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Genomics of perivascular space burden  
unravels early mechanisms of cerebral  
small vessel disease

Perivascular space (PVS) burden is an emerging, poorly understood, 
magnetic resonance imaging marker of cerebral small vessel disease, a 
leading cause of stroke and dementia. Genome-wide association studies 
in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 
96.9% European ancestry) revealed 24 genome-wide significant PVS risk 
loci, mainly in the white matter. These were associated with white matter 
PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched 
in early-onset leukodystrophy genes and genes expressed in fetal brain 
endothelial cells, suggesting early-life mechanisms. In total, 53% of white 
matter PVS risk loci showed nominally significant associations (27% after 
multiple-testing correction) in a Japanese population-based cohort 
(N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal 
associations of high blood pressure with basal ganglia and hippocampal 
PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting 
for blood pressure. Our findings provide insight into the biology of PVS and 
cerebral small vessel disease, pointing to pathways involving extracellular 
matrix, membrane transport and developmental processes, and the 
potential for genetically informed prioritization of drug targets.

PVS are physiological spaces surrounding small vessel walls as they run 
from the subarachnoid space through the brain parenchyma1–3. Dilation 
of PVS observed on brain magnetic resonance imaging (MRI) is thought 
to be a marker of PVS dysfunction and, speculated from preclinical 
studies, to reflect impairment of brain fluid and waste clearance2,4.

PVS increase in number with age and vascular risk factors, espe-
cially hypertension2. They are associated with white matter hyperin-
tensities (WMH) of presumed vascular origin, lacunes and cerebral 
microbleeds2, all MRI features of cerebral small vessel disease (cSVD), 
a leading cause of stroke and dementia with no specific mechanistic 
treatment to date5,6. PVS are detected on brain MRI much earlier than 
WMH, lacunes or cerebral microbleeds7, and are described as the earli-
est stage of cSVD lesions on neuropathology8. Their pathophysiology 
is poorly understood6,9.

In experimental models, PVS appear to be important conduits 
for substrate delivery, flushing interstitial fluid, clearing metabolic 

waste (for example, beta-amyloid peptide) and brain fluid regulation, 
as part of the ‘glymphatic system’4,7. These processes were described 
to increase during sleep2,4,7. Mounting evidence suggests a major role 
of PVS in cerebral injury. Several studies suggested associations of PVS 
burden (number of visible PVS on brain MRI) with stroke2,6,10, Alzhei-
mer’s disease pathology2 and cerebral amyloid angiopathy (CAA)11–13. 
Post-stroke edema has been linked to post-stroke PVS enlargement14, 
and in amyotrophic lateral sclerosis PVS dilation was observed and 
perivascular fibroblast proteins were associated with survival15.

PVS burden is highly heritable16. Identifying genetic risk variants 
for PVS could be a powerful tool to decipher underlying biological 
pathways. We conducted genome-wide association study (GWAS) 
meta-analyses and whole-exome/whole-genome sequencing (WES/
WGS) studies of extensive PVS burden in up to 40,095 and 19,010 
older community participants, respectively. Given differential asso-
ciations with risk factors and neurological traits2,10,17 and anatomical 
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differences18, we ran analyses separately for white matter (WM)-PVS, 
basal ganglia (BG)-PVS and hippocampal (HIP)-PVS. We followed up 
identified risk loci in independent samples of young healthy adults 
and older Japanese community participants and examined shared 
genetic determinants with other vascular and neurological traits. 
Leveraging tissue and cell-specific gene expression databases and drug 
target libraries, we conducted extensive bioinformatics exploration of 
identified PVS risk loci.

Results
Genetic discovery
Twenty-one population-based cohorts were included, of which 18 were 
for GWAS and 8 for whole-exome association studies (Supplementary 
Table 1 and Methods). We tested associations of extensive PVS burden 
with ~8 million single-nucleotide polymorphisms (SNPs) (minor allele 
frequency (MAF) ≥ 1%) in GWAS meta-analyses, gathering up to 40,095 
participants (66.3 ± 8.6 yr, 51.7% female, 66.7% with hypertension; 
Supplementary Tables 1–3). We dichotomized PVS burden based on 
cut-offs closest to the top quartile of PVS distribution to account for 
differences in PVS quantification methods, image acquisition and par-
ticipant characteristics (Supplementary Tables 1 and 2 and Methods). In 
total, 9,607 of 39,822, 9,189 of 40,000, and 9,339 of 40,095 participants 
had extensive PVS burden in WM, BG and hippocampus.

The GWAS meta-analysis comprised 17 cohorts from the Cohorts 
for Heart and Aging Research in Genomic Epidemiology (CHARGE) con-
sortium (N ≤ 11,511)19, with PVS quantification primarily on visual rating 
scales, and UK Biobank (UKB, N ≤ 28,655), with computational PVS 
quantification (Methods). Participants were of European (N = 38,871), 
Hispanic (N = 717), East-Asian (N = 339) and African-American (N = 168) 
ancestry. We identified 22 independent genome-wide significant risk 
loci for extensive PVS burden (WM-PVS: 19; BG-PVS: 2; HIP-PVS: 3  
(2 shared with WM-PVS)) and two additional risk loci for WM-PVS in 
Europeans only, leading to 24 independent signals (Table 1, Fig. 1, 
Extended Data Fig. 1 and Supplementary Fig. 1). There was no system-
atic inflation of association statistics (Supplementary Table 4 and 
Extended Data Fig. 1).

We performed conditional logistic regression using Genome-wide 
Complex Trait Analysis (GCTA)-COJO (Methods) to seek independent 
association signals within genome-wide significant loci. Consistent 
with linkage disequilibrium (LD)-based clumping, this identified two 
independent signals at chr3p25.1 (WNT7A) and six at chr20q13.12 
(SLC13A3; Supplementary Fig. 1 and Supplementary Table 5a), four of 
which with low-frequency variants (Table 1). The six polymorphisms at 
chr20q13.12 generated eight haplotypes with haplotypic R2 (percent-
age of haplotypic variability explained by observed genotypes) > 0.7 
in the Three-City Dijon Study (3C-Dijon) cohort, of European ancestry 
(N = 1,500; Supplementary Table 5b). The two common rs2425881-A 
and rs2425884-C alleles, in very low LD with each other (r2 (a measure 
of correlation of alleles for two genetic variants) ~ 0.05, D′ (a pairwise r2 
standardized for allele frequencies) ~ 0.50), generated a common hap-
lotype that was more frequent in individuals with extensive WM-PVS 
than in those without (0.50 versus 0.47, odds ratio (OR) = 1.19 (95% 
confidence interval (95% CI), 0.99–1.43)). The effect of this haplo-
type was amplified by 1.7 in the presence of the rs112407396-T allele 
(MAF = 0.03), which has a high probability of being a regulatory variant 
(HaploReg, GTex, RegulomeDB). Next, to account for allelic heteroge-
neity between ancestries, we conducted cross-ancestry meta-analyses 
with MR-MEGA (Methods). There were no loci showing high hetero-
geneity in allelic effects across ancestries (PHet < 0.01) and reaching 
genome-wide significance (Supplementary Table 6).

Using MAGMA and VEGAS, we performed gene-based association 
analyses in participants of European ancestry, testing the combined 
association of variants within a gene with PVS (Methods). MAGMA iden-
tified 28 gene-wide significant associations (P < 2.63 × 10−6), of which 12 
in 8 loci did not reach genome-wide significance in the GWAS (WM-PVS: 

3 (INS-IGF2/IGF2, PRKAG2, LRP4/CKAP5); BG-PVS: 4 (SH3PXD2A, WNT3, 
ZMYND15, KCNRG/TRIM13/SPRYD7); and HIP-PVS: 1 (PDZRN4); Fig. 1 and 
Supplementary Table 7). VEGAS identified one additional gene (NSF) 
for BG-PVS (same locus as WNT3; Supplementary Table 7). All were in 
suggestive GWAS loci (P < 5 × 10−6; Supplementary Table 8).

Using LD-score regression, we estimated heritability at 11% for 
WM-PVS, 5% for BG-PVS and 8% for HIP-PVS (Methods and Supplemen-
tary Table 9). We found moderate genetic correlation between BG-PVS 
and HIP-PVS (rg (SE) = 0.63 (0.14), P = 7.23 × 10−6), and modest genetic 
correlation of WM-PVS with BG-PVS (rg (SE) = 0.24 (0.12), P = 0.055) 
and HIP-PVS (rg (SE) = 0.27 (0.09), P = 0.003). The genetic correlation 
of PVS in CHARGE and UKB was moderate to high for WM-PVS and 
HIP-PVS and weaker for BG-PVS (Supplementary Table 10). Associa-
tions with genome-wide significant PVS loci were highly consistent 
between the UKB and CHARGE contributions and between the two 
dichotomous and the continuous PVS measures in UKB (Methods and 
Supplementary Tables 11 and 12). In sensitivity analyses in two repre-
sentative cohorts (UKB and 3C-Dijon), continuous and dichotomous 
PVS measures were strongly correlated (Spearman’s ρ, 0.61–0.80; 
Supplementary Table 13).

To increase statistical power, we conducted secondary multi-
variate association analyses using Multi-Trait Analysis of GWAS 
(MTAG) (Methods), including summary statistics from GWAS of other 
cSVD markers (WMH volume, lacunes; Supplementary Table 14). We 
observed the highest gain in power for BG-PVS: ten additional loci 
reached genome-wide significance, of which two also for HIP-PVS 
(STN1, DEGS2/EVL). Two MTAG BG-PVS loci (CACNB2, NSF/WNT3) and 
one MTAG WM-PVS locus (VWA2) were not described before with any 
MRI marker of cSVD. Six loci showed greater significance in MTAG 
than with PVS, WMH volume or lacunes alone: at VWA2 (WM-PVS); 
SH3PXD2A/STN1, COL4A2, CACNB2 and NSF/WNT3 (BG-PVS); and 
DEGS2/EVL (BG-PVS, HIP-PVS).

Using WES data and exome content of WGS data in 19,010 par-
ticipants from UKB and the Brain Imaging, cognition, dementia, 
and next-generation genomics (BRIDGET) consortium (Methods 
and Supplementary Table 1), of whom 4,531, 4,424 and 4,497 had 
extensive PVS in WM, BG and hippocampus, we identified 19 variants 
in the chr1q25.3 locus associated with HIP-PVS, including two mis-
sense variants (rs20563 and rs20558) and one splice donor insertion 
(rs34133998) in LAMC1 at P < 5 × 10−8, in strong LD with the GWAS 
sentinel variant (Supplementary Table 15a). Gene-based burden 
tests exploring protein-modifying rare variants (MAF < 0.01) did 
not identify any gene-wide significant association (Supplementary 
Table 15b).

Follow-up of findings across the lifespan and ancestries
We explored associations of WM-PVS and BG-PVS risk variants with 
these phenotypes in young adults (Internet-based Students’ HeAlth 
Research Enterprise (i-Share) study, N = 1,748, 22.1 ± 2.3 yr) and in older 
Japanese community-dwelling people (Nagahama study, N = 2,862, 
68.3 ± 5.3 yr; Methods). We used an artificial intelligence-based method 
to derive quantitative WM-PVS and BG-PVS burden (HIP-PVS not avail-
able) and dichotomized it (top quartile versus the rest; Supplementary 
Table 2). In total, 67% of WM-PVS loci reached nominally significant 
associations in at least one of the two follow-up cohorts (P < 0.05 in 
i-Share and/or Nagahama), 43% of which at P < 1.09 × 10−3 (correcting 
for the number of loci tested), with consistent directionality of effect 
(a binomial test showed significant concordance of risk alleles; Sup-
plementary Table 12b). In i-Share, 52% of WM-PVS risk variants were 
associated with WM-PVS (P < 0.05, of which 4 at P < 1.09 × 10−3; Table 2  
and Supplementary Table 12a). A WM-PVS rescaled weighted genetic 
risk score (rwGRS) derived from European GWAS loci was associated 
with WM-PVS in i-Share (OR = 1.16 (95% CI, 1.08–1.24), P = 5.89 × 10−6 and 
β (SE) = 0.064 (0.007), P = 2.06 × 10−19 for dichotomous and continuous 
measures; Supplementary Fig. 2). Although meta-regression suggested 
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larger effect sizes at younger ages for lead variants at OPA1 and SLC13A3, 
differences were not significant after removing the much younger 
i-Share cohort (Supplementary Fig. 3). In Nagahama, out of 15 available 
WM-PVS risk loci (six were rare or monomorphic), eight loci (53%) were 
associated with continuous PVS burden at P < 0.05, of which four at 
P < 1.09 × 10−3 and one at genome-wide significance (at SLC13A3; Table 2 
and Supplementary Table 12a). A European WM-PVS weighted genetic 

risk score (wGRS) combining 14 independent loci (1000 Genomes pro-
ject (1000G) Japanese reference panel) was associated with WM-PVS in 
Nagahama (OR = 1.18 (95% CI, 1.13–1.24), P = 5.68 × 10−13 and β (SE) = 0.01 
(0.001), P = 7.18 × 10−18 for dichotomous and continuous measures). 
Although HIP-PVS data were not available in the follow-up cohorts, 
two of the three HIP-PVS loci were shared with WM-PVS and replicated 
with that phenotype.

Table 1 | Genetic variants associated with high PVS burden

Region SNP ALL chr:position EA/OA EAF Function Nearest 
gene(s)

Effect 
(β)a

SEa Z- 
scoreb

Dirb N ext-PVS/N 
total

P value EUR P value All Het P 
value

PVS in white matter (WM-PVS)

20q13.12 rs6011998 20:45269867 C/T 0.95 intronic SLC13A3 0.087 0.009 10.65 ++++ 9,502/39,128 1.90 × 10−24 1.80 × 10−26 0.11

3p25.1 rs13079464 3:13822439 C/G 0.46 intergenic WNT7A 0.026 0.004 8.70 ++++ 9,614/39,822 8.64 × 10−17 3.41 × 10−18 0.59

20q13.12 rs2425884 20:45258292 C/T 0.57 intronic SLC13A3 0.029 0.004 8.63 +−+− 9,614/39,822 2.60 × 10−18 6.02 × 10−18 0.14

9q31.3 rs10817108c 9:113658671 A/G 0.21 intronic LPAR1 0.029 0.004 8.20 +++? 9,550/39,516 1.07 × 10−15 2.46 × 10−16 0.75

20q13.12 rs2425881 20:45255618 A/G 0.83 intronic SLC13A3 0.033 0.005 7.68 +−+? 9,496/39,087 2.02 × 10−15 1.59 × 10−14 0.06

3q21.2 rs3772833 3:124518362 G/A 0.83 intronic ITGB5, 
UMPS

0.032 0.005 7.67 +++? 9,496/39,087 2.15 × 10−13 1.76 × 10−14 0.39

20q13.12 rs112407396 20:45276381 T/A 0.03 intronic SLC13A3 0.078 0.012 6.91 +??? 8,426/34,530 4.81 × 10−12 4.81 × 10−12 1.00

1q41 rs10494988 1:215141570 C/T 0.63 intergenic CENPF, 
KCNK2

0.021 0.004 6.54 ++++ 9,614/39,822 2.23 × 10−10 6.03 × 10−11 0.69

20q13.12 rs72485816d 20:45314435 T/C 0.96 UTR3 TP53RK, 
SLC13A3

0.059 0.010 6.45 ++?− 9,114/37,342 1.47 × 10−10 1.12 × 10−10 0.87

15q25.3 rs8041189 15:85686327 G/A 0.70 intergenic PDE8A 0.022 0.004 6.44 +−?? 9,486/39,315 7.30 × 10−11 1.24 × 10−10 0.31

3p25 rs4685022 3:13832611 G/A 0.65 intergenic WNT7A 0.019 0.004 6.40 +++? 9,576/39,654 2.36 × 10−09 1.58 × 10−10 0.11

2p16.1 rs7596872 2:56128091 C/A 0.90 intronic EFEMP1 0.033 0.006 6.31 +−?? 9,333/38,442 1.00 × 10−10 2.80 × 10−10 0.11

17q21.31 rs1126642 17:42989063 C/T 0.96 exonic GFAP 0.051 0.009 6.23 +?+? 9,119/37,466 6.19 × 10−10 4.67 × 10−10 0.72

3q29 rs687610d 3:193515781 G/C 0.43 intergenic OPA1 0.021 0.004 6.20 +++− 9,614/39,822 2.99 × 10−10 5.81 × 10−10 0.76

6p25.2 rs4959689 6:2617122 C/A 0.58 intergenic C6orf195 0.020 0.004 6.03 ++++ 9,582/39,695 3.37 × 10−09 1.63 × 10−09 1.00

