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Background. Clinical pediatric tuberculosis (TB) diagnosis may lead to overdiagnosis particularly among children with human 
immunodeficiency virus (CHIV). We assessed the performance of monocyte-lymphocyte ratio (MLR) as a diagnostic biomarker and 
constructed a clinical prediction score to improve specificity of TB diagnosis in CHIV with limited access to microbiologic testing.

Methods. We pooled data from cohorts of children aged ≤13 years from Vietnam, Cameroon, and South Africa to validate the 
use of MLR ≥0.378, previously found as a TB diagnostic marker among CHIV. Using multivariable logistic regression, we created an 
internally validated prediction score for diagnosis of TB disease in CHIV.

Results. The combined cohort had 601 children (median age, 1.9 [interquartile range, 0.9–5.3] years); 300 (50%) children were 
male, and 283 (47%) had HIV. Elevated MLR ≥0.378 had sensitivity of 36% (95% confidence interval [CI], 23%–51%) and specificity 
of 79% (95% CI, 71%–86%) among CHIV in the validation cohort. A model using MLR ≥0.28, age ≥4 years, tuberculin skin testing 
≥5 mm, TB contact history, fever >2 weeks, and chest radiograph suggestive of TB predicted active TB disease in CHIV with an area 
under the receiver operating characteristic curve of 0.85. A prediction score of ≥5 points had a sensitivity of 94% and specificity of 48% 
to identify confirmed TB, and a sensitivity of 82% and specificity of 48% to identify confirmed and unconfirmed TB groups combined.

Conclusions. Our score has comparable sensitivity and specificity to algorithms including microbiological testing and should 
enable clinicians to rapidly initiate TB treatment among CHIV when microbiological testing is unavailable.
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In 2019 an estimated 1.2 million children developed tuberculo
sis (TB) disease, resulting in 230 000 deaths [1]. More than 96% 
of children who die from TB have not started treatment [2]. 
Diagnosis of active TB disease in children is complex, even 
with expansion of the Xpert MTB/RIF and Xpert Ultra 

platforms. Collection of induced sputum or gastric aspirate 
specimens from young children is challenging, and accessibility 
of Xpert MTB/RIF testing remains limited in low- and 
middle-income countries where most TB cases are diagnosed 
[3, 4]. When immediate microbiologic confirmation is not ob
tained, TB diagnosis in children relies on clinical presentation, 
contact history, diagnostics designed to detect Mycobacterium 
tuberculosis (Mtb) infection but not disease (ie, tuberculin 
skin testing [TST] and interferon-γ release assay), and chest ra
diography (CXR). This approach has many limitations and can 
lead to overdiagnosis, particularly among children with human 
immunodeficiency virus (CHIV) who have high incidence of 
non-TB pulmonary comorbidities [5–7]. Clinical diagnosis re
lies on clinical skills requiring support and standardization for 
those working at a low level of healthcare. Tools that maximize 
sensitivity with good specificity are required to provide this 
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support. Recently, 2 TB pediatric treatment decision algorithms 
published by Marcy et al and Gunasekera et al demonstrated 
high sensitivity (88.6%–90.1%) and moderate specificity 
(61.2%–52.1%) in children with and without HIV, respectively 
[8, 9]. However, the specificity of these models was enhanced by 
inclusion of Xpert MTB/RIF assay. In settings without access to 
microbiologic testing, there is a need for pediatric TB treatment 
decision algorithms that are easily deployable and highly sensi
tive, while maintaining moderate to high specificity.

