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Histone posttranslational modifications rather than DNA
methylation underlie gene reprogramming in pollination-
dependent and pollination-independent fruit set in tomato
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Summary

e Fruit formation comprises a series of developmental transitions among which the fruit set
process is essential in determining crop yield. Yet, our understanding of the epigenetic land-
scape remodelling associated with the flower-to-fruit transition remains poor.

e We investigated the epigenetic and transcriptomic reprogramming underlying pollination-
dependent and auxin-induced flower-to-fruit transitions in the tomato (Solanum
lycopersicum) using combined genomewide transcriptomic profiling, global ChIP-sequencing
and whole genomic DNA bisulfite sequencing (WGBS).

e Variation in the expression of the overwhelming majority of genes was associated with
change in histone mark distribution, whereas changes in DNA methylation concerned a minor
fraction of differentially expressed genes. Reprogramming of genes involved in processes
instrumental to fruit set correlated with their H3K9ac or H3K4me3 marking status but not
with changes in cytosine methylation, indicating that histone posttranslational modifications
rather than DNA methylation are associated with the remodelling of the epigenetic landscape
underpinning the flower-to-fruit transition.

e Given the prominent role previously assigned to DNA methylation in reprogramming key
genes of the transition to ripening, the outcome of the present study supports the idea that
the two main developmental transitions in fleshy fruit and the underlying transcriptomic

reprogramming are associated with different modes of epigenetic regulations.

Introduction

The transition from flower to fruit, the so-called fruit set, is an
important determinant of crop yield and, in the face of global
warming and fast-growing world population, maintaining yield
stability is becoming a major challenge. Fleshy fruit development
is a genetically programmed process comprising a series of devel-
opmental transitions coordinated by a complex network of sig-
nalling pathways that trigger massive physiological, metabolic
and structural changes (Pandolfini ez al, 2007). Fruit set pro-
ceeds normally upon successful completion of pollination and
fertilization of the mature flower. So far, the molecular nature of
the signalling networks that trigger the series of subordinated
programmes for fruit set remains poorly understood. Auxin and
gibberellin (GA) are two central hormones involved in the
fower-to-fruit transition, and application of both hormones to
unpollinated ovaries can stimulate parthenocarpic fruit growth in
several species (Gustafson, 1936; Blinger-Kibler & Bangerth,
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1982; Wang er al., 2005; Marti ez al., 2007; Serrani ez al., 2008;
de Jong er al., 2009; Mounet ez al., 2012; Garcia-Hurtado ez 4/,
2012). Extensive transcriptomic profiling has provided an insight
into the genetic regulators underlying fruit set in tomato (Vriezen
et al., 2007; Molesini er al., 2009; Wang et al., 2009b; Ruiu
et al., 2015; Tang er al., 2015), however the main drivers of the
transcriptomic reprogramming underlying this developmental
transition remain largely undefined.

Epigenetic remodelling is a major mechanism driving tran-
scriptomic reprogramming associated with plant developmental
processes (Bouyer ez al., 2011; Baulcombe & Dean, 2014; Xiao
& Wagner, 2015; Lang ez al.,, 2017; Narsai ¢t al., 2017; Lee &
Seo, 2018; Ji ez al., 2019; Borg ez al., 2020). In particular, histone
modifications involving Polycomb group (PcG) and H3K27me3
have been shown to play key roles in developmental transitions
such as the shift from seed to vegetative growth and from vegeta-
tive to reproductive phases (Pu & Sung, 2015). Histone post-
translational modifications (HPTMs) and DNA methylation at
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cytosine residues on the fifth carbon are the main operating
modes for epigenetic regulations in addition to small RNAs and
histone variants (Henderson & Jacobsen, 2007; Lauria & Rossi,
2011; Chua & Gray, 2018; Reyes et al, 2018; Zhang et al.,
2018). DNA methylation has been found in all plants analysed
so far (Niederhuth ez 4/, 2016). Methylation in the CG, CHG
and CHH (where H=A, T or C) sequence contexts is main-
tained by Methyltransferasel (MET1) and chromomethylases
(CMT3 and CMT2), respectively (Takuno ez al., 2016; Nieder-
huth er al, 2016), whereas RNA-directed DNA methylation
pathway (RADM) is involved in CHH methylation maintenance
(Stroud et al., 2013; Matzke & Mosher, 2014; Yaari et al., 2019).
Several studies have revealed the critical role of DNA demethyla-
tion in fruit ripening through de-repression of key regulator
genes such as CNR, RIN and NOR in tomato (Zhong ez al., 2013;
Liu er al., 2015a; Lang ez al., 2017; Cheng ez al., 2018; Huang
et al., 2019). Also, DNA demethylase DEMETER-like 2
(SIDML2) has been reported to actively remove methyl groups
from methylated DNA during fruit ripening (Liu ez al, 2015a),
and genomewide DNA methylome studies indicated that hun-
dreds of ripening-associated genes in sldm/2 mutant showed a
negative correlation between changes in DNA methylation and
changes in gene expression (Lang e 4/, 2017).

HPTM:s are a major guide to the coordinated transcriptomic
reprogramming associated with developmental transitions, circa-
dian clock and plant responses to stress (Berr er al, 2011;
Malapeira ez al., 2012; Liu e al., 2014; Engelhorn ez al., 2017;
Gu ez al., 2017; You ez al., 2017; Lee et al., 2019; Song ez al.,
2019). Specific combinations of HPTMs have been correlated
with the active or repressive state of chromatin in terms of gene
transcription activity (Li e al., 2008; Wang et al., 2009a; Roudier
et al., 2011). HPTMs have been also used to identify central reg-
ulators for leaf senescence in Arabidopsis (Ay et al., 2009; Bruss-
lan ez al., 2015) and for lipid metabolism in microalgae (Ngan
et al., 2015). A widely accepted paradigm postulates that histone
acetylation is associated with gene activation, whereas histone
methylation can be associated either with activation or repression
depending on the lysine residue and the number of added methyl
groups. Despite the increasing number of studies addressing the
importance of histone modifications in plants, none has been
dedicated to its potential involvement in fruit set and subsequent
early development. Overall, 12 histone marks have been identi-
fied in plants by chromatin immunoprecipitation combined with
microarray analysis (ChIP-chip) or deep sequencing (ChIP-seq)
(Zhang et al., 2009; Roudier ¢t al., 2011; Sequeira-Mendes et al.,
2014). H3K9ac and H3K4me3 are two well studied histone
marks that correlate with gene activation in diverse plant develop-
ment processes including de-etiolation, leaf senescence, circadian
clock, shoot meristem, UV-B treatment and abiotic stress in Ara-
bidopsis, rice or maize (Casati ez al., 2008; Charron ez al., 2009;
van Dijk ez al., 2010; Hu er al, 2012; Malapeira ez al., 2012;
Zong et al., 2013; Schenke ez al., 2014; Brusslan ez al., 2015). By
contrast, H3K27me3 histone marks are often associated with
transcriptionally silenced genes (Li ez al., 2007). Methylation of
H3K27 is mediated by enhancer of zeste (E(Z)), the catalytic unit
of Polycomb Repressive Complex 2 (PRC2), an evolutionally
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conserved component in living organisms (Schwartz & Pirrotta,
2007). Knockdown of tomato S/EZ2 can significantly affect
reproductive development such as flower morphogenesis and
fruit set efficiency (Boureau ez al., 2016), and repression of FIE,
another component involved in H3K27 trimethylation in
tomato, results in parthenocarpic fruit formation (Liu et al,
2012). Genomewide studies have unveiled several targets of
H3K9ac, H3K4me3 and H3K27me3 in various biological pro-
cesses in Arabidopsis, rice and maize, yet their putative involve-
ment in fleshy fruit development remains restricted to the role of
H3K27me3 in fruit ripening (Li ez 2/, 2018; Li ez al., 2020).