20q13.12 rs56104388 20:45302135 T/C 0.99 intronic SLC13A3 0.101 0.017 5.85 +??? 7,626/30,916 4.80 × 10−09 4.80 × 10−09 1.00

11q13.3 rs12417836 11:70089700 T/C 0.07 intergenic FADD, 
PPFIA1

0.034 0.007 5.58 +−+? 9,464/38,960 1.56 × 10−08 2.47 × 10−08 0.40

8p11.21 rs2923437d 8:42425399 A/C 0.41 intergenic SMIM19, 
CHRNB3, 
SLC20A2

0.018 0.004 5.49 ++−− 9,614/39,822 4.73 × 10−08 4.08 × 10−08 0.14

6p25.3 rs1922930 6:1364691 C/A 0.12 intergenic FOXQ1, 
FOXF2

0.029 0.006 5.47 ++?? 9,406/38,748 3.60 × 10−08 4.62 × 10−08 0.48

19p13.11 rs2385089 19:18550434 A/C 0.74 intergenic ISYNA1, 
ELL, 
LRRC25c

0.023 0.005 5.49 +++− 9,614/39,822 4.14 × 10−08 5.73 × 10−08 0.57

7q33 rs10954468 7:134434661 C/A 0.40 intergenic BPGM, 
CALD1c

0.019 0.004 5.52 +−?+ 9,524/39,483 3.39 × 10−08 8.79 × 10−08 0.29

PVS in basal ganglia (BG-PVS)

2q33.2 rs4675310d 2:203880834 A/G 0.87 intronic NBEAL1, 
ICA1L

0.027 0.005 5.92 ++?? 9,011/39,243 2.71 × 10−09 3.27 × 10−09 0.64

3q26.31 rs6769442 3:171565463 G/A 0.75 intronic TMEM212 0.020 0.004 5.74 ++?+ 9,101/39,788 1.68 × 10−08 9.34 × 10−09 0.96

PVS in hippocampus (HIP-PVS)

1q25.3 rs10797812d 1:182984597 A/G 0.54 intergenic SHCBP1L, 
LAMC1

0.027 0.004 7.84 ++++ 9,399/40,095 1.67 × 10−14 4.39 × 10−15 0.68

2p16.1 rs78857879d 2:56135099 G/A 0.90 intronic EFEMP1 0.038 0.006 6.43 +??? 9,033/38,008 8.20 × 10−11 1.31 × 10−10 1.00

1q41 rs6540873 1:215137222 A/C 0.62 intergenic CENPF, 
KCNK2

0.020 0.004 5.95 +−−+ 9,399/40,095 1.38 × 10−09 2.72 × 10−09 0.11

EA, effect allele; OA, other allele; EAF, effect allele frequency; Z-scores of the sample size-weighted cross-ancestry meta-analysis are represented, except for the two SNPs reaching genome-wide 
significance in Europeans only (rs2385089, rs10954468) for which the European meta-analysis Z-score is reported; dir, the association direction of the EA with the phenotype (extensive PVS 
burden versus the rest) for European, Hispanic, Asian and African-American ancestry studies, in this order; N ext-PVS, the number of participants with extensive PVS burden in the cross-ancestry 
meta-analysis, in each location (WM-PVS, BG-PVS, HIP-PVS); N total, the total number of participants in the cross-ancestry meta-analysis; P value EUR, P value in the European meta-analysis; P 
value All, P value in the cross-ancestry meta-analysis; Het P value corresponds to the heterogeneity P value in the meta-analysis (except for rs2385089 and rs10954468 for which the European 
meta-analysis Het P value is reported); P values for genome-wide significant loci (P < 5 × 10−8) are in bold; PVS GWAS analyses in individual cohorts were adjusted for age, sex and intracranial 
volume (or brain parenchymal fraction for ASPS), principal components of population stratification, and study site. aFrom cross-ancestry inverse variance-weighted meta-analysis. bFrom 
cross-ancestry Z-score-based meta-analysis. cGenome-wide significant association in Europeans only. dFor these loci, the lead SNP was different in the European meta-analysis (Cross-ancestry 
lead SNP → European lead SNP: rs72485816→rs6094423; rs687610→rs6444747; rs2923437→rs62509329; rs4675310→rs140244541; rs10797812→rs2022392; rs78857879→rs7596872); the P value 
corresponding to the European lead SNP is reported under "P value EUR" (r² > 0.50 between the European and cross-ancestry lead SNPs at these loci).
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Clinical correlates of identified PVS loci
We examined whether PVS risk loci (lead and proxy variants with r2 > 0.9) 
were associated with MRI markers of brain aging, putative risk factors 
(vascular risk factors and sleep patterns) and common neurological 
diseases (stroke, Alzheimer’s disease, Parkinson’s disease), using the 
largest published GWAS (Methods). Of 24 independent PVS risk loci, 
five (21%) were significantly (P < 3.3 × 10−5) associated with WMH volume 
and five (21%) with blood pressure traits (in the same and opposite direc-
tions; Fig. 2). Colocalization analyses suggested a shared causal variant 
for two-thirds of these associations (posterior probability for a shared 
causal variant, PP4 > 0.75; Supplementary Table 16). Sixteen PVS loci 
(67%) did not show any association with vascular or neurological traits, 
thus pointing to pathways that do not seem mediated by established 
risk factors (Methods and Supplementary Tables 16 and 17).

Second, we explored genetic correlations of PVS burden with 
the same traits using LD-score regression (Methods, Fig. 3 and Sup-
plementary Table 9). We observed significant (P < 7.9 × 10−4) genetic 
correlation of BG-PVS with larger WMH and caudate nucleus volumes, 
and of HIP-PVS with larger hippocampal volume. BG-PVS and HIP-PVS 
showed significant genetic correlation with higher systolic blood pres-
sure (SBP), diastolic blood pressure (DBP), any stroke and ischemic 
stroke, and nominally significant genetic correlation with (deep) 

intracerebral hemorrhage (ICH). Genetic correlations were consist-
ent in secondary analyses conducted separately in CHARGE and UKB 
(Supplementary Table 9).

Third, we used two-sample Mendelian randomization (MR) to seek 
evidence for a causal association of putative risk factors with PVS bur-
den and of PVS burden with neurological diseases, using generalized 
summary-data-based MR (GSMR), and confirming significant associa-
tions (P < 1.19 × 10−3) with RadialMR, TwoSampleMR and MR-CAUSE 
(Methods). Genetically determined higher SBP and DBP were consist-
ently associated with BG-PVS, HIP-PVS and WM-PVS, although for 
WM-PVS the association with SBP was only nominally significant in 
RadialMR (Supplementary Table 18 and Extended Data Fig. 2). There 
was no evidence for reverse causation using MR-Steiger, but some 
evidence of residual pleiotropy after removal of outlier variants for 
SBP and DBP (RadialMR), with significant evidence for a causal model in 
MR-CAUSE for BG-PVS. Genetic liability to BG-PVS and HIP-PVS derived 
from a multi-trait analysis accounting for other MRI markers of cSVD 
(MTAG) was associated with an increased risk of any stroke, ischemic 
stroke and small vessel stroke (SVS) for BG-PVS, and SVS for HIP-PVS, 
suggesting that shared pathways between PVS, WMH and lacunes 
may be causally associated with stroke (Supplementary Table 18 and 
Extended Data Fig. 3). In multivariable MR analyses accounting for 
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Fig. 1 | Illustration of extensive PVS burden and results of the cross-ancestry 
PVS GWAS meta-analysis, MTAG analysis and gene-based test. a, Extensive PVS 
burden (arrows) in WM (top, WM-PVS), BG (middle, BG-PVS) and hippocampus 
(bottom, HIP-PVS) on T1-weighted axial magnetic resonance images. b, Circular 
Manhattan plot. The inner circle corresponds to the cross-ancestry GWAS meta-

analyses results, the middle circle to the results of the MTAG analysis and the 
outer circle to gene-based test results. Results for WM-PVS are in blue, for BG-PVS 
in purple and for HIP-PVS in green. The gray line corresponds to the genome-wide 
significance threshold (P = 5 × 10−8, two-sided, correcting for multiple testing at 
the genome-wide level).
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Table 2 | Association of genome-wide significant WM- and BG-PVS risk loci with PVS burden across the lifespan 
(i-Share study, N = 1,748) and across ancestries (Nagahama study, N = 2,862)

GWAS meta-analysis i-Share (dichotomous) i-Share (continuous) Nagahama (dichotomous) Nagahama 
(continuous)

SNP chr:position EA/OA Nearest 
gene(s)

OR (95% 
CI)

P value β (SE) P value OR (95% 
CI)

P value β (SE) P value

PVS in white matter (WM-PVS)

rs6011998 20:45269867 C/T SLC13A3 1.26 
(0.83–1.92)

0.28 0.164 
(0.04)

4.20 × 10−05a 1.69 
(1.33–2.13)

1.22 × 10−05a 0.037 
(0.008)

6.21 × 10−07a

rs13079464 3:13822439 C/G WNT7A 1.12 
(0.91–1.40)

0.29 0.014 
(0.02)

0.50 1.16 
(0.97–1.40)

0.11 0.015 
(0.006)

1.50 × 10−02

rs2425884 20:45258292 C/T SLC13A3 1.18 
(0.95–1.45)

0.13 0.077 
(0.02)

2.98 × 10−04a 1.29 
(1.09–1.52)

3.48 × 10−03 0.026 
(0.005)

1.77 × 10−06a

rs10817108 9:113658671 A/G LPAR1 0.90 
(0.69–1.17)

0.44 0.058 
(0.03)

2.23 × 10−02 1.18 
(0.98–1.43)

0.07 0.017 
(0.006)

4.10 × 10−03

rs2425881 20:45255618 A/G SLC13A3 1.47 
(1.03–2.01)

1.40 × 10−02 0.063 
(0.03)

2.62 × 10−02 1.18 
(1.01–1.37)

3.66 × 10−02 0.014 
(0.005)

4.68 × 10−03

rs3772833 3:124518362 G/A ITGB5, 
UMPS

1.22 
(0.89–1.66)

0.21 0.006 
(0.03)

0.85 1.06 
(0.88–1.29)

0.51 0.008 
(0.006)

0.16

rs112407396 20:45276381 T/A SLC13A3 1.47 
(0.77–2.78)

0.24 0.147 
(0.07)

3.13 × 10−02 NA NA NA NA

rs10494988 1:215141570 C/T CENPF, 
KCNK2

1.18 
(0.95–1.47)

0.14 0.079 
(0.02)

1.94 × 10−04a 1.01 
(0.86–1.18)

0.90 −0.002 
(0.005)

0.67

rs72485816 20:45314435 T/C TP53RK, 
SLC13A3

1.01 
(0.56–1.80)

0.98 0.093 
(0.06)

0.095 1.32 
(1.10–1.59)

2.83 × 10−03 0.033 
(0.006)

1.91 × 10−08b

rs8041189 15:85686327 G/A PDE8A 1.14 
(0.89–1.44)

0.30 0.041 
(0.02)

0.073 1.67 
(0.84–3.33)

0.14 0.046 
(0.021)

2.40 × 10−02

rs4685022 3:13832611 G/A WNT7A 1.12 
(0.88–1.42)

0.34 0.023 
(0.02)

0.31 1.15 
(0.97–1.36)

0.10 0.010 
(0.005)

0.075c

rs7596872 2:56128091 C/A EFEMP1 1.65 
(1.10–2.46)

1.14 × 10−02 0.089 
(0.03)

1.10 × 10−02 NA NA NA NA

rs1126642 17:42989063 C/T GFAP 1.13 
(0.65–1.97)

0.67 0.127 
(0.05)

1.27 × 10−02 1.35 
(1.09–1.67)

0.11 0.033 
(0.007)

9.88 × 10−07a

rs687610 3:193515781 G/C OPA1 1.46 
(1.18–1.80)

4.88 × 10−04a 0.109 
(0.02)

1.29 × 10−07a 0.95 
(0.81–1.13)

0.59 0.006 
(0.005)

0.28

rs4959689 6:2617122 C/A C6orf195 1.10 
(0.89–1.37)

0.37 0.022 
(0.02)

0.30 NA NA 0.024 
(0.026)

0.34c

rs56104388 20:45302135 T/C SLC13A3 1.30 
(0.40–4.24)

0.67 0.274 
(0.11)

1.47 × 10−02 NA NA NA NA

rs12417836 11:70089700 T/C FADD, 
PPFIA1

0.99 
(0.64–1.56)

0.99 0.045 
(0.04)

0.29 0.87 
(0.62–1.21)

0.40 −0.002 
(0.011)

0.84

rs2923437 8:42425399 A/C SMIM19, 
CHRNB3, 
SLC20A2

0.98 
(0.78–1.23)

0.88 0.047 
(0.02)

2.60 × 10−02 1.11 
(0.94–1.31)

0.23 0.008 
(0.005)

0.11

rs1922930 6:1364691 C/A FOXQ1, 
FOXF2

0.93 
(0.65–1.33)

0.70 0.035 
(0.04)

0.33 NA NA NA NA

rs2385089 19:18550434 A/C ISYNA1, 
ELL, 
LRRC25

1.20 
(0.94–1.53)

0.14 0.049 
(0.03)

0.057 NA NA NA NA

rs10954468 7:134434661 C/A BPGM, 
CALD1

1.08 
(0.86–1.36)

0.50 0.033 
(0.02)

0.13 NA NA NA NA

PVS in basal ganglia (BG-PVS)

rs4675310d 2:203880834 A/G NBEAL1, 
ICA1L

1.07 
(0.81–1.41)

0.61 0.01 
(0.04)

0.78 1.88 
(0.63-5.60)

0.26 0.046 
(0.03)

0.11

rs6769442 3:171565463 G/A TMEM212 1.10 
(0.87–1.40)

0.37 0.03 
(0.03)

0.33 1.04 
(0.71-1.53)

0.82 0.008 
(0.01)

0.35

NA in the Nagahama Study correspond to variants that are rare (MAF < 1%: rs7596872; rs1922930; rs10954468) or monomorphic (rs112407396; rs56104388) in East Asians, or not available 
including in EAS 1000G data (rs2385089). Analyses were adjusted for age, sex and intracranial volume, principal components of population stratification in the i-Share and Nagahama studies, 
and additionally adjusted for study center in the Nagahama study. In the Nagahama study, when the lead SNP from the PVS GWAS meta-analysis was not present, we used a tag SNP with 
r2 > 0.80 using the 1000G Japanese reference panel. SNPs or tag SNPs (r² > 0.80, 1000G EAS) with a P < 0.05 are in bold. aSNPs with a P < 1.09 × 10−3 (Bonferroni correction for 23 independent 
loci and two PVS locations). bSNPs reaching genome-wide significance. cThe tag SNP (r² > 0.80) is nominally significant: rs4685022 (r² = 0.81 with rs934448, 1000G EAS), P = 0.048; rs4959689 
(r² = 0.83 with rs1772953, 1000G EAS), P = 0.02. dThe lead SNP for this locus is not present in the Nagahama study; we used a tag SNP (rs150788469, r² = 1.0 with rs4675310) where the A allele of 
rs4675310 is in phase with the G allele of rs150788469.
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Fig. 2 | Association of PVS loci with vascular risk factors and other MRI 
markers of cSVD. a, Venn diagram displaying significant association of genome-
wide significant risk loci for PVS burden with vascular risk factors and other MRI 
markers of cSVD: in italics for BG-PVS; underlined for HIP-PVS; underlined and in 
bold for HIP- and WM-PVS; all others for WM-PVS only (P < 3.3 × 10−5, two-sided, 
correcting for multiple testing (21 independent phenotypes, 3 PVS locations and 
24 independent loci)); *6 independent loci; **2 independent loci; †genome-wide 
significant in Europeans only; ‡in colocalization analyses the posterior probability 
PP4 was higher than 75% for these loci (only with WMH at NBEAL1-ICA1L). Exact  

P values are provided in Supplementary Table 16. b, Direction of association and 
level of significance of pleiotropic SNPs displayed in a: in red when the risk allele 
for extensive PVS burden is positively associated with the trait, in blue when the 
PVS risk allele is negatively associated with the trait (unexpected direction), in 
dark red and dark blue for genome-wide significant associations and in light 
red and light blue for significant association after multiple-testing correction 
(P < 3.3 × 10−5, two-sided, correcting for multiple testing (21 independent 
phenotypes, 3 PVS locations and 24 independent loci)). PP, pulse pressure;  
BMI, body mass index; LDL, LDL cholesterol.
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Fig. 3 | Genetic correlations of extensive PVS burden with risk factors, 
neurological diseases and other MRI markers of brain aging. a–c, Genetic 
correlation using LD-score regression of extensive PVS burden with putative risk 
factors (a), neurological diseases (b) and other MRI markers of brain aging (c); 
two-sided exact P values are provided for nominally significant results (*P < 0.05) 
and significant results after multiple-testing correction (**P < 7.9 × 10−4, 

correcting for 21 independent phenotypes and the three PVS locations); 
full results are provided in Supplementary Table 9. Larger colored squares 
correspond to more significant P values and the colors represent the direction 
of the genetic correlation (positive in red, negative in blue). HDL, high-density 
lipoprotein; amygdala, accumbens (nucleus), caudate (nucleus), pallidum, and 
putamen correspond to the volumes of these subcortical structures.
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SBP and DBP, genetic liability to BG-PVS and HIP-PVS was significantly 
associated with an increased risk of any stroke, ischemic stroke and SVS 
(Supplementary Table 19).