The monocyte-to-lymphocyte ratio (MLR) obtained from rou
tine complete blood counts (CBCs) has shown promise as a diag
nostic biomarker for TB disease. Mtb preferentially infects cells of 
the myeloid lineage, including macrophages and monocytes, lead
ing to proliferation and an increase in the absolute number of 
monocytes relative to the absolute number of lymphocytes in pe
ripheral blood [10]. Elevated MLR predicted the risk of TB disease 
in infants with HIV infection or exposure [11–16] and MLR ≥0.285 
achieved 91% sensitivity and 93% specificity to diagnose TB among 
adults without HIV [12]. The MLR can further be elevated in indi
viduals with HIV, given their relative lymphocyte depletion [17]. 
Gatechompol et al found that MLR ≥0.23 had a sensitivity of 
85% and specificity of 71% for predicting incident TB in people 
with HIV [18]. We previously found that MLR ≥0.378 was associ
ated with active TB disease among hospitalized Kenyan CHIV, 
achieving a sensitivity of 79% and specificity of 77% [19]. MLR 
may be a proxy for Mtb bacteriologic burden, as we and others 
have found that MLR declines with TB treatment and Buttle et al 
found higher MLRs in smear-positive and cavitary pulmonary TB 
among adults [12, 19, 20]. Attractive features of MLR that can ren
der it a feasible tool in low-resource settings include easy sample col
lection, availability of differential blood count in most laboratories 
globally, and easy calculation of the MLR ratio. Another option 
that has been explored is use of neutrophil-lymphocyte ratio.

The objective of this study was to validate the findings of MLR as 
a diagnostic biomarker in a multicountry cohort of children with 
and without HIV in both inpatient and outpatient settings. We 
then assessed the diagnostic performance of MLR when incorporat
ed into a prediction score with demographic, clinical, and other lab
oratory features to inform TB treatment decisions among CHIV in 
settings where microbiologic testing is not readily available.

METHODS

Study Design

We performed a cross-sectional diagnostic accuracy study using 
combined data from 2 different pediatric cohort studies from 
Vietnam and Cameroon and South Africa to validate the perfor
mance of MLR as a diagnostic tool for pediatric TB, using a case- 
control approach with microbiologically confirmed TB and 
unlikely TB as cases and controls, respectively [21–23]. We 
secondarily constructed a diagnostic prediction score pooling 
data from these 2 studies and data from our previous Kenyan 

pediatric MLR study [19], using demographic, clinical, and labo
ratory features including MLR to increase the sensitivity and spe
cificity of TB diagnosis in CHIV; we used a case-control approach 
with the same populations and secondarily tested our score in 
those with unconfirmed TB.

Study Population and Enrollment
Vietnam and Cameroon
As part of the French National Agency for Research on AIDS 
and Viral Hepatitis ANRS 12229 PAANTHER 01 study 
(NCT01331811), CHIV with presumptive TB from Vietnam 
and Cameroon aged ≤13 years were enrolled between April 
2011 and August 2013 [21]. All children underwent a medical 
history and TB symptoms assessment, physical examination, 
CXR, CBC, TST, and microbiologic testing for TB.

South Africa
Children with and without HIV and presumptive TB aged ≤12 
years were enrolled in a prospective TB diagnostic study be
tween March 2012 and November 2017 [22, 23]. Children 
were evaluated with a complete physical examination, CXR, 
TST, and microbiologic TB testing. Children with a CBC col
lected at the time of enrollment were included in this analysis.

Kenya
As part of the Pediatric Urgent Start of HAART (PUSH) trial 
(NCT02063880), which compared impact on mortality of early an
tiretroviral therapy (ART) initiation within 48 hours versus 7–14 
days after enrollment between April 2013 and May 2015 [24], chil
dren aged <12 years without central nervous system infection had 
complete medical history, physical examination, CBC, CXR, and 
microbiologic TB testing performed at enrollment.

All children in the above cohorts were classified as having 
confirmed, unconfirmed, or unlikely TB using the Clinical 
Case Definitions for Classification of Intra-thoracic TB in 
Children 2015 [25]. Further details of the cohorts are reported 
in the Supplementary Methods.

Sample Size

The post hoc sample size required to validate MLR ≥0.378 for di
agnosis of confirmed TB versus unlikely TB was determined to be 
403 children with an expected sensitivity and specificity of 70%, 
prevalence of confirmed TB of 20%, and precision/margin of error 
of 10% with 95% confidence level. The sample size required to es
timate the diagnostic accuracy (area under the curve [AUC]) of 
prediction score for diagnosis of confirmed TB versus unlikely 
TB in children living with HIV was determined to be 58 confirmed 
TB cases and 58 non-TB cases (total n = 116) for AUC of 0.70 with 
precision/margin of error of 0.10 with 95% confidence level [26].