To date, the correlation between histone modifications and
reprogramming of gene transcription has been investigated in
many plant species, such as Arabidopsis (Charron ez al., 2009;
Lafos et al., 2011; Brusslan et al., 2015; You et al., 2017; Lee
et al., 2019), maize (Rossi et al., 2007; Casati ez al., 2008), rice
(Li et al., 2008; Liu er al., 2015b), poplar (Li ez al., 2019) and
moss (Widiez et al., 2014). Such information is still lacking for
many economically important crop species like tomato, a model
system for fleshy fruit research. The flower-to-fruit transition rep-
resents a major developmental transition suited to investigate the
role of epigenetic variation in fruit set and to address the compar-
ative contribution of DNA methylation and HPTM to the global
changes in the level of gene transcription. Whether changes in
DNA methylation have a similar critical role in fruit set as in fruit
ripening, remains an open question. Our study expanded the cur-
rent view of the epigenetic regulation underlying transcriptional
reprogramming in tomato and provides new insight into the
mechanisms controlling a biological process that has a decisive
impact on yield and quality of a major crop.

Materials and Methods

Plant materials and sampling

Tomato plants Solanum lycopersicum L. cv Micro-Tom. were
grown under standard culture chamber conditions (14h:10h,
25°C:20°C, day:night cycle, 80% relative humidity,
250 mol m™? s~ intense light).

Ovary samples were collected at anthesis stage and were
referred to as 0 d postanthesis (0DPA) when stamens were still
loosely enclosed by petals. Fruits at 4 d postanthesis (4DPA) cor-
responded to the whole developing fruit organ (Xiao ez /., 2009;
Pattison ez al., 2015). Fruit samples collected at 4 d after IAA
treatment (4IAA), corresponded to flowers emasculated 1 d
before anthesis (to avoid accidental self-pollination), then the
ovaries were treated over the next 4 d with 10 ul 500 pM indole-
3-acetic acid. Each biological replicate corresponded to a pool of
at least 50 ovaries or young fruits from 25 plants.

Chromatin immunoprecipitation and sequencing

ChIP assays were performed as described previously (Gendrel
et al., 2005) with minor modifications. Tissues corresponding to
ODPA, 4DPA and 4IAA were cross-linked by vacuum infiltration
for 15 min in 1% formaldehyde. To ensure efficient crosslinking,
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4DPA and 4IAA fruits were cut in half before crosslinking.
Crosslinking was stopped by adding glycine (0.125M final con-
centration) and incubation under vacuum infiltration for an addi-
tional 5 min. After washing twice with cold 1x PBS solution,
samples were thoroughly dried between paper towels, snap-frozen
in liquid nitrogen and stored at —80°C. To perform the ChIP
assay, ¢. 1 g of cross-linked tissue was ground to a fine powder in
liquid nitrogen and then the chromatin was sheared by Diagenode
Bioruptor sonication (5 runs of 10 cycles for 30 s ‘ON’ and 30's
‘OFF’). The size of the sonicated chromatin was within the range
of 100-500 bp. Next, 10 pl of sonicated supernatant was kept
aside as input. For each sample (120 pl supernatant), dilution
buffer was added to bring the final volume to 1.5 ml and, depend-
ing on the histone mark, either 5 pl of H3K9ac or H3K4me3 rab-
bit polyclonal antibody (Millipore, Darmstadt, Germany; Cat. no.
07-352; Lot no. 2586454; Cat. no. 07-473; Lot no. 2430389) or
8 ul of H3K27me3 rabbit polyclonal antibody (Millipore; Cat. no.
07-449; Lot no. 2475696) was added before incubation overnight
(4°C, 10 rpm). For the control experiment without histone mark
antibodies, 5 pl of nonimmunised rabbit IgG antibody (Millipore;
Cat. no. 12-370; Lot no. 2426484) were added. For the empty
control (Mock), no antibody was added. Afterward, 50 pl of pro-
tein A/G agarose beads (Pierce™ Protein A/G UltraLink™ Resin;
Thermo Scientific, Waltham, MA, USA; Cat. no. 53133) were
added and the samples incubated for 3 h at 4°C. Elution was car-
ried out as described previously (Gendrel ez al, 2005). For each
sample 10 ng immunoprecipitated DNA was used for library con-
struction and sequencing. Two biological replicates corresponding
to independent plant materials were used for ChIP assays, one
replicate for genomewide sequencing and the second one for
ChIP-gPCR experiments.

ChIP-sequencing was performed at the GeT-PlaGe core facil-
ity (INRA Toulouse). Sequencing libraries were prepared using
the TruSeq ChIP Library Preparation Kit for lllumina Sequenc-
ing. Sequencing was performed on an Illumina HiSeq 3000 sys-
tem with the Illumina SBS HiSeq 3000 reagent kits (2 x 150 nt
paired-end reads). The enrichment of DNA fragments (% input)
was validated by quantitative real-time PCR using primers listed
in Supporting Information Table S1.

Genome bisulfite treatment and sequencing

Genomic DNA was isolated from ODPA ovaries, 4DPA and
4TAA fruits using the Wizard® Genomic DNA Purification Kit
(Promega, Madison, WI, USA). Here, 10 pl of total genomic
DNA were used for Whole-Genome Bisulfite Sequencing
(WGBS). WGBS was performed at the Beijing Genomics Insti-
tute (BGI, Hong Kong, China). WGBS libraries were prepared
according to Bioo Scientific’s protocol using the Bioo Scientific
NEXTflex Bisulfite Library Prep Kit for Illumina Sequencing.
The bisulphite treatment was performed using the EZ DNA
Methylation-Gold Kit (Zymo Research, Irvine, CA, USA) fol-
lowed by PCR. Library quality was assessed using an Advanced
Analytical Fragment Analyser and libraries were quantified by
qPCR using the Kapa Library Quantification Kit. Two biological

replicates were performed.
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Sequencing was performed on a Illumina HiSeq 3000 system
using Illumina SBS HiSeq 3000 reagent kits (2 x 150 nt paired-
end reads; see Table S2 for the number of reads).