Functional exploration of identified PVS loci
Using MAGMA and VEGAS2Pathway (Methods), we identified signifi-
cant enrichment of PVS loci in pathways involved in extracellular matrix 
(ECM) structure and function, lymphatic endothelial cell differen-
tiation, cell motility and thyroid hormone transport (Supplementary 
Tables 20 and 21).

Genes closest to PVS lead risk variants were significantly enriched 
in genes mutated in Online Mendelian Inheritance in Man (OMIM) 
syndromes associated with leukodystrophy, leukoencephalopathy 
or WMH, with a 20-fold enrichment in genes containing an intragenic 
lead variant. This enrichment was 30-fold when focusing on WM-PVS 
loci only, comprising several genes involved in early-onset leukod-
ystrophies: GFAP (chr17q21.31), mutations of which cause Alexander 
disease, a rare neurodegenerative disorder of astrocytes leading to 
psychomotor regression and death; SLC13A3 (chr20q13.12), caus-
ing acute reversible leukoencephalopathy with increased urinary 
alpha-ketoglutarate; and PNPT1 (chr2p16.1), causing Aicardi–Goutières 
syndrome and cystic leukoencephalopathy (Methods, Extended Data 
Fig. 4 and Supplementary Table 22). Although several genes near PVS 
lead risk variants were described to be involved in glioma, we found no 
significant enrichment for glioma genes (Methods).

To seek evidence for a causal implication of specific genes and 
variants, we performed transcriptome-wide association studies 
(TWAS) using TWAS-Fusion (Methods), with European PVS GWAS 
summary statistics and the GTEx v7 multi-tissue (RNA sequencing) 
database, focusing on brain, vascular and blood tissues. We found 
36 transcriptome-wide significant expression–trait associations for 
WM-PVS, 25 for BG-PVS and seven for HIP-PVS that were significant in 
colocalization analyses (TWAS-COLOC), providing evidence of a shared 
causal variant between the corresponding gene expression and PVS 
(Supplementary Table 23). Most genes with significant expression–trait 
associations (12) were in genome-wide significant PVS risk loci: eight 
genes in five WM-PVS GWAS loci (C6orf195, ITGB5, LPAR1, LRRC25, 
RP11-71H17.9, SLC20A2, SMIM19, UMPS), two genes in one BG-PVS GWAS 
locus (ICA1L, NBEAL1) and two genes in an HIP-PVS GWAS locus (LAMC1 
and RP11-181K3.4), while nine were outside GWAS loci, requiring con-
firmation (Fig. 4). TWAS-COLOC signals were mostly observed in brain 
tissues (17 genes), but also in vascular tissues (ten genes) and blood 
(two genes).

To identify enrichment in specific brain cell types, we used a 
recently developed pipeline combining three cell type enrichment 
methods, stratified LD-score, MAGMA and H-MAGMA (Supplemen-
tary Table 24). We observed significant enrichment in brain vascular 
endothelial cells for all PVS locations, based on a human single-cell atlas 
of fetal gene expression, and in pericytes and astrocytes for WM-PVS 
(Supplementary Tables 24 and 25).

We explored brain expression patterns from development to adult-
hood of genes nearest to PVS loci, prioritizing TWAS-COLOC genes 
(Methods). Several genes showed important variations in expression 
levels throughout the life course, some peaking in the prenatal period 
(for example, LAMC1, UMPS), suggestive of developmental mechanisms 
(Extended Data Fig. 5 and Supplementary Fig. 4).

Finally, we conducted an exploratory search for enrichment of 
PVS genes in targets of drugs validated in other indications (Meth-
ods). We found significant enrichment of BG-PVS genes in targets for 
anti-infectives, driven by CRHR1 (chr17q21.31, target for telavancin), 
and for diseases of the nervous system, driven by MAPT (chr17q21.31, 
target for davunetide); and of HIP-PVS genes in targets for ear disease 
drugs, driven by SERPIND1 (chr22q11.21, target for sulodexide, also 
used for venous thrombosis prevention; Extended Data Figs. 6 and 7). 
We also observed significant enrichment of TWAS-significant HIP-PVS 

genes in vascular disease drugs, including simvastatin, vincamine and 
macitentan (Extended Data Fig. 8).

Discussion
In up to 40,095 participants from older population-based cohorts, we 
identified 24 genome-wide significant risk loci for extensive PVS bur-
den, predominantly for WM-PVS, and six additional loci after account-
ing for other MRI markers of cSVD. Consistent with distinct risk factor 
profiles2,10, the genetic architecture of PVS differed across PVS loca-
tions, with WM-PVS showing the highest heritability and low genetic 
correlation with BG-PVS and HIP-PVS1,2,16. In line with the hypothesis 
that PVS is a marker of cSVD, moderate to high genetic correlation 
was observed with other MRI markers of cSVD, primarily for BG- and 
HIP-PVS. Pathway analyses highlight ECM structure and function, 
known to play an important role in cSVD5,20,21, and several loci include 
genes involved in the matrisome (ECM and associated proteins), per-
turbations of which were proposed as a convergent pathologic pathway 
in cSVD (LAMC1, EFEMP1, COL4A2, SH3PXD2A, VWA2)5,21. Several PVS 
risk loci (at FOXF2, EFEMP1, KCNK2 and NBEAL1-ICA1L) are known risk 
loci for other cSVD features (WMH, SVS)5,22,23, and mutations in two 
MTAG genes cause monogenic SVD (at COL4A1-COL4A2 and STN1)24,25.

PVS have been described early in life7,26, but their clinical signifi-
cance at young ages is unknown. Our results suggest shared molecular 
mechanisms underlying PVS in young and older age. This corroborates 
recently described associations of WMH risk variants with changes in 
MRI-detected WM microstructure at age 20 yr (ref. 5). The significant 
enrichment of PVS risk loci in genes involved in early-onset leukodys-
trophies and expressed in fetal brain vascular endothelial cells supports 
involvement of developmental processes. In spontaneously hyperten-
sive stroke-prone rats, closely modeling cSVD, intrinsic endothelial cell 
dysfunction was observed at birth, including reduced tight junctions, 
as well as altered oligodendrocyte maturation and myelination27. At the 
most significant WM-PVS locus in young adults, OPA1 harbors muta-
tions causing autosomal-dominant optical atrophy, sometimes associ-
ated with multiple sclerosis-like illness, parkinsonism and dementia28, 
and endothelial OPA1 plays an important role in developmental angio-
genesis29. These observations corroborate epidemiological associa-
tions of early-life factors with cSVD severity in older age30.

The present effort has the largest East-Asian contribution com-
pared with other large GWAS of MRI-defined phenotypes31,32, with 
over half of available WM-PVS loci reaching nominally significant, 
directionally consistent associations in the Japanese follow-up study. 
The prevalence of cSVD is higher in East-Asian than European popula-
tions33. Our results are an important initial step to establish the gen-
eralizability of cSVD genetic associations across ancestries. Efforts to 
further enhance the non-European contribution to MRI cSVD genomic 
studies, including in populations of African-ancestry in whom cSVD is 
also more frequent34, are of paramount importance.

The combination of PVS GWAS findings with TWAS and WES/WGS 
strongly supports putative causal genes. WM-PVS associates with lower 
LPAR1 expression in vascular tissues. LPAR1 (chr9q31.3), expressed in 
oligodendrocytes, encodes a receptor for lysophosphatidic acid, an 
extracellular signaling small lipid, and is involved in postnatal myeli-
nation and functional connectivity across brain regions35. An LPAR1 
antagonist was found to attenuate brain damage after transient arterial 
occlusion, by decreasing inflammation36, and LPAR1 modulation may 
also impact neural regeneration37. Several drugs targeting LPAR1 are 
available (for example, the antidepressant mirtazapine38) or in devel-
opment39. WNT7A (chr3p25.1) encodes a secreted signaling protein 
that targets the vascular endothelium, and was implicated in brain 
angiogenesis and blood brain barrier regulation40. Loss of Wnt7a/b 
function in mice results in severe WM damage41.

WM-PVS was associated with lower ITGB5 (chr3q21.2) expression 
in whole blood. ITGB5 encodes a beta subunit of integrin, and plays 
a central role in monogenic SVD42. Higher ITGB5 plasma levels were 
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associated with decreased odds of cognitive impairment or dementia, 
lower brain amyloid burden and slower brain atrophy rates43. HIP-PVS 
was associated with lower expression of LAMC1 (chr1q25.3, encoding 
Laminin gamma-1) in brain and higher expression in vascular tissues, 
while WES/WGS identified a splice donor variant at LAMC1. Laminins 
are ECM glycoproteins, and the major noncollagenous constituent of 
basement membranes. Genes encoding other basement membrane 
proteins (NID2, COL4A1/2) are implicated in cSVD5,22. Laminin regulates 
blood vessel diameter44 and blood brain barrier integrity and function45, 
and astrocytic laminin loss decreases expression of tight junction pro-
teins and aquaporin-4 (AQP4)45, a key modulator of glymphatic flow in 
experimental models7.

Some genes point to complex pleiotropic mechanisms. At 
chr2q33.2, also associated with WMH, SVS, Alzheimer’s disease and 
caudate volume5,23,46,47, BG-PVS was associated with higher expression 
of ICA1L in brain tissues and of NBEAL1 in vascular tissues, similar to 
TWAS of WMH and SVS5,22. ICA1L (encoding islet cell autoantigen-1-like 
and predominantly expressed in endothelial cells) harbors mutations 

causing juvenile amyotrophic lateral sclerosis48, while NBEAL1 (encod-
ing neurobeachin-like 1 protein) modulates low-density lipoprotein 
(LDL)-receptor expression49.

Our study points to an important involvement of solute carriers 
(SLCs), the largest family of transporters and candidates for drug target 
development50, in PVS pathophysiology. The most significant PVS risk 
variants involve an intronic haplotype of SCL13A3, encoding a plasma 
membrane Na+/dicarboxylate cotransporter expressed in kidney, astro-
cytes and choroid plexus51. Mutations in SLC13A3 cause acute reversible 
leukoencephalopathy with increased urinary alpha-ketoglutarate51, 
where SLC13A3 loss-of-function may affect elimination of organic 
anions and xenobiotics from the cerebrospinal fluid (CSF)51. At the 
same locus (Supplementary Fig. 1), other genome-wide significant 
variants are located near SLC2A10, harboring mutations causing arte-
rial tortuosity syndrome52, described to be associated with PVS burden 
and cSVD53. WM-PVS was associated with lower SLC20A2 expression 
in brain tissue. SLC20A2, involved in phosphate transport, harbors 
loss-of-function mutations causing idiopathic familial BG calcification, 
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Fig. 4 | Transcriptome-wide significant genes with extensive PVS burden. We 
used precomputed functional weights from 22 publicly available gene expression 
reference panels from brain (GTEx v7, CommonMind Consortium (CMC)), 
peripheral nerve tissues (GTEx v7), heart and arteries (GTEx v7), and blood 
(Netherlands Twin Registry (NTR) and Young Finns Study (YFS)). Transcriptome-
wide significant genes (eGenes) and the corresponding eQTLs were determined 

using Bonferroni correction, based on the average number of features (4,235 
genes) tested across all tissues and correcting for the three independent PVS 
locations (P < 3.93 × 10−6). *Significant result in the TWAS and conditional 
analyses; **significant result in the TWAS and conditional analyses, and with a 
COLOC PP4 > 0.75; eGenes for loci identified in the GWAS (†), gene-based test (‡) 
or both GWAS and gene-based test (§).
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a neurodegenerative disorder with inorganic phosphate accumulation 
in the ECM54. Given their role in CSF secretion and substance transport 
at the blood–CSF barrier55, SLCs could be involved in interstitial fluid 
accumulation adjacent to the PVS56.

Consistent with other SVD phenotypes, we observed evidence 
for a causal association of blood pressure with PVS. Experimental 
work suggests that the perivascular pump becomes less efficient with 
increasing blood pressure, reducing net forward flow in the PVS. These 
effects were found to be larger at more distal locations, where arteries 
have thinner and less muscular walls57. Such hemodynamic and ana-
tomic differences1,2,18 could, perhaps, at least partly explain the more 
significant association of blood pressure with BG-PVS and HIP-PVS 
compared with WM-PVS. In contrast, WM-PVS were previously found to 
be associated with CAA11 and with higher brain amyloid deposition on 
positron emission tomography, across the clinical spectrum of CAA12. 
The updated Boston Criteria (v.2.0) for CAA include severe WM-PVS as 
a new diagnostic criterion13.

The clinical relevance of PVS is strongly supported by the signifi-
cant genetic correlation of BG-PVS and HIP-PVS with any stroke and 
ischemic stroke and robust evidence for a possible causal association of 
BG-PVS and HIP-PVS with any stroke, ischemic stroke and SVS, account-
ing for blood pressure. The nominally significant genetic correlation of 
BG-PVS and HIP-PVS with (deep) ICH, based on smaller GWAS and thus 
less statistical power, is also consistent with epidemiological findings10. 
Considering the association of HIP-PVS with lower LAMC1 expression 
in brain, it is striking to note that conditional knock-out of laminin in 
astrocytes leads to deep ICH in mice58. This is reminiscent of known 
associations of variants in COL4A1/A2, encoding another basement 
membrane protein, with monogenic and multifactorial deep ICH46,59.

Significant enrichment of PVS genes in targets of drugs validated 
or under investigation for vascular and cognitive disorders (for exam-
ple, telavancin and davunetide) highlights the potential of PVS genetics 
for cSVD drug discovery.

To our knowledge, this is the first study exploring the genetic 
determinants of PVS, using a comprehensive gene-mapping strategy 
and extensive bioinformatics follow-up. We acknowledge limitations. 
To account for heterogeneity in PVS quantification methods, we prag-
matically dichotomized PVS variables based on the top quartile of 
the distribution, which may be less powerful than continuous meas-
ures. This may have been most prominent for BG-PVS, for which the 
genetic correlation pattern between CHARGE and UKB was low, in 
contrast with WM-PVS and HIP-PVS. Reassuringly, loci identified using 
dichotomous PVS phenotypes were also associated with continuous 
PVS burden in studies where computational methods were available 
(UKB, i-Share, Nagahama), mostly with more significant P values. A 
conservative approach will also have helped minimize the effect of 
accidentally including WMH in the PVS measures, a problem which 
some computational PVS methods have not yet overcome. Strikingly, 
67% of WM-PVS loci were associated at least nominally with WM-PVS in 
one or both follow-up cohorts, despite considerably smaller samples 
and distinct age and ancestry, with consistent directionality. This sug-
gests that our genomic discovery approach, although likely conserva-
tive, led to robust findings. With increasing development of artificial 
intelligence-based computational methods for PVS quantification, 
future genomic studies will likely have even greater power to detect 
genetic associations, to enable studying the genomics of total PVS 
volume, accounting for differences in individual PVS volume, width, 
length, shape60, density, location and anatomical predominance, and 
to run sex-specific analyses.

In conclusion, in this gene-mapping study of PVS, one of the ear-
liest MRI markers of cSVD, we describe 24 genome-wide significant 
risk loci, with six additional loci in secondary multivariate analyses 
accounting for other cSVD markers. Our findings provide insight into 
the biology of PVS across the adult lifespan and its contribution to cSVD 
pathophysiology, with potential for genetically informed prioritization 

of drug targets for prevention trials of cSVD, a major cause of stroke 
and dementia worldwide.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-023-02268-w.

References
1.	 Pollock, H., Hutchings, M., Weller, R. O. & Zhang, E. T. Perivascular 

spaces in the basal ganglia of the human brain: their relationship 
to lacunes. J. Anat. 191, 337–346 (1997).

2.	 Wardlaw, J. M. et al. Perivascular spaces in the brain:  
anatomy, physiology and pathology. Nat. Rev. Neurol. 16,  
137–153 (2020).