Statistical Analysis

To validate the findings from Kenya, data from the Vietnam/ 
Cameroon and South Africa cohorts were pooled to create a 
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combined dataset and MLR was calculated using differential 
blood count for monocytes and lymphocytes at the initial diag
nostic visit. A MLR value of ≥0.378 was used to evaluate TB di
agnosis using the previously defined cutoff in the Kenyan 
cohort [19]. Microbiologically confirmed TB, either by myco
bacterial culture or Xpert MTB/RIF (confirmed TB), versus un
likely TB was used as reference to calculate the sensitivity and 
specificity of MLR for TB diagnosis.

To construct a diagnostic prediction score, we combined 
data from CHIV in the Kenyan, South African, Vietnam, 
and Cameroon cohorts. We restricted analysis to children 
with at least 1 of the following symptoms: cough for >2 weeks, 
fever for >2 weeks, failure to thrive, or reduced playfulness and 
blood samples collected within 7 days of starting TB treatment. 
Multivariable logistic regression was performed with con
firmed TB versus unlikely TB as the outcome. Predictor vari
ables included TB-associated symptoms, TB contact history, 
CXR suggestive of TB (as a dichotomous outcome), TST 
≥5 mm, MLR ≥0.28, age in years (dichotomized at 4 years), 
and sex. The candidate variables selected for model building 
were based on clinical data that are commonly collected while 
assessing a TB patient in high-incidence, low-resource set
tings. CXR was defined as suggestive of TB if there was a pos
itive response for any one of the radiographic features: 
presence of hilar or paratracheal lymphadenopathy, tracheal 

or bronchial compression, pleural effusion, consolidation, cav
itation, or miliary pattern [27]. For ease of use in clinical prac
tice, we converted all continuous predictor variables into 
dichotomous variables using univariate receiver operating 
characteristic (ROC) curve analysis with the optimal cutoff 
based on the maximum value of Youden index, J (J = sensitiv
ity + specificity – 1). Model selection using Akaike information 
criteria (AIC) was used to select the final, parsimonious model. 
We used bootstrap resampling (1000 samples) for internal val
idation and to obtain a value accounting for model optimism 
[28]. Log odds values from the final model were normalized 
by dividing them by their respective standard error and round
ing off to the nearest integer. These integer values were consid
ered the score items for these specific variables and a 
cumulative prediction score for each subject was calculated 
by summing these up. A ROC curve analysis was carried out 
to find the optimal cutoff for the prediction score using the 
maximum value of Youden index, J. We also assessed the per
formance of the derived prediction score against the composite 
reference standard of confirmed and unconfirmed TB as the 
TB case definition versus unlikely TB. Data were analyzed us
ing Stata version 16 software (StataCorp, College Station, 
Texas). We follow the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines for reporting of results [29].

Table 1. Baseline Demographics of the Cohort Used for Validating Monocyte-Lymphocyte Ratio ≥0.378 for Diagnosis of Confirmed Tuberculosis

Baseline Characteristic Total (N = 601) Vietnam (n = 111) Cameroon (n = 125) South Africa (n = 365)

Age, y, median (IQR) 1.9 (0.9–5.3) 5.3 (1.6–8.8) 6.2 (1.8–9.4) 1.3 (0.7–2.5)

Male sex 300 (50) 59 (53) 55 (44) 186 (51)

Living with HIV 283 (47) 111 (100) 125 (100) 47 (13)

CD4%, median (IQR) 11.7 (2.9–21.3), n = 268 7.6 (1.2–18.7), n = 107 11.5 (3.4–20.3), n = 120 18.9 (13.0–27.0), n = 41

TB classification

Confirmed 128 (21) 18 (16) 22 (18) 88 (24)

Unconfirmed 183 (31) 42 (38) 39 (31) 102 (28)

Unlikely 290 (48) 51 (46) 64 (51) 175 (48)

Cough >2 wks 343 (57) 89 (80) 105 (85) 149 (41)

Fever >2 wks 133 (22) 47 (42) 68 (55) 18 (4.9)

Failure to thrive 286 (48) 42 (38) 80 (64) 164 (45)

Reduced playfulness 193 (32) 21 (19) 94 (76) 78 (21)

TB contact history 147 (25) 10 (9) 5 (4) 132 (36)

TST >5 mm 99 (21), n = 475 13 (12), n = 105 9 (9), n = 95 77 (28), n = 275

CXR suggestive of TB [27] 283 (50), n = 568 70 (65), n = 107 82 (71), n = 116 131 (38), n = 345