RNA sample preparation and sequencing

For each sample, total RNA was extracted from ¢. 200 mg tissue,
using the TRIzol RNA Isolation Kit (Thermo Fisher Scientific).
After DNA removal (DNA-free™ DNA Removal Kit, Ambion,
Austin, TX, USA), RNA was purified and the quality checked
using an Agilent 2100 bioanalyser. Only samples with a
RIN > 8.6 were used for Illumina sequencing. Three biological
replicates were performed for each sampling stage. Paired-end
RNA-sequencing (2 x 125 nt) was carried out at the GeT-PlaGe
core facility (INRA Toulouse) using a TruSeq Illumina SBS Kit
V4 and a HiSeq 2500 platform.

Gene ontology analysis

Gene ontology (GO) analysis of selected genes was performed
using the R package GOsEQ (Young ez al., 2010). All GO terms
used in our study were obtained from the tomato genome website
(hteps://solgenomics.net/). Gene length bias existing in RNA-seq
was taken into account when the enrichment of the GO category
was computed. An over-represented P-value of <0.05 was used
to select significantly enriched GO categories.

Identification of putative orthologues in the tomato
genome

Genes were functionally categorised based on orthologues from
the well studied model plant Arabidopsis, with manual re-assign-
ment according to the tomato genome (Tomato Genome Con-
sortium, 2012) and NCBI annotations (Table S4). Local Brastp
analysis was performed to obtain putative orthologues by blasting
with the Arabidopsis protein database (TAIR10) with an E-value
< 1E—20 and maximum selection of three targets. After remov-
ing the redundancy, the putative orthologues with the highest
score was selected for further analysis.

Generation of CRISPR/Cas9 mutants and genotyping

Constructs for CRISPR/Cas9 mutagenesis was performed follow-
ing standard protocols (Belhaj er al, 2013; Brooks er al., 2014).
Briefly, two single-guide (sg)RNAs were designed ahead of the
coding sequence for the SET domain of the target genes, using the
CRISPR-P server (http://cbi.hzau.edu.cn/cgi-bin/CRISPR) (Lei
et al., 2014). All vectors were assembled using the GoldenGate
cloning system (Werner e al., 2012). sgRNA1 and sgRNA2 were
first cloned into the Level 1 vectors pICH47751 and pICH47761
driven by the Arabidopsis U6 promoter, respectively. Level 1 con-
structs  pICH47732-NOSpro::NPTII, pICH47742-35S:Cas9,
pICH47751-AtU6pro:sgRNA1 and pICH47761-AtU6::sgRNA2
were then assembled into the Level 2 destination vector
pAGM4723. All sgRNA sequences are listed in Table S1. For

genotyping of the transgenic lines, genomic DNA was extracted
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using the ReliaPrep™ gDNA Tissue Miniprep System (Promega).
CRISPR/Cas9-positive lines were further genotyped for mutations
using the primers listed in Table S1.

Results

Transcriptomic profiling of the flower-to-fruit transition

To investigate the extent to which epigenetic modifications were
associated with the transcriptomic reprogramming underlying the
flower-to-fruit transition, the same plant material samples were
used for WGBS, chromatin immuno-precipitation coupled to
deep sequencing (ChIP-seq) and for genomewide transcriptomic
profiling by RNA-seq. To test first whether pollination-dependent
and -independent fruits set shared similar genetic reprogramming,
ovaries of emasculated flowers at the anthesis stage (0 day postan-
thesis, 0DPA) and young developing fruit initiated by pollination
(4DPA) or by auxin (4IAA), were collected and subjected to RNA-
seq profiling (Fig. la). Auxin-treated ovaries underwent active
growth, reaching the same size as pollination-induced fruit at
4DPA and 9DPA, by contrast with the control ovaries treated with
mock solution that failed to grow (Fig. 1a). Deep sequencing gen-
erated 23-33 million reads depending on the sample, with 79—
85% of the reads being uniquely mapped to the S. fycopersicum
genome (ITAG2.3; Table S2). Gene count analysis showed that
biological replicates from each stage/condition clustered together,
with 4DPA and 4IAA samples displaying a high degree of similar-
ity while being clearly distinct from ODPA dssues (Fig. 1b). In
total, transcripts corresponding to 28 466 genes, representing 82%
of the 34727 annotated tomato genes, were detected in at least
one of the three samples. Using a threshold fold change > 2 and
adjusted P-value<0.01, allowed the assignment of 7582 genes
(3845 upregulated and 3737 downregulated) as differentially
expressed genes (DEGs) in pollination-induced fruit set and 5447
genes (2962 upregulated and 2485 downregulated) in auxin-in-
duced fruit (Table S5). Notably, 4219 DEGs were shared between
auxin and pollination-induced fruit (Fig. 1¢) suggesting that auxin
triggered fruit set through a genetic reprogramming largely similar
to that induced by pollination/fertilisation.

Biological processes enriched during fruit set

GO analysis of the DEGs, performed separately for upregulated
and downregulated genes in pollination-dependent and auxin-in-
duced groups, indicated that 152 and 128 GO terms were signifi-
cantly enriched in 4DPA and 4IAA samples, respectively
(Fig. 1d; Table S6). Among these, 83 biological processes were
commonly enriched in upregulated genes, including those related
to cell proliferation and differentiation, photosynthesis and hor-
mone regulation. Out of the 96 cell division-related genes identi-
fied in the tomato genome, 50 were upregulated, reflecting the
active ongoing cell division at early stages of fruit development
(Fig. 1e). The data indicated that pollination and auxin-induced
fruit set trigger the same subset of cell division genes, although
pollination seemed to recruit a larger set of genes during this
developmental transition.
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RNA-seq profiling also revealed that a large number of DEGs
related to ‘DNA methylation’, ‘histone modification’, ‘histone
lysine methylation’, ‘H3-K9 methylation’ and ‘histone phospho-
rylation’, were significantly enriched (Fig. 1d). To capture all epi-
genetic-related genes present in the tomato genome we
performed a genomewide BLAST search to identify new genes
related to histone modification, DNA (de)methylation, chro-
matin remodelling and PcG, based on the phylogenetic relation-
ship with those described in Arabidopsis. The outcome of this
search extended the total number of tomato genes putatively
involved in epigenetic processes from 111 to 213, of which 137
belonged to the histone modification category including PcG, 42
to DNA methylation and 34 to chromatin remodelling
(Table S4). Interestingly, among 20 DEGs corresponding to his-
tone modifiers 12 were significantly upregulated in 4DPA, of
which five were also upregulated in 4IAA fruit (Fig. 1f).