3.	 Wardlaw, J. M. et al. Neuroimaging standards for research 
into small vessel disease and its contribution to ageing and 
neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

4.	 Jessen, N. A., Munk, A. S. F., Lundgaard, I. & Nedergaard, M. The 
glymphatic system: a beginner’s guide. Neurochem. Res. 40, 
2583–2599 (2015).

5.	 Sargurupremraj, M. et al. Cerebral small vessel disease genomics 
and its implications across the lifespan. Nat. Commun. 11, 6285 
(2020).

6.	 Debette, S., Schilling, S., Duperron, M. G., Larsson, S. C. & 
Markus, H. S. Clinical significance of magnetic resonance 
imaging markers of vascular brain injury: a systematic review and 
meta-analysis. JAMA Neurol. 76, 81–94 (2019).

7.	 Mestre, H., Kostrikov, S., Mehta, R. I. & Nedergaard, M. Perivascular 
spaces, glymphatic dysfunction, and small vessel disease. Clin. 
Sci. (Lond.) 131, 2257–2274 (2017).

8.	 Deramecourt, V. et al. Staging and natural history of 
cerebrovascular pathology in dementia. Neurology 78,  
1043–1050 (2012).

9.	 Bacyinski, A., Xu, M., Wang, W. & Hu, J. The paravascular pathway 
for brain waste clearance: current understanding, significance 
and controversy. Front. Neuroanat. 11, 101 (2017).

10.	 Duperron, M. G. et al. High dilated perivascular space burden: a 
new MRI marker for risk of intracerebral hemorrhage. Neurobiol. 
Aging 84, 158–165 (2019).

11.	 Charidimou, A. et al. MRI-visible perivascular spaces in cerebral 
amyloid angiopathy and hypertensive arteriopathy. Neurology 88, 
1157–1164 (2017).

12.	 Tsai, H. H. et al. Centrum semiovale perivascular space and 
amyloid deposition in spontaneous intracerebral hemorrhage. 
Stroke 52, 2356–2362 (2021).

13.	 Charidimou, A. et al. The Boston criteria version 2.0 for 
cerebral amyloid angiopathy: a multicentre, retrospective, 
MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 
21, 714–725 (2022).

14.	 Mestre, H. et al. Cerebrospinal fluid influx drives acute ischemic 
tissue swelling. Science 367, eaax7171 (2020).

15.	 Månberg, A. et al. Altered perivascular fibroblast activity 
precedes ALS disease onset. Nat. Med 27, 640–646 (2021).

16.	 Duperron, M. G. et al. Burden of dilated perivascular spaces, 
an emerging marker of cerebral small vessel disease, is highly 
heritable. Stroke 49, 282–287 (2018).

17.	 Yao, M. et al. Hippocampal perivascular spaces are related to 
aging and blood pressure but not to cognition. Neurobiol. Aging 
35, 2118–2125 (2014).

18.	 Bouvy, W. H. et al. Visualization of perivascular spaces and 
perforating arteries with 7 T magnetic resonance imaging. Invest. 
Radiol. 49, 307–313 (2014).

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-023-02268-w


Nature Medicine | Volume 29 | April 2023 | 950–962 960

Article https://doi.org/10.1038/s41591-023-02268-w

19.	 Psaty, B. M. et al. Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE) Consortium: design of 
prospective meta-analyses of genome-wide association 
studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 
(2009).

20.	 Bordes, C., Sargurupremraj, M., Mishra, A. & Debette, S. Genetics 
of common cerebral small vessel disease. Nat. Rev. Neurol. 18, 
84–101 (2022).

21.	 Joutel, A., Haddad, I., Ratelade, J. & Nelson, M. T. Perturbations 
of the cerebrovascular matrisome: a convergent mechanism in 
small vessel disease of the brain? J. Cereb. Blood Flow. Metab. 36, 
143–157 (2016).

22.	 Traylor, M. et al. Genetic basis of lacunar stroke: a pooled analysis 
of individual patient data and genome-wide association studies. 
20(5):351-361 Lancet Neurol. 20, 351–361 (2021).

23.	 Persyn, E. et al. Genome-wide association study of MRI markers 
of cerebral small vessel disease in 42,310 participants. Nat. 
Commun. 11, 2175 (2020).

24.	 Simon, A. J. et al. Mutations in STN1 cause Coats plus syndrome 
and are associated with genomic and telomere defects. J. Exp. 
Med. 213, 1429–1440 (2016).

25.	 Whittaker, E. et al. Systematic review of cerebral phenotypes 
associated with monogenic cerebral small-vessel disease. J. Am. 
Heart Assoc. 11, e025629 (2022).

26.	 Piantino, J. et al. Characterization of MR imaging- 
visible perivascular spaces in the white matter of healthy 
adolescents at 3T. AJNR Am. J. Neuroradiol. 41, 2139–2145 
(2020).

27.	 Rajani, R. M. et al. Reversal of endothelial dysfunction reduces 
white matter vulnerability in cerebral small vessel disease in rats. 
Sci. Transl. Med. 10, eaam9507 (2018).

28.	 Carelli, V. et al. Syndromic parkinsonism and dementia  
associated with OPA1 missense mutations. Ann. Neurol. 78,  
21–38 (2015).

29.	 Herkenne, S. et al. Developmental and tumor angiogenesis 
requires the mitochondria-shaping protein Opa1. Cell Metab. 31, 
987–1003.e1008 (2020).

30.	 Backhouse, E. V. et al. Early life predictors of late life cerebral 
small vessel disease in four prospective cohort studies. Brain 144, 
3769–3778 (2021).

31.	 Zhao, B. et al. Common genetic variation influencing  
human white matter microstructure. Science 372,  
eabf3736 (2021).

32.	 Grasby, K. L. et al. The genetic architecture of the human cerebral 
cortex. Science 367, eaay6690 (2020).

33.	 Mok, V. et al. Race-ethnicity and cerebral small vessel disease 
– comparison between Chinese and White populations. Int. J. 
Stroke 9, 36–42 (2014).

34.	 Akinyemi, R. O. et al. Stroke in Africa: profile, progress, prospects 
and priorities. Nat. Rev. Neurol. 17, 634–656 (2021).

35.	 Mollink, J. et al. The spatial correspondence and genetic 
influence of interhemispheric connectivity with white matter 
microstructure. Nat. Neurosci. 22, 809–819 (2019).

36.	 Gaire, B. P., Sapkota, A., Song, M. R. & Choi, J. W. 
Lysophosphatidic acid receptor 1 (LPA1) plays critical roles in 
microglial activation and brain damage after transient focal 
cerebral ischemia. J. Neuroinflammation 16, 170 (2019).

37.	 Gross, I. & Brauer, A. U. Modulation of lysophosphatidic acid (LPA) 
receptor activity: the key to successful neural regeneration? 
Neural Regen. Res. 15, 53–54 (2020).

38.	 Hisaoka-Nakashima, K. et al. Mirtazapine increases glial 
cell line-derived neurotrophic factor production through 
lysophosphatidic acid 1 receptor-mediated extracellular 
signal-regulated kinase signaling in astrocytes. Eur. J. Pharm. 860, 
172539 (2019).

39.	 Allanore, Y. et al. Lysophosphatidic acid receptor 1 
antagonist SAR100842 for patients with diffuse cutaneous 
systemic sclerosis: a double-blind, randomized, eight-week 
placebo-controlled study followed by a sixteen-week open-label 
extension study. Arthritis Rheumatol. 70, 1634–1643 (2018).

40.	 Stenman, J. M. et al. Canonical Wnt signaling regulates 
organ-specific assembly and differentiation of CNS vasculature. 
Science 322, 1247–1250 (2008).

41.	 Chavali, M. et al. Wnt-dependent oligodendroglial-endothelial 
interactions regulate white matter vascularization and attenuate 
injury. Neuron 108, 1130–1145.e1135 (2020).

42.	 Capone, C. et al. Reducing Timp3 or vitronectin ameliorates 
disease manifestations in CADASIL mice. Ann. Neurol. 79, 
387–403 (2016).

43.	 Tanaka, T. et al. Plasma proteomic signatures predict dementia 
and cognitive impairment. Alzheimers Dement. (N. Y.) 6, e12018 
(2020).

44.	 Jakobsson, L., Domogatskaya, A., Tryggvason, K., Edgar, D. 
& Claesson-Welsh, L. Laminin deposition is dispensable for 
vasculogenesis but regulates blood vessel diameter independent 
of flow. FASEB J. 22, 1530–1539 (2008).

45.	 Yao, Y., Chen, Z. L., Norris, E. H. & Strickland, S. Astrocytic laminin 
regulates pericyte differentiation and maintains blood brain 
barrier integrity. Nat. Commun. 5, 3413 (2014).

46.	 Chung, J. et al. Genome-wide association study of cerebral small 
vessel disease reveals established and novel loci. Brain 142, 
3176–3189 (2019).

47.	 Armstrong, N. J. et al. Common genetic variation indicates 
separate causes for periventricular and deep white matter 
hyperintensities. Stroke 51, 2111–2121 (2020).

48.	 Hadano, S. et al. A gene encoding a putative GTPase regulator is 
mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 
166–173 (2001).

49.	 Bindesbøll, C. et al. NBEAL1 controls SREBP2 processing and 
cholesterol metabolism and is a susceptibility locus for coronary 
artery disease. Sci. Rep. 10, 4528 (2020).

50.	 Wang, W. W., Gallo, L., Jadhav, A., Hawkins, R. & Parker, C. G. The 
druggability of solute carriers. J. Med. Chem. 63, 3834–3867 
(2020).

51.	 Dewulf, J. P. et al. SLC13A3 variants cause acute reversible 
leukoencephalopathy and α-ketoglutarate accumulation. Ann. 
Neurol. 85, 385–395 (2019).

52.	 Beyens, A. et al. Arterial tortuosity syndrome: 40 new families and 
literature review. Genet. Med. 20, 1236–1245 (2018).

53.	 Chen, Y. C. et al. Correlation between internal carotid artery 
tortuosity and imaging of cerebral small vessel disease. Front. 
Neurol. 11, 567232 (2020).

54.	 Wang, C. et al. Mutations in SLC20A2 link familial idiopathic basal 
ganglia calcification with phosphate homeostasis. Nat. Genet. 44, 
254–256 (2012).

55.	 Ho, H. T., Dahlin, A. & Wang, J. Expression profiling of solute 
carrier gene families at the blood-CSF barrier. Front. Pharm. 3, 154 
(2012).

56.	 Wang, H. et al. Structure, function, and genomic organization of 
human Na+-dependent high-affinity dicarboxylate transporter. 
Am. J. Physiol. Cell Physiol. 278, C1019–1030 (2000).

57.	 Mestre, H. et al. Flow of cerebrospinal fluid is driven by arterial 
pulsations and is reduced in hypertension. Nat. Commun. 9, 4878 
(2018).

58.	 Chen, Z. L. et al. Ablation of astrocytic laminin impairs vascular 
smooth muscle cell function and leads to hemorrhagic stroke.  
J. Cell Biol. 202, 381–395 (2013).

59.	 Rannikmäe, K. et al. COL4A2 is associated with lacunar ischemic 
stroke and deep ICH: meta-analyses among 21,500 cases and 
40,600 controls. Neurology 89, 1829–1839 (2017).

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | April 2023 | 950–962 961

Article https://doi.org/10.1038/s41591-023-02268-w

60.	 Ballerini, L. et al. Computational quantification of brain 
perivascular space morphologies: associations with vascular 
risk factors and white matter hyperintensities. A study  
in the Lothian Birth Cohort 1936. Neuroimage Clin. 25,  
102120 (2020).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

Marie-Gabrielle Duperron    1,2,80, Maria J. Knol    3,80, Quentin Le Grand    1,80, Tavia E. Evans    4,5,80, Aniket Mishra1,80, 
Ami Tsuchida    1,6,80, Gennady Roshchupkin    3,5, Takahiro Konuma7, David-Alexandre Trégouët1, Jose Rafael Romero    8,9, 
Stefan Frenzel10, Michelle Luciano    11, Edith Hofer12,13, Mathieu Bourgey    14,15,16, Nicole D. Dueker17, Pilar Delgado18,19, 
Saima Hilal20,21,22, Rick M. Tankard    23, Florian Dubost5,24, Jean Shin    25,26, Yasaman Saba    1,27, Nicola J. Armstrong    23, 
Constance Bordes    1, Mark E. Bastin28, Alexa Beiser8,9,29, Henry Brodaty    30,31, Robin Bülow    32, Caty Carrera33, 
Christopher Chen20,21,34, Ching-Yu Cheng    35,36,37,38, Ian J. Deary11, Piyush G. Gampawar27, Jayandra J. Himali    8,9,29,39,40, 
Jiyang Jiang    30, Takahisa Kawaguchi41, Shuo Li    9,29, Melissa Macalli    1, Pascale Marquis14,15,16, Zoe Morris42, 
Susana Muñoz Maniega    28,43, Susumu Miyamoto44, Masakazu Okawa    45, Matthew Paradise30, Pedram Parva9,46,47, 
Tatjana Rundek    48,49, Muralidharan Sargurupremraj1, Sabrina Schilling1, Kazuya Setoh41,50, Omar Soukarieh1, 
Yasuharu Tabara41,50, Alexander Teumer    51, Anbupalam Thalamuthu30, Julian N. Trollor    30,52, 
Maria C. Valdés Hernández28,53, Meike W. Vernooij3,5, Uwe Völker54, Katharina Wittfeld    10,55, Tien Yin Wong35,56, 
Margaret J. Wright    57,58, Junyi Zhang59, Wanting Zhao35,60, Yi-Cheng Zhu59, Helena Schmidt    27, 
Perminder S. Sachdev    30,61, Wei Wen    30, Kazumichi Yoshida45, Anne Joutel62, Claudia L. Satizabal8,9,39,40, 
Ralph L. Sacco48,49,63,64,65, Guillaume Bourque    14,15,16, the CHARGE consortium*, Mark Lathrop14,15, Tomas Paus    66,67,68,69, 
Israel Fernandez-Cadenas33,70, Qiong Yang9,29, Bernard Mazoyer    6,71, Philippe Boutinaud72, Yukinori Okada    7,73,74,75,76, 
Hans J. Grabe    10,55, Karen A. Mather    30,77, Reinhold Schmidt12, Marc Joliot    6, M. Arfan Ikram    3, Fumihiko Matsuda41,81, 
Christophe Tzourio1,78,81, Joanna M. Wardlaw    28,43,53,81, Sudha Seshadri    8,9,39,40,81, Hieab H. H. Adams    4,5,79,81   & 
Stéphanie Debette    1,2 

1Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France. 2Department of Neurology, Institute of 
Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France. 3Department of Epidemiology, Erasmus MC University Medical Center, 
Rotterdam, the Netherlands. 4Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands. 5Department of 
Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands. 6Groupe d’Imagerie Neurofonctionelle - Institut 
des maladies neurodégénératives (GIN-IMN), UMR 5293, University of Bordeaux, CNRS, CEA, Bordeaux, France. 7Department of Statistical Genetics, 
Osaka University Graduate School of Medicine, Suita, Japan. 8Department of Neurology, Boston University School of Medicine, Boston, MA, USA. 9The 
Framingham Heart Study, Framingham, MA, USA. 10Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany. 
11School of Psychology, University of Edinburgh, Edinburgh, UK. 12Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of 
Graz, Graz, Austria. 13Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria. 14Department of Human 
Genetics, McGill University, Montreal, Quebec, Canada. 15Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Quebec, 
Canada. 16Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada. 17John P. Hussman Institute for Human Genomics, 
University of Miami, Miami, FL, USA. 18Institut de Recerca Vall d’hebron, Neurovascular Research Lab, Universitat Autònoma de Barcelona, Barcelona, 
Spain. 19Hospital Universitari Vall d’Hebron, Neurology Department, Universitat Autònoma de Barcelona, Barcelona, Spain. 20Memory Aging and 
Cognition Center, National University Health System, Singapore, Singapore. 21Department of Pharmacology, Yong Loo Lin School of Medicine, National 
University of Singapore, Singapore, Singapore. 22Saw Swee Hock School of Public Health, National University of Singapore and National University Health 
System, Singapore, Singapore. 23Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia. 24Department of 
Medical Informatics, Erasmus MC University Medical Center, Rotterdam, the Netherlands. 25The Hospital for Sick Children, University of Toronto, Toronto, 
Ontario, Canada. 26Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada. 27Institute for Molecular Biology 
& Biochemistry, Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria. 28Centre for 
Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. 29Department of Biostatistics, Boston University School of Public Health, Boston, MA, 
USA. 30Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry & Mental Health, University of New South Wales, Sydney, New South Wales, 
Australia. 31Dementia Collaborative Research Centre Assessment and Better Care, UNSW, Sydney, New South Wales, Australia. 32Institute for Radiology 
and Neuroradiology, University Medicine Greifswald, Greifswald, Germany. 33Stroke Pharmacogenomics and Genetics Group, Biomedical Research 
Institute Sant Pau (IIB Sant Pau), Barcelona, Spain. 34Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of 
Singapore, Singapore, Singapore. 35Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore. 36Center for Innovation and 
Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 37Department of Ophthalmology, Yong 
Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 38Ophthalmology & Visual Sciences Academic Clinical Program, 

http://www.nature.com/naturemedicine
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-7408-7792
http://orcid.org/0000-0002-3597-1531
http://orcid.org/0000-0002-9299-0747
http://orcid.org/0000-0003-2390-286X
http://orcid.org/0000-0001-5160-6203
http://orcid.org/0000-0002-3403-2313
http://orcid.org/0000-0002-1101-2950
http://orcid.org/0000-0002-7306-3008
http://orcid.org/0000-0002-8432-834X
http://orcid.org/0000-0002-8847-9401
http://orcid.org/0000-0001-7353-5178
http://orcid.org/0000-0002-3549-2493
http://orcid.org/0000-0002-4477-293X
http://orcid.org/0000-0003-3367-1778
http://orcid.org/0000-0001-9487-6617
http://orcid.org/0000-0003-1884-5784
http://orcid.org/0000-0003-0655-885X
http://orcid.org/0000-0003-1391-9481
http://orcid.org/0000-0002-2147-6302
http://orcid.org/0000-0003-2331-2448
http://orcid.org/0000-0003-3008-8720
http://orcid.org/0000-0001-5185-6384
http://orcid.org/0000-0002-5414-1293
http://orcid.org/0000-0002-7115-9815
http://orcid.org/0000-0002-8309-094X
http://orcid.org/0000-0002-7685-2977
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0001-7133-4970
http://orcid.org/0000-0001-9773-9992
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0003-2753-3870
http://orcid.org/0000-0002-3933-9656
http://orcid.org/0000-0003-1495-9338
http://orcid.org/0000-0003-0970-2837
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-4143-8941
http://orcid.org/0000-0001-7792-308X
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0001-6135-2622
http://orcid.org/0000-0003-3687-2508
http://orcid.org/0000-0001-8675-7968


Nature Medicine | Volume 29 | April 2023 | 950–962 962

Article https://doi.org/10.1038/s41591-023-02268-w

Duke-NUS Medical School, Singapore, Singapore. 39Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San 
Antonio, TX, USA. 40Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA. 41Center for Genomic Medicine, Kyoto 
University Graduate School of Medicine, Kyoto, Japan. 42Neuroimaging, Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, 
UK. 43UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, UK. 44Kyoto University Hospital, Kyoto, Japan. 45Department of 
Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan. 46Radiology Department, Boston University School of Medicine, Boston, MA, 
USA. 47Department of Radiology, Harvard Medical School, Boston, MA, USA. 48Department of Neurology, Miller School of Medicine, University of Miami, 
Miami, FL, USA. 49Evelyn F. McKnight Brain Institute, Department of Neurology, University of Miami, Miami, FL, USA. 50Graduate School of Public Health, 
Shizuoka Graduate University of Public Health, Shizuoka, Japan. 51Institute for Community Medicine, University Medicine Greifswald, Greifswald, 
Germany. 52Department of Developmental Disability Neuropsychiatry, UNSW, Sydney, New South Wales, Australia. 53Row Fogo Centre for Research into 
Ageing and the Brain, University of Edinburgh, Edinburgh, UK. 54Interfaculty Institute for Genetics and Functional Genomics, University Medicine 
Greifswald, Greifswald, Germany. 55German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany. 56Tsinghua 
Medicine, Tsinghua University, Beijing, China. 57Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia. 58Centre for 
Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia. 59Department of Neurology, Peking Union Medical College Hospital, 
Beijing, China. 60The Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore. 61Neuropsychiatric Institute, the Prince of Wales 
Hospital, Sydney, New South Wales, Australia. 62Institut de Psychiatrie et Neurosciences de Paris, Université Paris Cité, Inserm, France. 63Department of 
Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA. 64Department of Human Genomics, Miller School of Medicine, 
University of Miami, Miami, FL, USA. 65Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA. 66University of 
Montreal, Faculty of Medicine, Departments of Psychiatry and Neuroscience, Montreal, Quebec, Canada. 67Department of Psychology, University of 
Toronto, Toronto, Ontario, Canada. 68Centre Hospitalier Universitaire Sainte Justine, Montreal, Quebec, Canada. 69Department of Psychiatry, University of 
Toronto, Toronto, Ontario, Canada. 70Stroke Pharmacogenomics and Genetics Group, Fundació per la Docència i la Recerca Mutua Terrassa, Terrassa, 
Spain. 71Bordeaux University Hospital, Bordeaux, France. 72Fealinx, Lyon, France. 73Laboratory of Statistical Immunology, Immunology Frontier Research 
Center (WPI-IFReC), Osaka University, Suita, Japan. 74Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary 
Research Initiatives, Osaka University, Suita, Japan. 75Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan. 
76Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan. 77Neuroscience Research Australia, Sydney, New 
South Wales, Australia. 78Department of Medical Informatics, Bordeaux University Hospital, Bordeaux, France. 79Latin American Brain Health (BrainLat), 
Universidad Adolfo Ibáñez, Santiago, Chile. 80These authors contributed equally: Marie-Gabrielle Duperron, Maria J. Knol, Quentin Le Grand, Tavia E. Evans, 
Aniket Mishra, Ami Tsuchida. 81These authors jointly supervised this work: Fumihiko Matsuda, Christophe Tzourio, Joanna M. Wardlaw, Sudha Seshadri, 
Hieab H. H. Adams, Stéphanie Debette. *A list of authors and their affiliations appears at the end of the paper.  e-mail: h.adams@erasmusmc.nl; 
stephanie.debette@u-bordeaux.fr

the CHARGE consortium

Marie-Gabrielle Duperron1,2,80, Maria J. Knol3,80, Quentin Le Grand1, Tavia E. Evans4,5,80, Aniket Mishra1,80, Ami Tsuchida1,6,80, 
Gennady Roshchupkin3,5, Takahiro Konuma7, David-Alexandre Trégouët1, Jose Rafael Romero8,9, Stefan Frenzel10, 
Michelle Luciano11, Edith Hofer12,13, Mathieu Bourgey14,15,16, Nicole D. Dueker17, Pilar Delgado18,19, Saima Hilal20,21,22, 
Rick M. Tankard23, Florian Dubost5,24, Jean Shin25,26, Yasaman Saba1,27, Nicola J. Armstrong23, Constance Bordes1, Mark E. Bastin28, 
Alexa Beiser8,9,29, Henry Brodaty30,31, Robin Bülow32, Caty Carrera33, Christopher Chen20,21,34, Ching-Yu Cheng35,36,37,38, 
Ian J. Deary11, Piyush G. Gampawar27, Jayandra J. Himali8,9,29,39,40, Jiyang Jiang30, Takahisa Kawaguchi41, Shuo Li9,29, Melissa Macalli1, 
Pascale Marquis14,15,16, Zoe Morris42, Susana Muñoz Maniega28,43, Susumu Miyamoto44, Masakazu Okawa45, Matthew Paradise30, 
Pedram Parva9,46,47, Tatjana Rundek48,49, Muralidharan Sargurupremraj1, Sabrina Schilling1, Kazuya Setoh41,50, Omar Soukarieh1, 
Yasuharu Tabara41,50, Alexander Teumer51, Anbupalam Thalamuthu30, Julian N. Trollor30,52, Maria C. Valdés Hernández28,53, 
Meike W. Vernooij3,5, Uwe Völker54, Katharina Wittfeld10,55, Tien Yin Wong35,56, Margaret J. Wright57,58, Junyi Zhang59, 
Wanting Zhao35,60, Yi-Cheng Zhu59, Helena Schmidt27, Perminder S. Sachdev30,61, Wei Wen30, Kazumichi Yoshida45, Anne Joutel62, 
Claudia L. Satizabal8,9,39,40, Ralph L. Sacco48,49,63,64,65, Guillaume Bourque14,15,16, Mark Lathrop14,15, Tomas Paus66,67,68,69, 
Israel Fernandez-Cadenas33,70, Qiong Yang9,29, Bernard Mazoyer6,71, Philippe Boutinaud72, Yukinori Okada7,73,74,75,76, 
Hans J. Grabe10,55, Karen A. Mather30,77, Reinhold Schmidt12, Marc Joliot6, M. Arfan Ikram3, Fumihiko Matsuda41,81, 
Christophe Tzourio1,78,81, Joanna M. Wardlaw28,43,53,81, Sudha Seshadri8,9,39,40,81, Hieab H. H. Adams4,5,79,81 & Stéphanie Debette1,2

http://www.nature.com/naturemedicine
mailto:h.adams@erasmusmc.nl
mailto:stephanie.debette@u-bordeaux.fr


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02268-w

Methods
Study design
This study complies with all relevant ethical regulations, and all par-
ticipants gave written, informed consent. Analyses were performed on 
stroke-free participants from 22 population-based cohorts (18 for the 
GWAS meta-analysis), taking part in UKB, the CHARGE consortium and 
the BRIDGET initiative. Institutional review boards approved individual 
studies: UKB (National Research Ethics Service Committee North West–
Haydock), 3C-Dijon (Ethical Committee of the University Hospital of 
Kremlin-Bicêtre), Austrian Stroke Prevention Study and Austrian Stroke 
Prevention Family Study (ASPS/ASPS-Fam) (Ethics Committee of the Med-
ical University of Graz), Epidemiology of Dementia in Singapore Study 
(EDIS) (the Singapore Chinese Eye Study/Singapore Malay Eye Study-2, 
Singapore Eye Research Institute and the National Healthcare Group 
Domain-Specific Review Board), Framingham Heart Study (FHS) (Institu-
tional Review Board of Boston University Medical Center), Investigating 
Silent Strokes in Hypertensives Study (ISSYS) (Comité de ética de investi-
gacion con medicamentos, Hospital Universitari Vall d’Hebron), Lothian 
Birth Cohort 1936 (LBC1936) (Lothian and Scottish Multicentre Research 
Ethics Committees), Northern Manhattan Study (NOMAS) (Columbia 
University Medical Center Institutional Review Board and the University 
of Miami Institutional Review Board), Rotterdam Study I, II and III (RS-I, 
RS-II and RS-III) (Ministry of Health, Welfare, and Sport of the Nether-
lands), Study of Health in Pomerania (SHIP) (SHIP-2, SHIP-Trend Batch 1 
and 2, Ethics Commission of the University of Greifswald), i-Share study 
(Comités de Protection des Personnes (CPP) Sud-Ouest Outre-Mer III,  
Sydney Memory and Ageing Study (MAS) (Ethics Committees of the Uni-
versity of New South Wales, South-Eastern Sydney, and the Illawarra Area 
Health Service), Older Australian Twins Study (OATS) (Ethical Committees 
of the Australian Twin Registry, the University of New South Wales, the 
University of Melbourne, the Queensland Institute of Medical Research, 
and the South-Eastern Sydney and Illawarra Area Health Service) and 
the Nagahama Study (Ethics Committee of Kyoto University Graduate 
School of Medicine and the Nagahama Municipal Review Board) (Sup-
plementary Table 1). Characteristics of study participants are provided 
in Supplementary Tables 1–3 and 26 and Supplementary Fig. 5.

PVS burden definition
PVS were defined as fluid-filled spaces with a signal identical to that of 
CSF, of round, ovoid or linear shape depending on the slice direction, 
with usually a maximum diameter smaller than 3 mm, no hyperintense 
rim on T2-weighted or FLAIR sequences, and located in areas supplied 
by perforating arteries3. In most CHARGE cohorts, visual semiquantita-
tive rating scales were used to quantify PVS burden. As different scales 
were used across studies, we dichotomized PVS burden into ‘extensive 
PVS burden’ versus the rest, defined by a cut-off closest to the top 
quartile of the semiquantitative scale distribution within each cohort 
(Supplementary Tables 2, 27 and 28). This cohort-specific threshold 
definition was chosen because (1) small PVS counts are very sensitive 
to MRI field strength and less prominently associated with age and 
vascular risk factors61; (2) extreme burden of other MRI markers of 
cSVD (for example, extensive WMH burden within the top quartile of 
the distribution) was previously shown to facilitate the identification 
of genetic variants underlying cSVD62; and (3) PVS burden is highly 
dependent on participant characteristics, especially age, PVS quan-
tification methods and image acquisition parameters. In RS-III and in 
UKB, a recently developed automated method was used to quantify the 
number of PVS (Supplementary Table 27), dichotomized according to 
the same cut-off (top quartile). For sensitivity analyses, we also com-
pared results obtained in UKB with the dichotomized and continuous 
(log-transformed) PVS variables.

Covariates and descriptive variables
Intracranial volume (sum of gray matter, WM and CSF volumes) was 
available in all studies except ASPS, where brain parenchymal fraction 

was used (ratio of brain parenchymal tissue volume to total volume 
within the surface contour of the whole brain). Other covariates are 
described in Supplementary Table 1.

Genotyping and imputation
Genome-wide genotypes were imputed to the 1000G project (1000G 
pIv3) or the Haplotype Reference Consortium reference panels (Sup-
plementary Table 3).

PVS genome-wide association analyses in individual cohorts
Ancestry-specific logistic regression analyses with an additive genetic 
model were performed, adjusting for age, sex (genetically determined) 
and intracranial volume (or brain parenchymal fraction for ASPS), 
principal components of population stratification, and study site.

As sensitivity analyses, we ran linear mixed models in UKB, (1) using 
the log-transformed (log(variable + 1)) continuous PVS measurements, 
adjusting for the same covariates as above; (2) generating residuals 
adjusting for the same covariates and then dichotomizing the residuals 
(instead of adjusting for covariates after dichotomization).

PVS genome-wide association meta-analyses
We performed quality control in each study following the recommen-
dations of Winkler et al.63. Analyses were done on autosomal biallelic 
markers. Duplicate markers were removed, marker names and alleles 
were harmonized across studies, and PZ-plots, quantile–quantile 
plots and allele frequency plots were constructed63. In each study, rare 
variants (MAF < 0.01) and variants with low imputation accuracy (R², 
oevar_imp or info score < 0.5) or extensive effect size values (β > 5 or 
β < −5) were removed. We reported the number of SNPs passing quality 
control for each study (Supplementary Table 4). GWAS were run within 
each cohort using logistic regression (or linear regression for sensitivity 
analyses), using software described in Supplementary Table 3. We then 
conducted GWAS meta-analyses across participating cohorts in METAL, 
using sample size-weighted meta-analysis as PVS were measured on 
different scales. Meta-analyses were conducted within each ances-
try (European (EUR), Asian (ASN), African-American (AA), Hispanic 
(HISP)) using METAL (https://github.com/statgen/METAL), followed 
by meta-analyses across ancestries. Ancestry was genetically inferred 
using principal components of population stratification (Supplemen-
tary Tables 1 and 3). Genomic control was applied to each study-specific 
GWAS with a genomic inflation factor greater than 1.00. Variants with an 
effective allele count (twice the product of MAF, imputation accuracy 
and number of participants with extensive PVS) < 10 and significant 
heterogeneity (PHet < 5.0 × 10−8) were excluded from the meta-analysis. 
We performed LD-clumping, sorting the genome-wide significant SNPs 
by P value, keeping the most significant SNP and removing SNPs with 
an r² > 0.1 within 1 megabase (Mb). Only variants present in at least 
half of participants of the final meta-analysis were used to construct 
quantile–quantile and Manhattan plots. In secondary analyses, we ran 
inverse variance-weighted meta-analyses to obtain effect estimates and 
standard errors for follow-up bioinformatics analyses.

Conditional and joint multiple-SNP analysis
We used GCTA-COJO64 to perform conditional and joint multiple-SNP 
analysis of PVS GWAS summary statistics, to identify secondary associa-
tion signals at each of the genome-wide significant loci within 1 Mb of 
the lead SNP. We used European GWAS summary statistics as recom-
mended to avoid population stratification. This method relied on a 
stepwise selection procedure to select SNPs based on the conditional 
P values, and the joint effects of all selected SNPs after optimization 
of the model were estimated64. We used genotypes of 6,489 unre-
lated participants of European ancestry from the 1000G-imputed 
3C-Dijon study data for LD correction. We performed haplotype asso-
ciation analyses on the six independent lead variants at chr20q13.12  
(Supplementary Table 5b).
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Cross-ancestry meta-regression of GWAS
We conducted cross-ancestry meta-analyses using MR-MEGA65, which 
uses meta-regression to model allelic effects, including axes of genetic 
variation as covariates in the model.