WBC count, cells/µL, median (IQR) 10.9 (7.3–15.2), n = 592 7.6 (5.0–11.2), n = 107 7.3 (5.4–11.3), n = 120 12.9 (9.5–17.0), n = 365

Monocyte count, cells/µL, median (IQR) 7.4 (5.0–11.0), n = 592 5.0 (7.0–10.0), n = 107 10.0 (8.0–15.0), n = 120 6.5 (4.7–9.3), n = 365

Lymphocyte count, cells/µL, median (IQR) 38.6 (25.0–54.4), n = 592 40.0 (27.0–54.0), n = 107 37.0 (23.0–54.5), n = 120 38.4 (24.9–54.4), n = 365

MLR, median (IQR) 0.22 (0.14–0.38), n = 592 0.18 (0.12–0.30), n = 107 0.32 (0.20–0.43), n = 120 0.21 (0.13–0.37), n = 365

MLR if confirmed TB, median (IQR) 0.29 (0.17–0.53), n = 128 0.29 (0.19–0.38), n = 18 0.34 (0.30–0.60), n = 22 0.23 (0.16–0.52), n = 88

MLR if unconfirmed TB, median (IQR) 0.21 (0.12–0.36), n = 181 0.18 (0.12–0.33), n = 40 0.29 (0.20–0.40), n = 39 0.20 (0.11–0.34), n = 102

MLR if unlikely TB, median (IQR) 0.21 (0.13–0.35), n = 283 0.15 (0.11–0.24), n = 49 0.26 (0.17–0.44), n = 59 0.21 (0.12–0.36), n = 175

Abbreviations: CXR, chest radiography; HIV, human immunodeficiency virus; IQR, interquartile range; MLR, monocyte-lymphocyte ratio; TB, tuberculosis; TST, tuberculin skin test; WBC, 
white blood cell.  

Data are presented as No. (%) unless otherwise indicated.
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RESULTS

Cohort Characteristics

Of 663 children in the combined dataset from Vietnam, 
Cameroon, and South Africa, we excluded 71 children from 
the analysis because of missing MLR data. Sixty-two children 
from South Africa did not have blood samples collected within 
7 days of starting TB treatment. These children did not differ 
demographically or clinically from the remaining 365 South 
African children who remained in the analytical dataset 
(Supplementary Table 1). Nine children from Vietnam and 
Cameroon did not have results for the blood counts recorded.

The median age of the combined cohorts was 1.9 (interquar
tile range [IQR], 0.9–5.3) years; 300 (50%) children were male. 
South African children were younger (median age, 1.3 [IQR, 
0.7–2.5] years) than children from Vietnam and Cameroon 
(median age, 5.5 [IQR, 1.7–9.5] years). Overall, 283 (47%) chil
dren were living with HIV. The overall median white blood cell 
count was 10.9 (IQR, 7.3–15.2) cells/µL with South African 
children having a higher count (median, 12.9 [IQR, 9.5–17.0] 
cells/µL; median in CHIV: 11.0 [IQR, 8.2–14.8] cells/µL) com
pared with children from Vietnam and Cameroon (median, 7.3 
[IQR, 5.1–11.2] cells/µL). Median lymphocyte and monocyte 
counts did not differ by country (Table 1).

Overall, 128 (21%) children met the criteria for confirmed 
TB, 183 (31%) had unconfirmed TB and 290 (48%) were un
likely to have TB. The overall median MLR was 0.22 (IQR, 
0.14–0.38), ranging from 0.18 in Vietnam to 0.32 in 
Cameroon (P < .001). The median MLR among children with 
confirmed TB was 0.29 (IQR, 0.17–0.53). Children with uncon
firmed TB had similar MLR (median, 0.21 [IQR, 0.12–0.36]) 
compared to children with unlikely TB (median, 0.21 [IQR, 
0.12–0.35]) (P = .77). Median MLR was higher among CHIV 

with confirmed TB versus unlikely TB and more pronounced 
in the absence of ART (Figure 1A). MLR did not differ by TB 
disease classification among children without HIV 
(Figure 1A). MLR did not discriminate children with con
firmed and unconfirmed TB grouped together compared to 
children with unlikely TB in either children with or without 
HIV (Figure 1B).