Transition from flower to fruit is associated with a decrease
in global DNA methylation

Study of methylomes already reported the critical role of DNA
methylation in the transition to ripen of tomato fruit (Zhong
et al., 2013), however its potential contribution to fruit set
remains unexplored. To gain insight into the dynamics of DNA
methylation during fruit set induced by either pollination or
auxin treatment, ovaries of emasculated flowers (ODPA) and
4DPA or 4IAA young fruit were collected, genomic DNA was
extracted and then subjected to WGBS analysis at single-base res-
olution. Over 120 M paired-end reads were produced for each
sequencing library, covering around 70% of the S. lycopersicum
genome (ITAG2.3) (Table S2). Each methylome was sequenced
with an average of 11-fold coverage resulting in sequencing depth
comparable with DNA methylomes previously reported for
tomato (Zhong ez al., 2013; Lang et al., 2017; Li et al., 2018).
For each sample (0DPA, 4DPA and 4IAA) two biological
replicates were treated separately giving rise to similar data
(Fig. Sla) and revealing that on average, 83% of CG cytosine
contexts (¢. 530 million), 58% of CHG (c. 523 million) and
12% of CHH (c. 2.93 billion) were methylated in 0DPA sam-
ples. The three types of methylated cytosine (5mC) displayed a
slight decrease at 4DPA, with an average methylation level in
CG, CHG and CHH cytosine contexts reaching 80%, 55% and
10%, respectively (Fig.2a). A smaller, but not significant,
decrease was also observed in 4IAA fruits. In all samples, the
cytosine methylation levels for all cytosine contexts were at simi-
lar magnitudes as those reported in ripening fruit (Zhong et al.,
2013). To identify the differentially methylated regions (DMRs),
the bins method was used to compare the 0DPA ovary either to
4DPA (4DPAvsODPA group) or 4IAA fruit (4IAAusODPA
group). When considering 30%, 20% and 10% differences in
DNA methylation level for CG, CHG and CHH contexts,
respectively, 140 148 DMRs representing 0.29% of the tomato
genome were identified in 4DPA»sODPA group. Of these, 2%
(2831) corresponded to CG-DMRs, 14.2% (19 835) to CHG-
DMRs and 83.8% (117482) to CHH-DMRs (Fig. 2b;
Table S7). In total, 88919 DMRs (0.21% of the tomato
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genome) were identified in the 4IAAvsODPA group, among
which 2.1% (1889) corresponded to CG-DMRs, 16.7%
(14 853) to CHG-DMRs and 81.1% (72 177) to CHH-DMRs
(Fig. 2b). Most DMRs in both 4DPA or 4IAA corresponded to
hypomethylation (Fig. 2c). Notably, only a small proportion of
DMRs overlapped between the two groups (Fig. 2d) suggesting
that the observed changes in DNA methylomes might reflect dis-
tinct features between pollination-induced and auxin-induced
fruit set. The lower number of DMRs associated with auxin-in-
duced fruit might reflect, at least partly, the absence of genetic
reprogramming related to seed development in these partheno-
carpic fruit. The distribution of DMRs in the tomato genome
indicated they were mostly located in transposable element rich
regions for all cytosine contexts (Fig. S1b).

DMRs weakly correlated with changes in gene expression
during fruit set

Cross-referencing the RNA-seq and Methylome data revealed
no correlation between DMR and DEGs for both pollination-
induced and auxin-induced fruit set under all three types of
cytosine contexts (Fig. 2¢). Although 44% of genic DMRs cor-
responded to promoter regions (Fig.2f), the overwhelming
majority (71%) of these did not correspond to DEGs. More-
over, about half of upregulated DEGs were not associated with
promoter hypomethylation, and half of downregulated DEGs
did not display promoter hypermethylation (Fig.2g). Notably,
genes related to hormones GA and auxin, known to be instru-
mental to the fruit set process, further illustrated that changes
in cytosine methylation were not necessarily associated with
gene expression reprogramming underlying the flower-to-fruit
transition (Fig. S2). Indeed, S/GA200x1, a GA synthesis gene,
was upregulated in both pollination and auxin-induced fruit
set while undergoing hypomethylation in one case and hyper-
methylation in the other case (Fig. S2). The lack of correlation
between DEGs and DMRs is also illustrated by SIARF9A,
another critical regulator of fruit set, which showed differential
regulation but no significant change in DNA methylation at
the promoter level (Fig. S2).

RNA-seq profiling indicated that, with the exception of the
low expressing S/IDML2, none of the tomato DML-like genes
involved in DNA demethylation showed significant increase in
expression during fruit set either triggered by natural pollination
or by auxin treatment (Fig. S3). Conversely, a number of genes
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related to the RADM pathway (13 out of 23 in total) were down-
regulated during both pollination-induced and auxin-induced
fruit set, suggesting that reduced DNA methylation activities via
the RdADM pathway may contribute to the global DNA
hypomethylation observed during the flower-to-fruit transition.
By contrast, SIMETI and SICM13-likel/2, encoding enzymes
necessary for maintenance of CG and CHG methylation, dis-
played increased expression at 4DPA and 4IAA (Fig. S3), likely
to be related to their putative role in maintaining DNA methyla-
tion following replication during the extensive cell division char-
acterising early stages of fruit development.

Genomewide mapping of H3K9ac, H3K4me3 and
H3K27me3 histone marks

Given the high representation within DEGs of histone modifier
genes (Fig. 1d) known to mediate posttranslational modifications of
histone H3, including acetylation of lysine 9 residues (H3K9ac)
and trimethylation of lysine 4 (H3K4me3) and lysine 27
(H3K27me3), we investigated the genomewide distribution of
these three histone marks by ChIP-seq approach. The number of
sequencing reads corresponding to immuno-precipitated chromatin
and control input samples (Table S2) ranged from 48 to 80 million,
and on average 95% of the reads mapped to the S. fycopersicum ref-
erence genome. The enrichment of the three marks was validated
for nine selected regions (genes) by targeted real-time PCR using
independent 0DPA and 4DPA samples, giving results that were
fully consistent with the ChIP-seq data (Fig. S4).