Gene-based analyses
We performed gene-based analyses on European PVS GWAS 
meta-analyses. We included variants within 10 kilobase (kb) of the 
3′ and 5′ untranslated regions (UTRs) of a gene to capture regulatory 
variants. We used the MAGMA software implemented in FUMA66 to per-
form a gene-based association study, including 19,037 protein-coding 
genes. This method is based on a multiple linear principal components 
regression model. Gene-wide significance was defined at P < 2.63 × 10−6. 
We also performed gene-based tests using VEGAS2 (ref. 67), includ-
ing 18,371 autosomal genes, leading to a gene-wide significance at 
P < 2.72 × 10−6. Genes were considered in the same locus if they were 
within 200 kb of each other.

PVS heritability estimates
We used LD-score regression (ldsc package https://github.com/bulik/ 
ldsc/) to estimate the heritability of extensive PVS burden in each 
location, overall and, in secondary analyses, separately, in CHARGE 
and UKB.

Multi-trait GWAS with PVS and other MRI markers of cSVD
We conducted a joint analysis of summary statistics from GWAS of 
PVS, WMH and lacunes using MTAG68, with the expectation to gain in 
power because of the genetic correlation between these MRI markers 
of cSVD. MTAG is a generalization of inverse variance-weighted GWAS 
meta-analysis of two or more traits, which accounts for sample over-
lap between GWAS results for different traits by employing LD-score 
regression. MTAG is based on the assumption that all SNPs share the 
same variance–covariance matrix of effect sizes across traits. We prior-
itized variants with a P < 5 × 10−8 in the PVS MTAG analysis and P < 0.05 
in the univariate PVS GWAS, which showed greater significance for 
association with PVS in MTAG than in univariate analyses for PVS, 
WMH and lacunes.

PVS next-generation sequencing association analyses
Using WES data and exome content of WGS data in 19,010 participants 
from UKB and BRIDGET, of whom 4,531, 4,424 and 4,497 had extensive 
PVS in WM, BG and HIP, respectively, we performed a whole-exome 
association study to identify (rare) exonic variants associated with 
extensive PVS (Supplementary Tables 1 and 29).

Follow-up of findings across lifespan and ancestries
We explored associations of WM-PVS and BG-PVS risk variants iden-
tified in the GWAS meta-analysis with these phenotypes in young 
adults (i-Share study, N = 1,748, mean age 22.1 ± 2.3 yr) and in older 
Japanese population-based cohort participants (Nagahama study, 
N = 2,862, 68.3 ± 5.3 yr; Supplementary Tables 1 and 3). In each study, 
we used both quantitative PVS measurements derived from a com-
putational artificial intelligence-based method (Supplementary 
Tables 27 and 28) and dichotomized PVS burden (top quartile of 
PVS distribution; Supplementary Table 2). HIP-PVS data were not 
available. Continuous PVS measurements were log-transformed 
(log(variable + 1)) to obtain a normal distribution.

In i-Share participants of European ancestry, we also explored the 
association of WM-PVS with a wGRS of WM-PVS burden derived from 
the 21 independent genome-wide significant SNPs identified in the 
European GWAS meta-analysis (r² < 0.10 based on the 1000G European 
reference panel). SNPs were weighted by the SNP effect sizes in the 
European GWAS meta-analysis (for the allele associated with larger 
PVS burden); the wGRS was rescaled (rwGRS) so that one unit of the 
wGRS corresponds to one additional WM-PVS risk allele. We tested 

for significant modifying effects of age on associations with WM-PVS 
for the three genome-wide significant WM-PVS loci in young adults (at 
chr2p16.1, chr3q29 and chr20q13.12). We collected effect estimates and 
standard errors for the lead SNPs at these three loci in each individual 
cohort, and fitted a meta-regression of the lead SNPs’ effect sizes onto 
an intercept and age. Meta-regression analysis was performed using 
Metafor69, and any statistical evidence of linear association was cor-
rected for multiple testing (P < 0.05/3 = 1.7 × 10−2).

In Nagahama we explored the association of WM-PVS with a rwGRS 
of WM-PVS burden, including the 14 available independent SNPs iden-
tified in the European GWAS meta-analysis (r² < 0.10 based on 1000G 
Japanese reference panel); SNPs were weighted by the SNP effect sizes 
in the European GWAS meta-analysis.

Shared genetic variation with other phenotypes
In the European ancestry meta-analysis, we explored shared genetic 
variation with vascular and neurological phenotypes: (1) putative 
risk factors (SBP, DBP, pulse pressure, body mass index, high-density 
lipoprotein cholesterol, LDL cholesterol, triglycerides, type 2 diabetes 
and sleep patterns); (2) other MRI markers of brain aging (WMH bur-
den, covert MRI-defined brain infarcts and lacunes, and hippocampal, 
nucleus accumbens, amygdala, caudate nucleus, pallidum and puta-
men volumes); and (3) the most common neurological conditions previ-
ously reported to be associated with PVS, namely stroke (any stroke, any 
ischemic stroke, large artery stroke, cardio-embolic stroke, SVS, ICH), 
Alzheimer’s disease and Parkinson’s disease (Supplementary Table 30).

We explored whether genome-wide significant PVS risk loci (lead 
variants or in LD with r² > 0.9, based on the 1000G European reference 
panel) were associated with these traits. A P value threshold <3.3 × 10−5, 
correcting for 21 independent phenotypes, three PVS locations and 24 
independent loci tested, was used (Supplementary Table 30). We per-
formed a colocalization analysis using COLOC to search for evidence 
for a single causal variant between PVS and the other phenotypes, a 
posterior probability (PP4) > 75% supporting a single causal variant 
for both traits70.

Second, we used LD-score regression (ldsc package: https://github. 
com/bulik/ldsc/) to estimate the genetic correlation of extensive PVS 
burden with these phenotypes (P < 7.9 × 10−4 was used as a significance 
threshold, correcting for 21 phenotypes and three PVS locations). To 
decrease potential bias due to poor imputation quality, the summary 
statistics were filtered to the subset of HapMap3 SNPs for each trait. In 
secondary analyses, we estimated genetic correlation of PVS burden 
with the same traits separately in CHARGE and UKB.

We used FUMA to obtain extensive functional annotation for 
genome-wide significant SNPs and to identify SNPs associated with 
other traits at genome-wide significance from the GWAS catalog66.

MR
We used an MR approach to explore the possible causal relation of 
putative risk factors (vascular risk factors and sleep patterns) with 
extensive PVS burden, and of extensive PVS burden with neurological 
traits (stroke, Alzheimer’s disease and Parkinson’s disease).

We used the GSMR method implemented in GCTA71. Summary 
statistics were clumped using 1000G-imputed 3C-Dijon study data 
(r² < 0.05 and P < 5 × 10−8) using only SNPs with MAF > 0.01. The het-
erogeneity in independent instrument (HEIDI)-outlier method was 
used to remove genetic instruments that showed pleiotropic effects 
on both the exposure and the outcome.

For (at least) nominally significant GSMR associations, we 
conducted secondary MR analyses using both TwoSampleMR and 
RadialMR72,73. Only independent SNPs (r2 < 0.01 based on 1000G 
European, window size = 1 Mb) reaching P < 5 × 10−8 in the primary 
meta-analysis were included as recommended. Effect estimates  
(β values) and SE values were derived from the inverse variance- 
weighted GWAS meta-analyses. With TwoSampleMR, we estimated 
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the effect of each exposure on each outcome using weighted median, 
random-effect inverse variance weighting (IVW) and MR-Egger. In 
addition, we confirmed the directionality of the observed associations 
with the Steiger test74. With RadialMR (https://github.com/WSpiller/
RadialMR), the putative causal effect of each exposure on each outcome 
was estimated using the fixed-effect IVW method using the modified 
second-order inverse variance weight73. Cochran’s Q statistic was used 
to test for the heterogeneity (P < 0.05) due to horizontal pleiotropy73. 
We excluded outlier SNPs, identified by regressing the predicted causal 
estimate against the inverse variance weights73, and re-ran IVW tests, 
as well as MR-Egger regression, assessing heterogeneity with Rücker’s 
Q′ statistic73. When the ratio of Q′ (Egger) on Q (IVW) (QR) was close to 
1, indicating that both IVW and MR-Egger models fit the data equally, 
we selected the IVW model. We formally ruled out horizontal plei-
otropy when the MR-Egger intercept after exclusion of outliers was 
nonsignificant (P ≥ 0.05). To account for potential residual correlated 
pleiotropy, we used MR-CAUSE75. Finally, we explored the association 
between genetic liability to PVS and stroke, conditioning on blood pres-
sure (SBP and DBP separately), by running multivariable MR analyses 
using TwoSampleMR72. A P < 1.19 × 10−3, correcting for 14 independent 
phenotypes and the three PVS locations, was considered significant.

Pathway analyses
We used MAGMA gene set analyses (in FUMA66) to identify pathways 
overrepresented in the associations. We identified genes associated 
with extensive PVS burden and estimated the correlation between 
genes. The P values and gene correlation matrix were used in a gen-
eralized least squares model. A P < 3.2 × 10−6 correction for 15,496 
gene sets was considered significant. As a sensitivity analysis, we 
used VEGAS2Pathway76, which aggregates association strengths 
of individual markers into prespecified biological pathways using 
VEGAS-derived gene association P values for extensive PVS burden, 
with an empirical significance threshold of P < 1 × 10−5 (accounting 
for 6,213 correlated pathways).

Enrichment analyses in OMIM and COSMIC genes
Using hypergeometric tests, we performed enrichment analyses of 
genes within 1 Mb, 100 kb or 10 kb of the lead variants, but also of 
genes within 10 kb of the lead variants with intragenic variants, and 
genes within 10 kb of the genetic loci with intragenic lead variants. 
We used the rest of the protein-coding genome as a reference. We 
performed the analysis first combining loci of all PVS locations, and 
second including only WM-PVS loci. We searched for an enrichment 
in different gene groups from the OMIM database77, including PVS 
(‘perivascular space’ OR ‘virchow-robin space’), WMH (‘leukoaraio-
sis’ OR ‘white matter lesion’ OR ‘white matter hyperintensities’) and 
leukodystrophy (‘leukodystrophy’ OR ‘leukoencephalopathy’) genes. 
We also searched for an enrichment of genes involved in glioma and 
glioblastoma, identified in the Catalog Of Somatic Mutations In Cancer 
(COSMIC) (https://cancer.sanger.ac.uk).

TWAS
We performed TWAS using TWAS-Fusion78, to identify genes whose 
expression is significantly associated with PVS burden without directly 
measuring expression levels. We restricted the analysis to tissues con-
sidered relevant for cerebrovascular disease, and used precomputed 
functional weights from 22 publicly available gene expression refer-
ence panels from blood, arterial, brain and peripheral nerve tissues 
(Fig. 4). TWAS-Fusion was then used to estimate the TWAS association 
statistics between predicted gene expression and PVS burden by inte-
grating information from expression reference panels (SNP expression 
weights), GWAS summary statistics (SNP PVS effect estimates) and 
LD reference panels (SNP correlation matrix). Transcriptome-wide 
significant genes (eGenes) and the corresponding expression quanti-
tative trait loci (eQTLs) were determined using Bonferroni correction 

(P < 3.93 × 10−6, correcting for 4,235 genes tested and three PVS loca-
tions). eGenes were then tested in conditional analyses as implemented 
in TWAS-Fusion. Next, we performed a genetic colocalization analysis 
of gene expression and PVS burden for each conditionally significant 
gene (P < 0.05) using COLOC70, to estimate the posterior probability 
of a shared causal variant between the gene expression and the trait 
(PP4 ≥ 0.75). Gene regions with eQTLs not reaching genome-wide 
significance in association with PVS, and not in LD (r2 < 0.01) with the 
lead SNP for genome-wide significant PVS risk loci, were considered 
as novel.

Cell type enrichment analysis
We conducted a cell type enrichment analysis using Single cell Type 
Enrichment Analysis for Phenotypes (https://github.com/erwinerdem/ 
STEAP/). This is an extension to CELLECT and uses S-LDSC, MAGMA and 
H-MAGMA for enrichment analysis. PVS GWAS summary statistics were 
munged. Then, expression specificity profiles were calculated using 
human and mouse single-cell RNA sequencing databases (PsychEN-
CODE DER-22, GSE67835, GSE101601, DroNc Human Hippocampus, 
Allen Brain Atlas MTG and LNG, Mousebrain, Tabula Muris, Descartes 
Human Cerebrum and Cerebellum; Supplementary Table 24). Cell type 
enrichment was calculated with MAGMA, H-MAGMA (incorporating 
chromatin interaction profiles from human brain tissues in MAGMA) 
and stratified LD-score regression. P values were corrected for the 
number of independent cell types in each database.

Lifetime brain gene expression profile
We studied the lifetime expression of genes identified in the 
TWAS-COLOC analysis, and the three genes associated with WM-PVS 
burden in both the old and young populations, to search for develop-
mental processes. We used a public database (https://hbatlas.org/) 
comprising genome-wide exon-level transcriptome data from 1,340 
tissue samples from 16 brain regions (cerebellar cortex, mediodorsal 
nucleus of the thalamus, striatum, amygdala, hippocampus and 11 
neocortex areas) of 57 postmortem human brains, from embryonic 
development to older adults of different ancestries.

Enrichment in drug target genes
We used the GREP (Genome for Repositioning)79 software tool, which 
quantifies an enrichment of gene sets from GWAS summary statistics in 
drugs of certain Anatomical Therapeutic Chemical Classification (ATC) 
classes, or indicated for some ICD10 (10th revision of the International 
Statistical Classification of Diseases and Related Health Problems) 
disease categories, and captures potentially repositionable drugs 
targeting the gene set. Genes with false discovery rate FDR q < 0.1 in 
MAGMA were used for enrichment analyses (in GREP) of target genes 
for approved or investigated drugs curated in DrugBank and the Thera-
peutic Target Database.

We used the Trans-Phar (integration of TWAS and Pharmacological 
database) software to identify drug target candidates in a specific tis-
sue or cell type80, using first FOCUS to identify up- and downregulated 
genes in participants with extensive PVS burden, followed by a negative 
Spearman’s rank correlation analysis between the gene expression 
(Z-score) of the top 10% genes with the highest expression variation 
and the LINCS CMap L1000 library database (Extended Data Fig. 8).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics for the European and cross-ancestry  
meta-analysis generated and analyzed during the current study are  
deposited on the GWAS Catalog (study code GCST90244151- 
GCST90244156). As for other meta-analyses of GWAS or sequencing 
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data, individual cohort data are subject to controlled access, for pri-
vacy and legal issues (national and European regulations, including 
GDPR). This applies to all participating cohorts (cohorts included 
in the meta-analyses and follow-up cohorts). UKB data (GWAS 
and sequencing) are accessible by submitting an application to 
the UKB portal (this research has been conducted under Applica-
tion Number 23509). We used publicly available data for analyses 
described in this manuscript, including data from GTEx (https://
gtexportal.org/home/), the Gusev laboratory (http://gusevlab.
org/projects/fusion/), the CommonMind Consortium (https://
www.nimhgenetics.org/resources/commonmind), the Nether-
lands Twin Registry (https://tweelingenregister.vu.nl/), the Young 
Finns Study (https://youngfinnsstudy.utu.fi/), OMIM (https://www. 
omim.org/), OMIM genes description are publicly available: GFAP 
(https://www.omim.org/entry/137780); SLC13A3 (https://www.omim. 
org/entry/618384); PNPT1 (https://www.omim.org/entry/610316), 
COSMIC (https://cancer.sanger.ac.uk), RNA sequencing datasets:  
PsychENCODE DER-22 (www.ncbi.nlm.nih.gov/geo/, accession code 
GSE97942), GSE67835 (www.ncbi.nlm.nih.gov/geo/, accession code 
GSE67835), GSE101601, DroNc_Human Hippocampus (https://www. 
gtexportal.org/home/datasets), Allen Brain Atlas (http://portal.brain- 
map.org/), Descartes_Human (https://descartes.brotmanbaty.org/), 
Mousebrain (http://mousebrain.org/), Tabula Muris (https://tabula- 
muris.ds.czbiohub.org/). All other data supporting the findings of this 
study are available within the article, the supplementary information 
or the supplementary data files.