Diagnostic Utility of MLR ≥0.378

Using the MLR cutoff of ≥0.378, 145 (25%) children from the 
full cohort and 64 (23%) among CHIV were classified as having 
TB disease. Comparing confirmed TB versus unlikely TB, this 
MLR value had a sensitivity of 33% (95% CI, 25%–42%) and 
specificity of 77% (95% CI, 72%–82%) among the combined co
hort of children with and without HIV (Table 2). Sensitivity 
and specificity values were similar when the analysis was re
peated stratified by country (Table 2). Restricting the analysis 
to CHIV resulted in sensitivity of 36% (95% CI, 23%–51%) 
and specificity of 79% (95% CI, 71%–86%) (Table 2). Among 
CHIV with higher clinical TB severity (miliary pattern or cav
itation on CXR or positive acid-fast bacilli smear), MLR value 
of ≥0.378 had a sensitivity of 46% (95% CI, 26%–67%) and spe
cificity of 83% (95% CI, 36%–100%), comparing children with 
confirmed TB versus unlikely TB.

Deriving a Prediction Score for Diagnosis of TB in CHIV

One hundred thirty-one CHIV from the Kenya cohort were 
added to the overall dataset, resulting in a total of 414 CHIV 
of whom 63 (15%) had confirmed TB and 163 (39%) had un
confirmed TB. Baseline characteristics of the cohort are shown 
in Supplementary Table 2. Since MLR had better performance 
among CHIV, we developed a prediction score for CHIV with 

Figure 1. A, Monocyte-lymphocyte ratio (MLR) distribution by confirmed tuberculosis (TB) versus unlikely TB and human immunodeficiency virus (HIV) status (negative, 
positive with antiretroviral therapy [ART], or positive without ART) in children from Cameroon, Vietnam, and South Africa. B, MLR distribution by confirmed and unconfirmed 
TB versus unlikely TB and HIV status in children from Cameroon, Vietnam, and South Africa.
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confirmed and unlikely TB (n = 209). Using ROC curve analy
sis with Youden J, the best MLR cutoff was ≥0.28 with sensitiv
ity of 67% (95% CI, 54%–78%) and specificity of 68% (95% CI, 
61%–75%). We also used Youden index to determine the opti
mal age cutoff of ≥4 versus <4 years. Using AIC values, the best 
model to predict active TB disease had the following variables: 
MLR ≥0.28, age ≥4 years, TST ≥5 mm, contact history with a 
TB patient, fever for >2 weeks, and CXR suggestive of TB with 
an AUC of 0.85 (Figure 2). Model optimism was estimated to be 
0.03%.

Supplementary Table 3 summarizes the coefficients for the 
final logistic regression model and the corresponding predic
tion scores. The highest scoring variable in the prediction score 
was fever >2 weeks (4 points). The median cumulative predic
tion score was 5 (IQR, 3–8) with the AUC being 0.84 (Figure 2). 
Model optimism was estimated to be 0.01%. The optimal cutoff 
for diagnosis of active TB disease using Youden J was 7 points. 
This resulted in a sensitivity of 78% (95% CI, 63%–88%), spe
cificity of 78% (95% CI, 70%–84%), positive predictive value 
of 51% (95% CI, 39%–63%), and negative predictive value of 
92% (95% CI, 86%–96%).

Table 3 summarizes sensitivities and specificities associated 
with other potential cutoff values comparing children with 
confirmed versus unlikely TB. A cutoff of 5 points resulted 
in sensitivity of 94% and specificity of 48% meeting 
WHO-recommended target product profile for a triage test 
sensitivity of at least 90%, but below the specificity requirement 
of 70%. Using composite standard of confirmed/unconfirmed 
TB versus unlikely TB, the AUC for the prediction score was 
0.74 (Figure 2). A cutoff of 5 points resulted in sensitivity of 
82% and specificity of 48%.

Figure 3 shows how the prediction score can be operational
ized using a simple clinical algorithm.