The total number of peaks corresponding to H3K9ac or
H3K4me3 was higher than that corresponding to H3K27me3
(13072 to 14308) in both ODPA and 4DPA samples
(Fig. 3a) and, depending on the sample, these histone mark-
associated regions covered 4.4% to 6.8% (36-56 Mb) of the
tomato genome sequence (Table S8). The breadth of the cov-
ered regions (Fig.3b) was higher for H3K27me3 (median
length 2500-2900 bp) than for H3K4me3 (1653-1722 bp)
and H3K9ac (1748-1763 bp). The three marks were mainly
associated with gene-rich euchromatin regions, even though
H3K27me3 displayed higher association with heterochromatin
(Fig. S5a). More than 80% of the regions associated with
H3K9ac and H3K4me3 mapped to genes, while <40% of
H3K27me3 were located in genic regions (Fig.3c). Further
inspection of histone mark-associated regions revealed that
most peaks (>74% of H3K9ac, >89% of H3K4me3, and

Fig. 1 Genomewide transcriptomic profiling of tomato genes during fruit set process by natural pollination and auxin-inducing. (a) Fruit initiation
programme in tomato (cv Micro-Tom). Unpollinated ovaries at O d postanthesis (ODPA) and young developing fruits at 4DPA and at 4IAA were sampled
for RNA-sequencing. Bars, 1 cm. (b) Cluster dendrogram of gene counts in RNA-sequencing samples. Distance matrix of gene counts from all RNA-seq
libraries were implemented by DESeq2. Dendrograms were generated by hierarchically clustering samples based on distance values. The darker blue
indicates a closer distance. (c) The number of differentially expressed genes during fruit set. Fold change >2 and P-value <0.01. (d) GO enrichment
analysis for DEGs regulated by pollination or auxin during fruit set. Selected significant enriched biological processes (Benjamini-Hochberg (BH) adjusted
over-represented P-value < 0.05) were annotated in the figure. Genes with P-value <0.05 were selected for GO analysis. (e) Differential expression of cell
cycle related genes during fruit set. Log, of expression were indicated as gene expression in y-axis, and x-axis refers to the gene name annotated either
based on tomato referenced studies or, when missing, according to the best corresponding orthologue in Arabidopsis. Gene names were ordered by the
group including common DEGs (blue shaded), auxin-specific DEGs (yellow shaded) and pollination-specific DEGs (purple shaded). Solid line in the graph
represents natural pollination while dash line represents auxin treatment. Genes with significant differential expression are marked by asterisks (**, fold >2
and 0.001 < P-value <0.01; ***, fold > 2 and P-value <0.001). (f) Differential expression of histone modification related genes during fruit set.
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>88% of H3K27me3) were limited to single genes, and only
a minor fraction encompassed two or more genes (Fig. S5b).
In ODPA tissues, 53% of the annotated tomato genes were
associated with H3K9ac, 54% with H3K4me3 and 19% with
H3K27me3, and these proportions only slightly increased at
4DPA stage (60%, 56% and 19%, respectively).

To investigate the association pattern of the three histone
marks at the gene level, the average read count corresponding to

(a) (b)
ODPA &% 4DPA 9DPA [
- =N
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poll r:te % AIAA 91AA L
& |

L
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each mark was examined using a large set of genes (16 982), the

annotation of which has been refined by RNA end-sequencing
(Zhong et al., 2013). H3K9ac and H3K4me3 showed a similar
high enrichment in a narrow region downstream of the Tran-
scription Start Sites (TSS) by contrast with H3K27me3 marks
that showed lower intensity and were located throughout the
gene bodies, as well as upstream of TSS and downstream of the
transcription end site (TES) regions (Fig. 3d,e).

(d) Main activated biological processes Main repressed biological processes

-Embryo development;
-Meristem maintenance;
-Seed development; etc. (n = 45)
-Cell proliferation and differentiation;
-DNA methylation;

-Histone modification;
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Fig. 2 Differentially methylated regions (DMRs) during pollination-dependent and auxin-induced tomato fruit set. (a) Global DNA methylation levels in
each cytosine context. (b) Total number of DMRs identified during pollination-induced (#4DPAvsODPA) and auxin-induced (#41AAvsODPA) fruit set using
'bins’ method (window size, 100 bp and gap size, 50 bp). (c) Percentage of hyper- and hypo-methylated DMRs. (d) Overlapping of DMRs between
pollination-dependent and auxin-induced fruit set, in CG, CHG and CHH sequence context. (e) Correlation between DEGs and DMRs during pollination-
dependent (left panel) and auxin-induced (right panel) fruit set. X-axis represents log,-transformed differentially methylated (DM) fold and y-axis
represents log,-transformed expression change. Spearman correlation coefficients (R) and corresponding P-value in each case were noted in each panel.

Promoter genes containing > 2 DMRs in their promoter regions were removed for correlation analysis. (f) Distribution of DMRs in genic region including
2 kb upstream promoter, exon, intron and 2 kb downstream terminator. (g) Change in expression of promoter DMR genes during pollination-dependent
(upper panel) and auxin-induced (lower panel) fruit set. Promoter DMR genes correspond to all methylated cytosines in 2 kb promoter regions in all types
of sequence context. The number of DE genes (fold change >2 or < —2 and P-value <0.01) is mentioned the red area of the circle for upregulated and
green area for downregulated.
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Fig. 3 Genomewide identification of histone modified regions during tomato fruit set. (a) Number of identified regions for H3K9ac, H3K4me3 and
H3K27me3. (b) Length distribution of the peak regions. The outliers are dotted with black colour. The histone marks are displayed in yellow (H3K9ac), red
(H3K4me3) and blue (H3K27me3). (c) Frequencies of peaks associated with genic and nongenic regions. A region spanning 1.5 kb upstream of the
annotated transcription start site (TSS) to 0.5 kb downstream of transcription end site (TES) was designated as a genic region. Genic + repeats, the genic
regions overlapped with TE. (d) Average association profile of input (grey), H3K9%ac (yellow), H3K4me3 (red) and H3K27me3 (blue) in genic regions at
ODPA and 4DPA. The gene set is adapted from publicly available RNA end-sequencing data (Zhong et al., 2013) which defines the TSS and TES. Mean
counts within 100-bp window covering 2.5 kb upstream to 2.5 kb downstream the TSS and, 2.5 kb upstream to 25 kb downstream the TES were extracted
and plotted. (e) Global view of gene expression and histone mark association at ODPA. 23 852 genes were filtered by association either with H3K9ac,

H3K4me3 or H3K27me3. The expression levels were used as anchors to sort genes. The occupancy of histone marks in the gene region spanning from 2 kb
upstream to 2 kb downstream of CDS was represented and visualised by DeerToots.