Code availability
The PVS quantification method used in the Nagahama Study is avail-
able using this link: https://github.com/pboutinaud/SHIVA_PVS. We 
used publicly available data from METAL (https://github.com/stat 
gen/METAL), GCTA-cojo (https://yanglab.westlake.edu.cn/software/ 
gcta/#COJO), FUMA (https://fuma.ctglab.nl/), MAGMA (https://ctg. 
cncr.nl/software/magma), LD-Score Regression (https://github.com/ 
bulik/ldsc/), MTAG (https://github.com/JonJala/mtag), coloc (https:// 
chr1swallace.github.io/coloc/) R package, RadialMR (https://github. 
com/WSpiller/RadialMR), TwoSampleMR (https://mrcieu.github.io/ 
TwoSampleMR/), STEAP (https://github.com/erwinerdem/STEAP/), 
CELLECT (https://github.com/perslab/CELLECT), S-LSC (https:// 
github.com/bulik/ldsc), H-MAGMA (https://github.com/thewonlab/H- 
MAGMA), HBT (https://hbatlas.org/). Drug discovery analysis was 
conducted using the following publicly available tools: GREP (https:// 
github.com/saorisakaue/GREP), Trans-Phar (https://github.com/ 
konumat/Trans-Phar).

References
61.	 Bouvy, W. H. et al. Perivascular spaces on 7 Tesla brain MRI 

are related to markers of small vessel disease but not to age 
or cardiovascular risk factors. J. Cereb. Blood Flow. Metab. 36, 
1708–1717 (2016).

62.	 Mishra, A. et al. Gene-mapping study of extremes of cerebral 
small vessel disease reveals TRIM47 as a strong candidate. Brain 
30, 1992–2007 (2022).

63.	 Winkler, T. W. et al. Quality control and conduct of genome-wide 
association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

64.	 Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS 
summary statistics identifies additional variants influencing 
complex traits. Nat. Genet. 44, S361–363 (2012).

65.	 Magi, R. et al. Trans-ethnic meta-regression of genome-wide 
association studies accounting for ancestry increases power 
for discovery and improves fine-mapping resolution. Hum. Mol. 
Genet. 26, 3639–3650 (2017).

66.	 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. 
Functional mapping and annotation of genetic associations with 
FUMA. Nat. Commun. 8, 1826 (2017).

67.	 Mishra, A. & Macgregor, S. VEGAS2: software for more flexible 
gene-based testing. Twin Res. Hum. Genet. 18, 86–91 (2015).

68.	 Turley, P. et al. Multi-trait analysis of genome-wide association 
summary statistics using MTAG. Nat. Genet. 50, 229–237 (2018).

69.	 Viechtenbauer, W. Conducting meta-analysis in R with the 
metafor package. J. Stat. Softw. 36(3), 1–48 (2010).

70.	 Giambartolomei, C. et al. Bayesian test for colocalisation between 
pairs of genetic association studies using summary statistics. 
PLoS Genet. 10, e1004383 (2014).

71.	 Zhu, Z. et al. Causal associations between risk factors and 
common diseases inferred from GWAS summary data. Nat. 
Commun. 9, 224 (2018).

72.	 Hemani, G. et al. The MR-Base platform supports systematic 
causal inference across the human phenome. eLife 7, e34408 
(2018).

73.	 Bowden, J. et al. Improving the visualization, interpretation and 
analysis of two-sample summary data Mendelian randomization 
via the Radial plot and Radial regression. Int. J. Epidemiol. 47, 
1264–1278 (2018).

74.	 Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal 
relationship between imprecisely measured traits using GWAS 
summary data. PLoS Genet. 13, e1007081 (2017).

75.	 Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M. & He, 
X. Mendelian randomization accounting for correlated and 
uncorrelated pleiotropic effects using genome-wide summary 
statistics. Nat. Genet. 52, 740–747 (2020).

76.	 Mishra, A. & MacGregor, S. A novel approach for pathway analysis 
of GWAS data highlights role of BMP signaling and muscle cell 
differentiation in colorectal cancer susceptibility. Twin Res. Hum. 
Genet. 20, 1–9 (2017).

77.	 Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & 
Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man 
(OMIM(R)), an online catalog of human genes and genetic 
disorders. Nucleic Acids Res. 43, D789–798 (2015).

78.	 Gusev, A. et al. Integrative approaches for large-scale 
transcriptome-wide association studies. Nat. Genet. 48, 245–252 
(2016).

79.	 Sakaue, S. & Okada, Y. GREP: Genome for REPositioning drugs. 
Bioinformatics 35, 3821–3823 (2019).

80.	 Konuma, T., Ogawa, K. & Okada, Y. Integration of genetically 
regulated gene expression and pharmacological library provides 
therapeutic drug candidates. Hum. Mol. Genet. 30, 294–304 
(2021).

Acknowledgements
Austrian Stroke Prevention Study (ASPS)/Austrian Stroke Prevention 
Family Study (ASPS-Fam) (E.H., P.G.G., H.S. and R.S.): We thank the staff 
and the participants for their valuable contributions. We thank B. 
Reinhart for her long-term administrative commitment, E. Hofer for the 
technical assistance in creating the DNA bank, J. Semmler and A. Harb 
for DNA sequencing and DNA analyses by TaqMan assays, and I. Poelzl 
for supervising the quality management processes after ISO9001 in 
the biobanking and DNA analyses. The Medical University of Graz and 
the Steiermärkische Krankenanstaltengesellschaft support the 
databank of the ASPS/ASPS-Fam. The research reported in this article 
was funded by the Austrian Science Fund (FWF) (grant nos. PI904, 
P20545-P05 and P13180) and supported by the Austrian National Bank 
Anniversary Fund (grant no. P15435) and the Austrian Ministry of 
Science under the aegis of the EU Joint Programme–
Neurodegenerative Disease Research (JPND): www.jpnd.eu. 
Epidemiology of Dementia in Singapore (EDIS) (S.H., C.Chen, C.-Y.C., 
T.Y.W. and W.Z.): The EDIS study is supported by the National Medical 
Research Council (NMRC), Singapore (NMRC/CG/NUHS/2010 (grant 
no. R-184-006-184-511), NMRC/CSA/038/2013) and a Ministry of 
Education Tier 1 grant (no. A-0006106-00-00). Framingham Heart 

http://www.nature.com/naturemedicine
https://gtexportal.org/home/
https://gtexportal.org/home/
http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
https://www.nimhgenetics.org/resources/commonmind
https://www.nimhgenetics.org/resources/commonmind
https://tweelingenregister.vu.nl/
https://youngfinnsstudy.utu.fi/
https://www.omim.org/
https://www.omim.org/
https://www.omim.org/entry/137780
https://www.omim.org/entry/618384
https://www.omim.org/entry/618384
https://www.omim.org/entry/610316
https://cancer.sanger.ac.uk
http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97942
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835
http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835
https://www-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/geo/query/acc.cgi?acc=GSE101601
https://www.gtexportal.org/home/datasets
https://www.gtexportal.org/home/datasets
http://portal.brain-map.org/
http://portal.brain-map.org/
https://descartes.brotmanbaty.org/
http://mousebrain.org/
https://tabula-muris.ds.czbiohub.org/
https://tabula-muris.ds.czbiohub.org/
https://github.com/pboutinaud/SHIVA_PVS
https://github.com/statgen/METAL
https://github.com/statgen/METAL
https://yanglab.westlake.edu.cn/software/gcta/#COJO
https://yanglab.westlake.edu.cn/software/gcta/#COJO
https://fuma.ctglab.nl/
https://ctg.cncr.nl/software/magma
https://ctg.cncr.nl/software/magma
https://github.com/bulik/ldsc/
https://github.com/bulik/ldsc/
https://github.com/JonJala/mtag
https://chr1swallace.github.io/coloc/
https://chr1swallace.github.io/coloc/
https://github.com/WSpiller/RadialMR
https://github.com/WSpiller/RadialMR
https://mrcieu.github.io/TwoSampleMR/
https://mrcieu.github.io/TwoSampleMR/
https://github.com/erwinerdem/STEAP/
https://github.com/perslab/CELLECT
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
https://github.com/thewonlab/H-MAGMA
https://github.com/thewonlab/H-MAGMA
https://hbatlas.org/
https://github.com/saorisakaue/GREP
https://github.com/saorisakaue/GREP
https://github.com/konumat/Trans-Phar
https://github.com/konumat/Trans-Phar
http://www.jpnd.eu


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02268-w

Study (FHS) (J.R.R., A.B., J.J.H., S.L., P.P., C.L.S., Q.Y. and S.Seshadri): 
This work was supported by the National Heart, Lung and Blood 
Institute’s FHS Contract (no. N01-HC-25195, no. HHSN268201500001I 
and no. 75N92019D00031). This study was also supported by grants 
from the National Institute of Aging (R01 grant nos. AG031287, 
AG054076, AG049607, AG059421, AG059725; U01 grant nos. 
AG049505, AG052409) and the National Institute of Neurological 
Disorders and Stroke (R01 grant no. NS017950). Funding for SHARe 
Affymetrix genotyping was provided by NHLBI Contract no. 
N02-HL64278. The computational work reported in this paper was 
performed on the Shared Computing Cluster which is administered by 
Boston University’s Research Computing Services. We also thank all 
the FHS study participants. Internet-based Students’ Health Research 
Enterprise (i-Share) study (C.B., J.Z., M.M., Q.LG., S. Schilling, Y.-C.Z., 
A.Tsuchida, M.-G.D., B.M., S.D. and C.T.): The i-Share study is conducted 
by the Universities of Bordeaux and Versailles 
Saint-Quentin-en-Yvelines (France). The i-Share study has received 
funding by the French National Agency (Agence Nationale de la 
Recherche, ANR), via the Investment for the Future program (grant 
nos. ANR-10-COHO-05 and ANR-18-RHUS-0002) and from the 
University of Bordeaux Initiative of Exellence (IdEX). This project has 
also received funding from the European Research Council under the 
European Union’s Horizon 2020 research and innovation program 
under grant agreement no. 640643 and from the Fondation pour la 
Recherche Médicale (grant no. DIC202161236446). Q.L.G. was 
supported by the Digital Public Health Graduate Program (DPH), a PhD 
program supported by the French Investment for the Future Program 
(grant no. 17-EURE-0019). Investigating Silent Strokes in 
Hypertensives: a Magnetic Resonance Imaging Study (ISSYS) (P.D., 
C.C. and I.F.-C.): This research was funded by the Instituto de Salud 
Carlos III (grant nos. PI10/0705, PI14/01535, PI17/02222), cofinanced by 
the European Regional Development Fund. Lothian Birth Cohort 1936 
(LBC1936) (M.L., M.E.B., I.J.D., Z.M., S.M.M., M.C.V.H. and J.M.W.): We 
thank the LBC1936 cohort members and research staff involved in 
data collection, processing and preparation. The LBC1936 is 
supported by Age UK (Disconnected Mind program grant). The work 
was undertaken by The University of Edinburgh Centre for Cognitive 
Ageing and Cognitive Epidemiology, part of the cross-council Lifelong 
Health and Wellbeing Initiative (grant no. MR/K026992/1). The brain 
imaging was performed in the Brain Research Imaging Centre (www.
bric.ed.ac.uk), a center in the SINAPSE Collaboration (www.sinapse.
ac.uk) supported by the Scottish Funding Council and Chief Scientist 
Office. Funding from the UK Biotechnology and Biological Sciences 
Research Council (BBSRC), the UK Medical Research Council (MRC), 
the Row Fogo Charitable Trust (M.C.V.H.) and the UK Dementia 
Research Institute, which receives its funding from the UK Medical 
Research Council, Alzheimer’s Society and Alzheimer’s Research UK 
(J.M.W.), is gratefully acknowledged. Genotyping was supported by a 
grant from the BBSRC (no. BB/F019394/1). The Nagahama Study (T.K., 
S.M., M.O., K.S., Y.T., K.Y., A.Tsuchida, P.B., B.M., M.J., M.-G.D. and F.M.): 
We are grateful to the Nagahama City Office and nonprofit 
organization Zeroji Club for their help in conducting the study. This 
project is supported by operational funds of Kyoto University and the 
Top Global University Project of the Ministry of Education, Culture, 
Sports, Science and Technology (MEXT) in Japan. We also received a 
Grant-in-Aid for Scientific Research from the Japan Society for the 
Promotion of Science, research grants from the Japan Agency for 
Medical Research and Development for the Practical Research Project 
for Rare/Intractable Diseases, and the Comprehensive Research on 
Aging and Health Science for Dementia R&D. We thank C. Galmiche for 
rating PVS in the validation dataset for the artificial intelligence-based 
method. The Northern Manhattan Study (NOMAS) (N.D.D., T.J. and 
R.L.S.): We gratefully acknowledge and thank the NOMAS participants. 
Funding was awarded through grants from the National Institute of 
Neurological Disorders and Stroke (R01 grant no. NS 29993) and the 

Evelyn F. McKnight Brain Institute. Rotterdam Study (M.J.K., F.D., 
M.W.V., M.A.I. and H.H.H.A.): The Rotterdam Study is funded by 
Erasmus Medical Center and Erasmus University, Rotterdam, the 
Netherlands Organization for Health Research and Development 
(ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the 
Ministry of Education, Culture and Science, the Ministry for Health, 
Welfare and Sports, the European Commission (DG XII), and the 
Municipality of Rotterdam. The authors are grateful to the study 
participants, the staff from the Rotterdam Study and the participating 
general practitioners and pharmacists. The generation and 
management of GWAS genotype data for the Rotterdam Study (RS I, 
RS II, RS III) were executed by the Human Genotyping Facility of the 
Genetic Laboratory of the Department of Internal Medicine, Erasmus 
MC, Rotterdam, the Netherlands. The GWAS datasets are supported by 
the Netherlands Organisation for Scientific Research (NWO) 
Investments (no. 175.010.2005.011, 911-03-012), the Genetic 
Laboratory of the Department of Internal Medicine, Erasmus MC, the 
Research Institute for Diseases in the Elderly (grant no. 014-93-015; 
RIDE2), the Netherlands Genomics Initiative/NWO, the Netherlands 
Consortium for Healthy Aging, project no. 050-060-810. We thank P. 
Arp, M. Jhamai, M. Verkerk, L. Herrera, M. Peters and C. Medina-Gomez 
for their help in creating the GWAS database; and K. Estrada, Y. 
Aulchenko and C. Medina-Gomez for the creation and analysis of 
imputed data. H.H.H.A. is supported by ZonMW grant no. 916.19.151. 
Study of Health in Pomerania (SHIP) (S.F., R.B., A.T., K.W., H.J.G. and 
U.V.): SHIP is part of the Community Medicine Research net (CMR) 
(http://www.medizin.uni-greifswald.de/icm) of the University Medicine 
Greifswald, which is funded by the Federal Ministry of Education and 
Research (grant nos. 01ZZ9603, 01ZZ0103 and 01ZZ0403), the 
Ministry of Cultural Affairs as well as the Social Ministry of the Federal 
State of Mecklenburg-West Pomerania, and the network ‘Greifswald 
Approach to Individualized Medicine (GANI_MED)’ funded by the 
Federal Ministry of Education and Research (grant no. 03IS2061A). 
Genome-wide data have been supported by the Federal Ministry of 
Education and Research (grant no. 03ZIK012) and a joint grant from 
Siemens Healthineers, Erlangen, Germany and the Federal State of 
Mecklenburg-West Pomerania. The University of Greifswald is a 
member of the Caché Campus program of the InterSystems GmbH. 
This study was further supported by the EU-JPND Funding for BRIDGET 
(grant no. FKZ:01ED1615). H.J.G. has received travel grants and 
speakers’ honoraria from Fresenius Medical Care, Servier, 
Neuraxpharm and Janssen Cilag, as well as research funding from 
Fresenius Medical Care. Sydney Memory and Ageing Study (MAS) & 
Older Australian Twins Study (OATS) (R.M.T., N.J.A., H.B., J.J., M.P., A.T., 
J.N.T., P.S.S., W.W., K.A.M. and M.J.W.): Sydney MAS: The Sydney MAS 
has been funded by three National Health & Medical Research Council 
(NHMRC) Program Grants (grant nos. ID350833, ID568969 and 
APP1093083). Collection of WGS data was supported by the NHMRC 
National Institute for Dementia Research Grants no. APP1115575 and 
no. APP1115462. MRI scans were processed with the support of 
NHMRC Project Grants (grant nos. 510175 and 1025243) and an 
Australian Research Council (ARC) Discovery Project Grant (no. 
DP0774213) and the John Holden Family Foundation. We also thank the 
MRI Facility at NeuRA. We thank the participants and their informants 
for their time and generosity in contributing to this research. We also 
acknowledge the MAS research team: https://cheba.unsw.edu.au/ 
research-projects/sydney-memory-and-ageing-study. OATS: The OATS 
study has been funded by an NHMRC and ARC Strategic Award Grant 
of the Ageing Well, Ageing Productively Program (grant no. 401162); 
NHMRC Project (seed) Grants (grant nos. 1024224 and 1025243); 
NHMRC Project Grants (grant nos. 1045325 and 1085606); and 
NHMRC Program Grants (grant nos. 568969 and 1093083). Collection 
of WGS data was supported by the NHMRC National Institute for 
Dementia Research Grants no. APP1115575 and no. APP1115462. This 
research was facilitated through access to Twins Research Australia,  

http://www.nature.com/naturemedicine
http://www.bric.ed.ac.uk
http://www.bric.ed.ac.uk
http://www.sinapse.ac.uk
http://www.sinapse.ac.uk
http://www.medizin.uni-greifswald.de/icm
https://cheba.unsw.edu.au/research-projects/sydney-memory-and-ageing-study
https://cheba.unsw.edu.au/research-projects/sydney-memory-and-ageing-study