DISCUSSION

In a multicountry cohort of children with and without HIV 
from South Africa, Vietnam, and Cameroon, we found that 
MLR was associated with confirmed TB in CHIV. Elevated 
MLR ≥0.378 achieved lower sensitivity (36%) but similar 
high specificity (79%) among CHIV in our multicountry vali
dation cohort compared to previous findings among Kenyan 
ART-naive hospitalized CHIV [19]. We found that MLR did 
not discriminate between confirmed and unlikely TB among 
children without HIV.

The lower sensitivity of MLR to detect TB in our multicenter 
study compared to previous findings in Kenya may be attribut
ed to differences in the clinical cohorts. The Kenyan cohort in
cluded CHIV who were younger, ART naive, and who likely 
had more severe TB disease given severe immunosuppression, 
malnutrition, and hospitalized status compared to children in 
Vietnam and Cameroon who enrolled CHIV in the outpatient 
setting. South African CHIV were of similar age to those in the 
Kenyan cohort and also predominantly from a hospitalized set
ting, but importantly, almost 50% were on ART. The median 
monocyte count in South African CHIV was lower than that 
of Kenyan children, while median white count was similar, ac
counting for the lower median MLR. We found that elevated 
MLR ≥0.378 had similar sensitivity but lower specificity com
pared to other non-sputum-based microbiologic tests to diag
nose active TB disease in children as reported in the 
literature (stool Xpert MTB/RIF: sensitivity 32%–81%, specific
ity 99%–100%; nasopharyngeal aspirate Xpert MTB/RIF: sensi
tivity 39%–65%, specificity 98%–99%) [30–33]. Elevated MLR 
≥0.378 had higher specificity than clinical diagnosis for 
CHIV (previously reported between 25% and 62%) [34].

The relatively high specificity of MLR for a blood-based 
non-sputum-based diagnostic test offers potential for inclusion 
in pediatric TB treatment algorithms to limit overdiagnosis in 
settings without access to microbiologic testing [35]. Diagnosis 
of TB in CHIV in absence of microbiological testing is partic
ularly difficult given nonspecific symptoms and CXR findings 
in the context of higher rates of other respiratory illnesses [6, 
36]. We found that a score of 5 points resulted in a sensitivity 
of 94% and specificity of 48%, which is in line with the target 
product profile of WHO to achieve sensitivity of at least 90% 
for community-based triage tests but not the specificity re
quirements of at least 70% [8, 9, 37]. Yet our score had similar 
specificity compared to other treatment decision algorithms 
without reliance on the Xpert MTB/RIF assay [8, 9]. Our pre
diction score can easily be operationalized using a simple clin
ical algorithm (Figure 3) that should be externally validated 
before clinical use.

Limitations of our study include inability to stratify our anal
ysis based on severity of the disease or type of automated hemo
cytometer used to measure MLR as this information was not 

Table 2. Sensitivity, Specificity, Positive Predictive Value, and Negative 
Predictive Value for Monocyte-Lymphocyte Ratio ≥0.378 (Confirmed vs 
Unlikely Tuberculosis)

Cohort and 
Characteristic

Sensitivity, 
% 

(95% CI)

Specificity, 
% 

(95% CI)
PPV, % 
(95% CI)

NPV, % 
(95% CI)

Complete cohort 33 (25–42) 77 (72–82) 39 (30–49) 72 (66–77)

Vietnam 28 (10–54) 92 (80–98) 56 (21–86) 78 (65–88)

Cameroon 41 (21–64) 66 (53–78) 31 (15–51) 75 (61–86)

South Africa 32 (22–43) 77 (70–83) 41 (29–53) 69 (62–76)

HIV positive 36 (23–51) 79 (71–86) 41 (26–57) 75 (67–83)

HIV positive on ART 29 (8–58) 86 (70–95) 44 (14–79) 75 (59–87)

HIV positive not on ART 39 (23–57) 76 (66–89) 40 (24–58) 76 (65–84)

HIV negative 31 (21–42) 76 (68–82) 38 (26–51) 69 (62–76)

Male sex 36 (24–49) 76 (68–83) 42 (29–57) 71 (62–78)

Female sex 30 (20–43) 78 (70–84) 36 (24–50) 73 (65–79)

Abbreviations: ART, antiretroviral therapy; CI, confidence interval; HIV, human 
immunodeficiency virus; NPV, negative predictive value; PPV, positive predictive value.