To determine the putative correlation between histone marks  epigenetic marks at 4IAA fruits by ChIP-seq using the same
and the expression level of individual genes, we profiled the ChIP  parameters as indicated for 4DPA fruits, identified 24 938
signal intensity in genic regions using all genes that were associ-  regions associated with H3K9ac, 21 827 with H3K4me3 and
ated with at least one of the three histone marks (23 852 genes in 13982 with H3K27me3 (Fig. S6a; Table S8). These numbers
total). The data revealed that H3K9ac and H3K4me3 marks co- ~ were similar to those observed for pollination-induced fruits
occurred in 95% of the cases in the same set of genes. Moreover, (4DPA) and so were the occupancy of all histone marks associ-
a genomewide view of gene expression levels and histone mark ated regions (Fig. S6b), the number of histone mark-associated
distribution revealed that these two marks strongly correlated genes (Fig. S6¢,d) and the histone mark distributions in genic
with high levels of gene expression and confirmed their high regions (Fig. SGe). Overall, the association patterns of the three
enrichment at the 5'-end of genes (Fig. 3e). Profiling the three histone marks are consistent with known patterns in plants and
©2020 The Authors
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Fig. 4 Correlation between differentially associated marks (DA) and differentially expressed genes (DE) during the flower-to-fruit transition in tomato.

(a) Correlation between DE and DA during fruit set. X-axis represents log,-transformed DA and y-axis represents log,-transformed expression change
(DE). The spearman correlation coefficients (R) and the corresponding P-value were mentioned in each case. (b) DA and DE genes in pollination and auxin-
induced fruit set. The number of DA (light green colour bar) and DE (dark green colour bar) genes (P <0.01) were indicated above the bars. ‘P" and ‘A’
represent 4DPAvsODPA and 4/AAvsOdDPA group, respectively. (c) Average expression level of DA genes based on fold change > 2 and P-value <0.01. The
number of DA genes is indicated at the top of each panel. Wilcox test was used to compare means in ODPA and 4DPA samples. *, P <0.05; *** P <0.001.
(d) Density profile of histone marks (DA fold change > 2 and P-value <0.01) and gene expression change represented at the gene level in ODPA and 4DPA
tissues. (e) Genes differentially associated with histone marks (P <0.01) overlapping between pollination-dependent and auxin-induced fruit. Only DA
regions corresponding to single genes were considered. Per cent refer to the fraction of genes undergoing histone post-translational modifications (HPTM)
in pollination (P) and auxin (A) induced young fruit.
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Fig. 5 Differential expression and differential histone mark associations of auxin-related, gibberellin-related and ethylene-related genes during tomato fruit
set. Differential mark association and gene expression of (a) auxin synthesis, transport and signalling genes, (b) gibberellin-related genes and (c) ethylene-
related genes were visualised in Integrative Genomics Viewer (IGV). Histone mark associations are marked blue (upper panel) and gene expression red
(lower panel).
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other eukaryotic organisms (Zhang er al, 2007, 2009; Wang
et al, 2009a; He et al, 2010; Zhou et al., 2010; Lafos et al.,
2011; Veluchamy et al., 2015).

Pollination-dependent and auxin-induced fruit set share
similar histone posttranslational modifications

Plotting the histone mark association and the expression changes
revealed a strong correlation between H3K9ac and H3K4me3
marks and DE genes in both pollination-dependent and auxin-
induced fruit sets, whereas no such correlation was observed with
H3K27me3 histone marks (Fig. 4a). Genomewide profiling of
the dynamic changes of the three histone marks revealed that
13451 genes were differentially associated (DA) with H3K9ac,
11333 with H3K4me3 and 3973 with H3K27me3 (Fig. 4b;
Table §9). A high proportion of H3K9ac and H3K4me3 DA
genes displayed differential expression in both pollination and
auxin-induced fruit set, while this proportion was lower for
H3K27me3 DA genes (Fig. 4b). Assessing the expression level
for genes showing significant change in histone marks indicated
that enrichment in H3K9ac or H3K4me3 marks corresponded
to enhanced gene transcript levels, while a decrease in these marks
was associated with reduced gene expression (Fig.4c,d). The
close similarity between the DEGs induced by auxin and by polli-
nation, prompted the investigation into whether the two types of
fruit set also shared similar patterns of HPTMs. Markedly, a high
proportion of DA genes associated with pollination-dependent
fruic set overlapped with DA in auxin-induced fruit initiation
(Fig. 4e). While these data further emphasised the strong correla-
tion between the change in histone marks and the transcriptomic
reprogramming underlying the flower-to-fruit transition, they
also clearly indicated that auxin-induced and pollination-depen-
dent fruit set relied mainly on a common set of genes.

Gain or loss of histone marks correlates with changes in the
expression of important fruit set-related genes

Interestingly, plotting DAs and DEGs allowed the identification
of a set of highly enriched GO terms common to pollination-de-
pendent and auxin-induced fruit set (Fig. S7), indicating that
they might be essential for the initiation of the fruit development
programme. Genes involved in important biological processes
underlying the fruit set transition underwent concomitant
changes in both histone marks and gene expression (Fig. S7;
Tables S9, S10). Of particular interest, a large number of genes
related to hormones, like auxin and gibberellin, two hormones
known to be critical for fruit initiation, was differentially
expressed and DA with histone marks (Table S11). Out of 112
auxin-related genes identified in the tomato genome, 44 were dif-
ferentially expressed during either pollination-induced or auxin-
induced fruit set, of which 32 (73%) underwent consistent differ-
ential association with at least one transcriptionally permissive
histone mark (Table S11). Genes involved in all aspects of auxin
metabolism and responses (Fig. 5a) were affected by these
changes including auxin synthesis (tryptophan aminotransferases
and flavin monooxygenases), transport (SIPINs, SILAXs and
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Table 1 Transcriptomic changes and histone marks reprogramming of
genes involved in processes known to be essential for fruit set.

DA+ DEG
Consistent change®  Inconsistent change®
Group DEG* Nb (%) Nb (%)
4DPAvsODPA
Cell division 50 42 (84) 1)
Hormone-related 220 159 (72) 21 (10)
Embryo/seed® 456 220 (48) 33(7)
41AAvsODPA
Cell division 35 30 (86) 2(6)
Hormone-related 155 133 (86) 20 (13)
Embryo/seed 282 108 (38) 31(11)

*DEG differentially expressed genes with P-value <0.01, fold change > 2.
PDA genes associated with gain/loss of H3K9ac or H3K4me3 histone
marks with P-value <0.01.

“Consistent change corresponds to enhanced expression associated with
gain of H3K9ac or H3K4me3 marks, or to decreased expression associated
with loss of H3K9ac or H3K4me3 marks.

dInconsistent change corresponds to enhanced expression associated with
loss of H3K9ac or H3K4me3 marks, or to decreased expression associated
with gain of H3K9ac or H3K4me3 marks.

Cluster of 12 and 19 genes from previous tissue-specific transcriptomic
data (Pattison et al., 2015).

Table 2 Correlation between the two modes of epigenetic modifications
and the transcriptomic changes during fruit set.

