud, Xavier Granier, Christophe Schji&iCM SIGGRAPH Web3D 2007
— Informatique Graphique et Rendu - Rendu par Points, Christophe Schlick, Patrick Reuter, Tamy
BoubekeurHermes Science Publication, 2006
e Publications in 2006:
— Volume-Surface Trees Tamy Boubekeur, Wolfgang Heidrich, Xavier Granier, Clufigte Schlick
Computer Graphics Forum - EUROGRAPHICS 2006, Volume 25, bem3, page 399-406
— Interactive Out-Of-Core Texturing, Tamy Boubekeur, Christophe SchjiédlCM SIGGRAPH 2006
- Sketch Program
— Interactive Out-Of-Core Texturing Using Point-Sampled Textures Tamy Boubekeur, Christophe
Schlick IEEE/Eurographics Point-Based Graphics 2006
— Local Reconstruction and Visualization of Point-Based Stiaces Using Subdivision Surfaces
Tamy Boubekeur, Patrick Reuter, Christophe Schi@@mputer Graphics & Geometry, Volume 8,
Number 1, page 22-40, 2006
— Quantification la vole de I'apparence sur GPU Julien Hadim,Tamy Boubekeur, Xavier Granier,
Christophe SchlickAFIG 06
e Publications in 2005:
— Generic Mesh Refinement On GPUTamy Boubekeur, Christophe Sch|idCM SIGGRAPH/Eu-
rographics Graphics Hardware 2005
— Rapid Visualization of Large Point-Based SurfacesTamy Boubekeur, Florent Duguet, Christophe
Schlick EUROGRAPHICS VAST 2005
— Surfel Stripping, Tamy Boubekeur, Patrick Reuter, Christophe Schk¢&M Graphite 2005
— Visualization of Point-Based Surfaces with Locally Recostructed Subdivision Surfaces Tamy
Boubekeur, Patrick Reuter, Christophe Schliskape Modeling International 2005
— Scalar Tagged PN TrianglesTamy Boubekeur, Patrick Reuter, Christophe SchEdHROGRAPH-
ICS 2005 - Short Papers
— Surface Reconstruction with Enriched Reproducing KernelParticle Approximation, Patrick
Reuter, Pierre Joyot, Jean Trunzler, Tamy Boubekeur, @ipise SchlicklEEE/Eurographics Sym-
posium on Point-Based Graphics 2005, page 79-87
— Multiresolution in Geometric Modeling - Techniques and Trends, Patrick Reuter, Tamy Boubekeur
Virtual Concept 2005 - Invited Session

168