MLR Prediction Score for TB Treatment • OFID • 5

D
ow

nloaded from
 https://academ

ic.oup.com
/ofid/article/9/11/ofac548/6761329 by U

niversite de Bordeaux user on 16 D
ecem

ber 2022

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofac548#supplementary-data


available to us. The finding that MLR does not perform as well 
in children without HIV needs to be interpreted in the context 
that all children without HIV were from South Africa and there 
may be genetic and environmental influences on the relative 
abundance of monocyte counts [38]. Alternately, since MLR 
is associated with TB disease severity, improved MLR perfor
mance among CHIV may reflect a higher mycobacterial burden 
compared to children without HIV. MLR performed well as a 

TB diagnostic biomarker in prior studies of adults without 
HIV. Given the relative paucibacillary nature of pediatric TB, 
its use among children may be optimal in the context of 
more severe disease [12, 19, 20]. We developed the score using 
confirmed TB as the reference case definition for TB in com
parison to unlikely TB. This can lead to misdiagnosis in chil
dren who do not have bacteriologically confirmed disease. 
However, our score performed similarly when the composite 
TB case definition included both confirmed and unconfirmed 
TB. Diagnosis in the youngest age groups continues to be a 
challenge, with our algorithm requiring more investigations 
to initiate treatment in those aged <4 years. This high-risk 
group requires urgent prioritization for improved diagnostic 
approaches. Last, we had missing predictor data on 17% of 
the cohort when creating the prediction score, mostly for 
CXR and TST.

Strengths of our prediction score include the use of prospec
tive data from multicountry cohorts. Predictors in our score in
clude parameters that are known to be associated with TB 
disease in children [25]. We used methods recommended for 
diagnostic prediction models to create our score and internally 
validate it using bootstrap resampling [9]. This method is in 
contrast to most previous pediatric TB diagnostic scores and al
gorithms, which have been based on expert opinions and have 
not been validated [34, 39]. Additionally, our score does not 

Figure 2. Receiver operating characteristic curves for confirmed tuberculosis (TB) versus unlikely TB and confirmed and unconfirmed TB versus unlikely TB. Full model: β0 + 
β1 monocyte-lymphocyte ratio ≥0.28 + β2 tuberculin skin test + β3 contact history + β4 fever >2 weeks + β5 age ≥4 years + β6 chest radiograph consistent with TB. Pr
ediction score model: β0 + β1 prediction score. Abbreviations: AUC, area under the curve; conf, confirmed; ROC, receiver operating characteristic; unconf, unconfirmed; unlik, 
unlikely.

Table 3. Sensitivities and Specificities of Different Prediction Score 
Cutoffs

Prediction 
Score

Confirmed TB vs Unlikely TB
Confirmed/Unconfirmed  

TB vs Unlikely TB

Sensitivity, % Specificity, % Sensitivity, % Specificity, %

4 93.9 41.3 82.1 41.3

5 93.9 47.5 81.5 47.5

6 83.7 66.3 71.1 66.3

7 77.6 77.5 59.5 77.5

8 69.4 85.0 48.6 85.0

9 59.2 90.0 38.2 90.0

10 46.9 93.1 25.4 93.1

Components of the prediction score include monocyte-lymphocyte ratio ≥0.28, tuberculin 
skin test, contact history, fever >2 weeks, age ≥4 years, and chest radiography 
consistent with TB.  

Abbreviation: TB, tuberculosis.
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rely on sputum-based testing including Xpert MTB/RIF assay. 
Although availability of the Xpert MTB/RIF assay is increasing 
globally, access in resource-limited settings is still challenging, 
with clinical staff training, program guidelines, electrical sup
ply, transportation, and cartridge availability as possible barri
ers [40, 41]. Even when the test is available, children may not be 
able to provide the requisite sputum sample [3]. Our score in
volves laboratory tests, including CBC, TST, and CXR. 
However, these are readily available in many high-incidence, 
low-resource settings.

CONCLUSIONS

With its discriminatory performance, our score would enable 
clinicians to rapidly initiate TB treatment among CHIV with 
presumed TB disease in absence of microbiological confirma
tion. Further studies to externally validate the prediction score 
and assess its clinical usefulness are needed before this can be 
used in clinical practice.
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