Group Promoter DMR?/DEGP DA%/DEG
4DPAVsODPA 28% 79%
41AAVSODPA 23% 90%

Percentages for promoter DMR/DEG refer to percentage of genes
displaying increased DNA methylation with decreased gene expression
level, or decreased DNA methylation level with increased gene expression
level. DA/DEG percentages refer to changes in active histone marks with
concomitant changes in expression level.

*DMR, differentially methylated regions (P <0.01) in 2 kb promoter
regions at all cytosine sequence contexts. Promoters associated with differ-
ent changes of DMRs were removed before analysis.

PDEG, differentially expressed genes with P-value <0.01, fold change>2;
‘DA, genes differentially associated with gain/loss of H3K9ac or H3K4me3
histone marks with P-value <0.01.

SIPILSs) and signalling (13 Aux/IAAs and 5 Auxin Response Fac-
tors). Gibberellin-related genes also underwent dramatic changes
in their status, with 17 out of 34 displaying differential expres-
sion between 0 and 4DPA or 4IAA. Of these 17 DEGs, 14 were
DA with at least one histone mark (Tables S8, S10) and, among
these, 11 genes displayed consistent enrichment in H3K9ac or
H3K4me3 transcriptionally permissive histone marks, including
KAO2-Like2, GA200XI and GIDIB-like (Fig. 5b). Strikingly,
the overwhelming majority of ethylene-related DEGs (46 out of
61) were downregulated (Table S11), including those involved in
ethylene biosynthesis (four ACC synthases and five ACC oxidases)
and response (five E7Rs, one GRL, one CTR, five EIN-like, three
EBFs and 23 ERF5). The vast majority of these ethylene-related
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DEGs (78.6%) showed decreased association with at least one
transcriptionally permissive histone mark as exemplified by
ACO4, ETR4 and EIL3 genes (Fig. 5¢). Genes related to other
hormones also underwent major changes in transcript levels asso-
ciated with differential histone marks (Table S11), supporting
the idea that the fruit set process required intricate multiple hor-
mone signalling, strongly associated with changes in histone
marks.

A large proportion of DEGs involved in processes essential
for initiation of fruit development, such as cell division, hor-
mone signalling and seed development, exhibited concomitant
changes in H3K9ac and H3K4me3 transcriptionally permis-
sive histone marks (Table 1; Table S9). Most cell division-re-
lated genes that displayed significant change in their transcript
levels also showed consistent enrichment in H3K9ac and
H3K4me3 marks in both pollination-dependent (84%) and
(86%).
genes that displayed differential expression also underwent
consistent changes in H3K9ac and H3K4me3 histone marks
(Table 1). The consistency between differential expression and
HPTMs was also observed for genes related to seed and

auxin-induced fruit set Likewise, hormone-related

embryo development although, not surprising, the number of
DEGs in this category was much higher in pollination-depen-
dent (456) than in auxin-induced (282) fruit set, this latter
process leading to seedless fruit.

Opverall, the outcome of the study revealed that a high fraction
of DEGs (79-90%) underwent changes in transcriptionally per-
missive histone marks, while only a minor fraction (23-28%) dis-
played changes in cytosine methylation in their promoter region
(Table 2). These data clearly support the notion that the tran-
scriptomic reprogramming underlying fruit set is more strongly
associated with HPTM than with rearrangement in cytosine
methylation.

Histone modifier genes putatively involved in tomato fruit
set

A large proportion (31 out of 39) of the epigenetic-related genes
assigned as DEGs exhibited changes in histone marks (Table S9;
Fig. 62); mining the expression dataset from different tomato
cultivars in the ToMExprEss (http://gbf.toulouse.inra.fr/tomex
press) database identified six differentially expressed histone
modifiers that displayed an expression pattern associated with
the fruit set transition (Fig. 6b). Further analysis of their expres-
sion levels in various tomato tissues and development stages
revealed that SISDG5, SISDG16, SISDG27, SISDG30 and
SIPRMT8 genes encoding putative histone methyltransferases
were upregulated at the transition phase, whereas S[/MJ17 his-
tone demethylase gene displayed a decreased expression (Fig. S8).
Because SISDG27, SISDG5 and SISDG16 showed expression
patterns that fully matched the flower-to-fruit transition phase,
we addressed the functional significance of these genes in tomato
fruit set using genome editing via CRISPR-Cas9 technology. No
mutant lines could be generated for SISDG5, suggesting that the
mutation in this gene might be lethal or detrimental to the
regeneration process during plant transformation. Several

©2020 The Authors
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SISDG16 KO lines were obtained (Fig. S9) but none of these
mutants gave rise to detectable phenotypes, suggesting a poten-
tial functional redundancy within this large gene family. By con-
trast, two different mutations in SISDG27 were obtained, both
resulting in a frameshift predicted to produce a truncated protein
with a deletion of the complete SET domain and a partial dele-
tion of the PHD domain (Fig. 6¢). Consistent phenotypes
related to fruit set were observed in these mutants exhibiting pol-
lination-independent fruit formation (Fig. 6c). However, only
heterozygous lines for these SISDG27 KO-mutants could be
selected, presumably due to the lethal effect of this mutation at
the homozygous state. The parthenocarpic fruit produced by
these lines suggested the potential ability of SISDG27 to trigger
the flower-to-fruit transition independently from successful fer-
tilisation of the lower. However, the seedless fruit did not allow
obtaining progenies from these lines to undertake further charac-
terisation.

Discussion

Epigenetic control operates either through repositioning of his-
tone marks or changes in DNA methylation, however the respec-
tive contributions of the two mechanisms to the dynamic
changes of gene expression underlying various plant growth and
development processes have been only partially explored. The
flower-to-fruit transition provides a case study that is well suited
for comparatively addressing the contribution of DNA methyla-
tion and HPTMs to the transcriptomic reprogramming underly-
ing a developmental transition that has a major impact on crop
yield. The outcome of the present study supported a scenario in
which histone modification associated with transcriptional repro-
gramming underpinned the initiation of tomato fruit develop-
ment. This is different from previous reports emphasising the
prominent role of DNA methylation in reprogramming key
genes during the transition to ripening of tomato fruit (Zhong
et al., 2013; Liu et al, 2015a; Lang et al, 2017). Notably,
HPTM:s are strongly associated with the global transcriptomic
changes during the flower-to-fruit transition in both pollination-
dependent and -independent fruit set.