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02268-w

a national resource supported by a Centre of Research Excellence 
Grant (no. 1079102) from the National Health and Medical Research 
Council. We thank the participants for their time and generosity in 
contributing to this research. We acknowledge the contribution of the 
OATS research team (https://cheba.unsw.edu.au/project/
older-australian-twins-study) to this study. Three-City Dijon Study 
(3C-Dijon) (S.D., M.-G.D., S. Schilling, C.T., B.M. and A.M.): This project 
is supported by a grant overseen by the French National Research 
Agency (ANR) as part of the ‘Investment for the Future Program’ no. 
ANR-18-RHUS-0002. It is also supported by a JPND project through the 
following funding organizations under the aegis of JPND: www.jpnd.
eu: Australia, National Health and Medical Research Council; Austria, 
Federal Ministry of Science, Research and Economy; Canada, 
Canadian Institutes of Health Research; France, French National 
Research Agency; Germany, Federal Ministry of Education and 
Research; the Netherlands, the Netherlands Organisation for Health 
Research and Development; United Kingdom, Medical Research 
Council. This project has received funding from the European Union’s 
Horizon 2020 research and innovation program under grant 
agreement nos. 643417, 640643, 667375 and 754517. The project also 
received funding from the French National Research Agency (ANR) 
through the VASCOGENE and SHIVA projects, and from the Initiative of 
Excellence of the University of Bordeaux (C-SMART project). 
Computations were performed on the Bordeaux Bioinformatics Center 
(CBiB) computer resources, University of Bordeaux. Funding support 
for additional computer resources at the CREDIM (Centre de 
Recherche et Développement en Informatique Médicale, University of 
Bordeaux) has been provided to S.D. by the Fondation Claude 
Pompidou. The Three-City (3C) Study: The 3C Study is conducted 
under a partnership agreement among the Institut National de la Santé 
et de la Recherche Médicale (INSERM), the University of Bordeaux and 
Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the 
preparation and initiation of the study. The 3C Study is also supported 
by the Caisse Nationale Maladie des Travailleurs Salariés, Direction 
Générale de la Santé, Mutuelle Générale de l’Education Nationale 
(MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and 
Bourgogne, Fondation de France and Ministry of Research–INSERM 
program ‘Cohortes et collections de données biologiques.’ C.T. and 
S.D. have received investigator-initiated research funding from the 
French National Research Agency (ANR) and from the Fondation 
Leducq. M.-G.D. received a grant from the ‘Fondation Bettencourt 
Schueller’. We thank P. Amouyel, U1167 Institut Pasteur de Lille - 
University of Lille - Inserm, for supporting funding of genome-wide 
genotyping of the 3C Study. This work was supported by the National 
Foundation for Alzheimer’s disease and related disorders, the Institut 
Pasteur de Lille, the labex DISTALZ and the Centre National de 
Génotypage. We thank A. Boland (CNG) for her technical help in 
preparing the DNA samples for analyses. UK Biobank (UKB) (M.J.K., 
F.D., M.W.V., M.A.I., H.H.H.A., A.M. and T.E.): This research has been 
conducted using the UK Resource under application no. 23509. McGill 

Genome Center (M.B., P.M., G.B. and M.Lathrop): Work done at the 
Canadian Center for Computational Genomics was supported by 
Genome Canada. Data analyses were enabled by computing and 
storage resources provided by Compute Canada and Calcul Québec. 
G.B. is supported by the Fonds de Recherche Santé Québec and the 
Canada Research Chair program. We thank all the participating 
cohorts for contributing to this study. We thank H. Jacqmin-Gadda, 
Bordeaux Population Health research center, University of Bordeaux/
Inserm U1219 for statistical advice. We thank J. Thomas-Crusells, 
Bordeaux Population Health Research Center, University of Bordeaux/
Inserm U1219, for editorial assistance. The funders had no role in study 
design, data collection and analysis, decision to publish or preparation 
of the manuscript.

Author contributions
F.M., C.T., J.M.W., S.Seshadri, H.H.H.A. and S.D. jointly supervised 
research. M.-G.D., M.J.K., Q.LG., T.E.E., A.M. and A.Tsuchida contributed 
equally. M.-G.D., M.J.K., H.H.H.A. and S.D. designed and conceived the 
study. J.R.R., S.F., M.L., E.H., M.B., N.D.D., P.D., S.H., R.M.T., F.D., J.S., Y.S., 
N.J.A., C.B., M.E.B., A.B., H.B., R.B., C. Carrera, C.Chen, C.-Y.C., I.J.D., 
P.G.G., J.J.H., J.J., T.K., S.L., M.M., P.M., Z.M., S.M.M., S.M., M.O., M.P., P.P., 
T.R., M.S., S. Schilling, K.S., O.S., Y.T., A.T., A.Thalamuthu, J.N.T., M.C.V.H., 
M.W.V., U.V., K.W., T.Y.W., M.J.W., J.Z., W.Z., Y.-C.Z., H.S., P.S.S., W.W., K.Y., 
C.L.S., R.L.S., G.B., M.Lathrop, I.F.-C., Q.Y., B.M., P.B., H.J.G., K.A.M., 
R.S., M.J. and M.A.I. generated the PVS phenotype and genomic data 
and conducted cohort-wise GWAS analyses. G.R., T.K., D.-A.T., A.J., 
T.P. and Y.O. contributed to bioinformatics analyses. M.-G.D., S.D., 
M.J.K., Q.L.G., T.E.E., A.M., A.Tsuchida, F.M., C.T., J.M.W., S.Seshadri and 
H.H.H.A. wrote and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41591-023-02268-w.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41591-023-02268-w.

Correspondence and requests for materials should be addressed to 
Hieab H. H. Adams or Stéphanie Debette.

Peer review information Nature Medicine thanks Andreas Charidimou, 
Timothy Frayling and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Primary Handling Editor: 
Anna Maria Ranzoni, in collaboration with the Nature Medicine team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemedicine
https://cheba.unsw.edu.au/project/older-australian-twins-study
https://cheba.unsw.edu.au/project/older-australian-twins-study
http://www.jpnd.eu
http://www.jpnd.eu
https://doi.org/10.1038/s41591-023-02268-w
https://doi.org/10.1038/s41591-023-02268-w
http://www.nature.com/reprints


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02268-w

Extended Data Fig. 1 | Manhattan and QQ plots of extensive PVS burden in 
the cross-ancestry and European meta-analyses. Manhattan and Quantile-
Quantile (QQ) plots of the p-values (observed versus expected) in the cross-
ancestry (A) and European (B) GWAS meta-analyses are presented along with the 

genomic inflation factor (λ). For QQ plots the observed -log10(p) is represented 
in the y-axis and the expected -log10(p) in x-axis. The dotted line corresponds to 
the genome-wide significance threshold (p = 5×10−8, two sided). PVS indicates 
perivascular spaces; WM, white matter; BG, basal ganglia; HIP, hippocampus.
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Extended Data Fig. 2 | Two-sample Mendelian randomization analysis 
between putative risk factors and extensive PVS burden. Two-sample 
Mendelian randomization was conducted using European PVS GWAS summary 
statistics (N = 38,598 (WM-PVS), N = 38,903 (BG-PVS) and N = 38,871 (HIP-PVS)), 
combined with summary statistics for lacunes (N = 1,715 cases / N = 15,096 
controls) and WMH volume (N = 48,454) in MTAG, for the outcomes and 
European GWAS summary statistics for blood pressure traits (N = 757,601) to 
generate instruments for exposures (Supplementary Tables 1 and 29). Only 
significant associations after multiple testing correction (p < 1.19×10−3) in GSMR 

are shown. Each dot (or triangle if p < 1.19×10−3) represents the beta estimate from 
Mendelian randomization with lines representing the 95% confidence interval. 
Two-sided p-values of GSMR are reported. PVS indicates perivascular spaces; 
WM, white matter; BG, basal ganglia; HIP, hippocampus; MTAG, multi-trait 
analysis of genome-wide association summary statistics; DBP, diastolic blood 
pressure; PP, pulse pressure; SBP, systolic blood pressure; NS, not significant; 
GSMR, Generalised Summary-data-based Mendelian Randomisation; IVW, 
Inverse variance weighted; 2SMR, Two-SampleMR.
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Extended Data Fig. 3 | Two-sample Mendelian randomization analysis 
between extensive PVS burden and neurological traits. Two-sample 
Mendelian randomization was conducted using European GWAS summary 
statistics for any stroke (N = 40,585 cases / N = 406,111 controls), ischemic stroke 
(N = 34,217 cases / N = 400,201 controls) and small vessel stroke (N = 5,386 cases / 
N = 254,558 controls) for outcomes and European PVS GWAS summary statistics 
(N = 38,598 (WM-PVS), N = 38,903 (BG-PVS) and N = 38,871 (HIP-PVS)), combined 
with summary statistics for lacunes (N = 1,715 cases / N = 15,096 controls) and 
WMH volume (N = 48,454) in MTAG, to generate instruments for exposures 

(Supplementary Tables 1 and 29). Only significant associations after multiple 
testing correction (p < 1.19×10−3) in GSMR are shown. Each dot (or triangle if 
p < 1.19×10−3) represents the beta estimate from Mendelian randomization with 
lines representing the 95% confidence interval. Two-sided p-values of GSMR are 
reported. PVS indicates perivascular spaces; WM, white matter; BG, basal ganglia; 
HIP, hippocampus; MTAG, multi-trait analysis of genome-wide association 
summary statistics; NS, not significant; GSMR, Generalised Summary-data- 
based Mendelian Randomisation; IVW, Inverse variance weighted; 2SMR,  
Two-SampleMR.
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Extended Data Fig. 4 | Enrichment of PVS risk loci in genes mutated in OMIM 
syndromes. Enrichment of all perivascular spaces (PVS) loci (left) and WM-PVS 
loci only (right) in genes mutated in OMIM syndromes associated with white 
matter hyperintensities, leukodystrophy, leukoencephalopathy, according to 
distance from the lead variant; * p < 0.05; ** p < (0.05/5); *** p < (0.05/5/2). Exact 

p-values for all PVS loci: p = 0.041 (genes with intragenic SNPs), p = 9,27×10−06 
(genes with intragenic lead SNPs); exact p-values for WM-PVS loci only: 
p = 0,018 (genes within 10 kb distance), p = 0.008 (genes with intragenic SNPs), 
p = 8,61×10−08 (genes with intragenic lead SNPs), full results are provided in 
Supplementary Table 22.
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Extended Data Fig. 5 | Brain expression pattern across the lifespan of genes 
near genome-wide significant PVS loci that are also identified in the TWAS 
and peaking in the pre-natal period (UMPS and LAMC1). The figure displays 
brain expression patterns across the lifespan of the 2 significant PVS TWAS-
COLOC genes from genome-wide significant PVS GWAS loci peaking in the 
pre-natal period (UMPS for WM-PVS and LAMC1 for HIP-PVS) (see Supplementary 
Table 4 for brain expression pattern across the lifespan of other genes). The 
spatio-temporal gene expression level is plotted as log2-transformed exon 
array signal intensity (y-axis) against the post conception days (x-axis) as 
provided by the Human Brain Transcriptome project database. Periods of human 
development and adulthood are indicated by vertical dashed lines: 4-8 post 
conception weeks [PCW] (period 1), 8-10 PCW (period 2), 10-13 PCW (period 3), 
13-16 PCW (period 4), 16-19 PCW (period 5), 19-24 PCW (period 6), 24-38 PCW 
(period 7), birth-6 postnatal months (period 8), 6-12 postnatal months (period 9), 

1-6 years (period 10), 6-12 years (period 11), 12-20 years (period 12), 20-40 years 
(period 13), 40-60 years (period 14), and 60 years + (period 15). The boundary 
between pre- and postnatal periods is indicated by the solid vertical line. Each 
colored point represents the expression level of each gene across 16 anatomical 
brain regions and ages. Brain structure includes 11 neocortical areas (NCX, blue), 
and 5 subcortical regions: hippocampus (HIP, cyan), amygdala (AMY, orange), 
striatum (STR, black), mediodorsal nucleus of thalamus (MD, dark green), and 
cerebellar cortex (CBC, red). Neocortical areas include orbital prefrontal cortex 
(OFC), dorsolateral prefrontal cortex (DFC), ventrolateral prefrontal cortex 
(VFC), medial prefrontal cortex (MFC), primary motor cortex (M1C), primary 
somatosensory cortex (S1C), posterior inferior parietal cortex (IPC), primary 
auditory cortex (A1C), posterior superior temporal cortex (STC), inferior 
temporal cortex (ITC), and primary visual cortex (V1C).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Enrichment of PVS genes in targets of drugs validated 
in other indications (Genome for REPositioning drugs, using ICD10 codes). 
Using the Genome for REPositioning drugs (GREP) software (A), we found a 
significant enrichment of BG-PVS genes in targets of drugs for diseases of the 
nervous system (ICD10 codes G50-G59, G70-G73, and G80-G83, OR = 51.0, 49.7, 
and 60.4, p = 3.90×10−2, 4.00×10−2, and 3.32×10−2) and for symptoms and signs 
involving cognition, perception, emotional state and behaviour (ICD10 codes 
R40-R46, OR = 48.4, p = 4.10×10−2), driven by MAPT (chr17q21.31), a target 

for davunetide (B). We also found a significant enrichment of HIP-PVS genes 
in targets of drugs for diseases of the ear (ICD10 codes H90-H95, OR = 57.6, 
p = 2.34×10−2), driven by SERPIND1 (chr22q11.21) a target for sulodexide, also 
used for the prophylaxis and treatment of vascular diseases with increased risk of 
thrombosis (B). PVS indicates perivascular spaces; ATC, Anatomical Therapeutic 
Chemical classification; ICD10, the 10th revision of the International Statistical 
Classification of Diseases and Related Health Problems; TTD, Therapeutic  
Target Database.
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Extended Data Fig. 7 | Enrichment of PVS genes in targets of drugs 
validated in other indications (Genome for REPositioning drugs, using 
ATC codes). We found a significant enrichment of BG-PVS genes in targets for 
antiinfectives for systemic use (ATC J01, OR = 252.4, P = 8.85×10−3), driven by 

CRHR1 (chr17q21.31), a target for telavancin (A, B); of note, CRHR1 antagonists 
were shown to attenuate blood brain barrier permeability, cortical vascular 
hyperpermeability and tight junction disruption. ATC indicates Anatomical 
Therapeutic Chemical classification.
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Extended Data Fig. 8 | Enrichment of PVS genes in targets of drugs validated 
in other indications (Trans-Phar). We used the Integration of Transcriptome-
wide Association Study and Pharmacological Database (Trans-Phar) software, 
leveraging TWAS on all GTEx v7 tissues and a database of compound-
regulated gene expression (C-map) (Methods). A TWAS using FOCUS, which 
demonstrates fine-mapping of causal gene sets from TWAS results, and 27 
tissues in the GTEx v7 database (corresponding to defined 13 tissue-cell-type 
categories assigned by the 27 tissues in GTEx v7 database and 77 LINCS CMap 

L1000 library cell types) was performed to identify up- and down-regulated 
genes in participants with extensive PVS burden, and select the top 10% genes 
with the highest expression variation. We observed significant enrichment of 
HIP-PVS in drugs for vascular diseases, including simvastatin (lipid-lowering 
drug, p = 1.64×10−4), vincamine (vasodilator increasing cerebral blood flow, 
p = 2.87×10−4), and macitentan (used for pulmonary arterial hypertension, 
p = 7.46×10−4). PVS indicates perivascular spaces.
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