Our study indicated that, during fruit set, DEGs are mainly
associated with changes in H3K9ac or H3K4me3 marking, in
line with the dynamic histone modifications reported in several
developmental transition processes such as Arabidopsis meristem
differentiation (Lafos er al, 2011), shoot apical meristem to
inflorescence meristem transition (You ez al., 2017), floral mor-
phogenesis (Engelhorn ez al., 2017), diurnal rhythms regulation
(Song er al., 2019) and stomatal guard cell differentiation (Lee
et al., 2019). By contrast, our data showed that changes in
H3K27me3 marks correlated weakly with differential expression
of individual genes, similar to the situation during the transition
from shoot apical meristem to inflorescence meristem in rice and
Arabidopsis in which, in most instances, gain or loss of
H3K27me3 did not show correlation with changes in gene
expression (Liu ez al., 2015b; You ez al., 2017). Moreover, in rice
lines downregulated in H3K27me3 methytransferase SDG711
expression, most genes that displayed loss of H3K27me3 mark
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did not show increased expression levels (Liu ez 2/, 2015b). Simi-
larly, in Arabidopsis, only a small number of genes displayed a
change in expression upon loss of H3K27me3 marks in PRC
mutants or gain of H3K27m3 in demethylase mutants (Lafos
et al., 2011; Lu et al., 2011; Shu ez al., 2019). This supports the
view that depletion of H3K27me3 alone is not sufficient to
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promote gene expression (Lafos ez al, 2011; Lu et al, 2011;
Wang et al., 2016; Shu et al., 2019).

Although H3K27me3 repressive mark did not show clear cor-
relation with changes in gene transcript levels, it may still play an
active role in gene expression reprogramming during tomato fruit
set as suggested by the downregulation of PcG components,
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SIEZ2 and FIE, that leads in both cases to altered fruit set in
tomato (Liu et al, 2012; Boureau et 4l., 2016). Our data clearly
indicated that increased gene expression largely correlated with
gain of H3K9ac and H3K4me3 marks, irrespective of the change
in H3K27me3 marks. This sustains the view that H3K9ac and
H3K4me3 marks represented the main HPTM:s events associated
with gene expression reprogramming during the flower-to-fruit
transition. It is however likely that other histone marks might
also be involved in the transcriptional reprogramming underlying
fruit set, given that ¢. 20% of the expressed genes were devoid of
any of the three histone marks taken into consideration in our
study. Conversely, it is also possible that some active genes were
not necessarily associated with chromatin regulation.

The data indicated that H3K9ac and H3K4me3 marks might
act synergistically to promote gene transcription, while most
H3K27me3-marked genes exhibited low or no expression and
were devoid of the two transcriptionally permissive histone marks
(Fig. 3e). Highly expressed genes showed extremely low associa-
tion with H3K27me3, but high enrichment in H3K9ac and/or
H3K4me3 suggested that H3K9ac and H3K4me3 marks were
mutually exclusive of H3K27me3. Some genes, in which the
three marks co-exist, showed variable expression in different tis-
sues of the ovary and which might reflect the mixed nature of the
tissues used in the ChIP-seq experiments. Although it cannot be
ruled out that genes detected as associated with antagonistic his-
tone marks may correspond to two versions of the same gene
bearing distinct marks in two different cell or tissue types. How-
ever, sequential ChIP performed at the cellular level provided
proof that several bivalent genes or regions can truly exist in
plants and other organisms (Sequeira-Mendes ez al., 2014). It has
been reported that the trithorax group (TrxG) and PcG, known
to mediate H3K4 and H3K27 histone modifications, respec-
tively, worked antagonistically to activate or repress overlapping
sets of genes (Schuettengruber ez 4/, 2007; Pu & Sung, 2015). In
this regard, Arabidopsis AGMOUS and FLOWERING LOCUS C
genes were shown to be a common target for H3K4me3-TrxG
and H3K27me3-PcGs, thus conferring to these histone modifiers
key roles in the shift from embryo to seedling or from vegetative
to reproductive phases (Saleh ez al, 2007; Pien et al., 2008).
Some critical genes have been reported to carry bivalent marks in

Arabidopsis and potato (Saleh ez al, 2007; Berr et al., 2010;

Sequeira-Mendes ez al., 2014; Zeng et al., 2019) and, accord-
ingly, our data revealed the concomitant occurrence of
H3K4me3, H3K9ac and H3K27me3 histone marks in a number
of tomato homeobox transcription factor genes such as HB-
BELL, HB-WOX, HB-KNOX, HB-HD-ZIP and zf~HD involved
in vegetative (Reiser ez al., 1995; Byrne et al., 2003; Mele, 2003;
Du et al, 2009) or reproductive organ development such as
TAGL1, TAGLII and RIN MADS-box (Itkin et al, 2009;
Martel et al, 2011) (Table S12).

Several studies have reported the critical role of DNA demethy-
lation during the ripening of tomato fruit through de-repression of
key ripening regulator genes such as CNR, RIN and NOR (Man-
ning et al., 2006; Li et al, 2008; Zhong et al, 2013; Liu et al,
2015). This process is mediated by SIDML2 DNA demethylase,
which was shown to exhibit high expression levels during the fruit
ripening transition. By contrast, our data showed that SIDML2, as
well as three other DNA demethylase genes, displayed extremely
low expression levels during the flower-to-fruit transition, suggest-
ing a minor contribution of DNA demethylation to changes in
transcriptomic reprogramming during the fruit set process. Alto-
gether, our study indicated that change in DNA methylation was
weakly associated with the fruit set transcriptomic programme,
although a small set of genes involved in the fruit set transition
might be controlled by DNA methylation. In line with this idea,
recent DNA methylome studies in soybean and Arabidopsis seeds
showed that changes in cytosine methylation did not correlate with
changes in transcript levels of genes extremely important for seed
development and germination (Lin ez al, 2017; Kawakatsu ez al,
2017). Taking together, it seems that different developmental
transitions in tomato fruit might be associated with different
modes of epigenetic remodelling, even though HPTMs have not
been thoroughly addressed in the case of fruit ripening,

The ChIP-seq data revealed a net enrichment for the three his-
tone marks in 4DPA and 4IAA compared with 0DPA samples
(Fig. 4a), consistent with the decreased expression of histone
deacetylase and the upregulation of histone methyltransferase
genes revealed by RNA-seq during fruit set. However, impairing
the expression of histone methyltransferase genes that displayed
expression patterns matching the fruit set transition in tomato
failed to provide clear clues to the putative role of these histone
modifiers in the fruit set process. In some cases, knockout

Fig. 6 Histone modifier genes during tomato fruit set. (a) Differential expression and histone mark association of epigenetic-related genes during fruit set.
The upper panel of the graph corresponds to the expression profile, where x-axis refers to the gene name annotated either based on tomato referenced
studies or, when missing, according to the best corresponding orthologue in Arabidopsis. Genes with significant differential expression were marked by
asterisks (*fold >2 and 0.01 < P-value < 0.05; **fold >2 and 0.001 < P-value <0.01; ***fold > 2 and P-value <0.001). The lower panel corresponds to the
heatmap of DEGs and DAs. The pink blocks indicate an increase in gene expression (fold >2 and P-value <0.01) or histone mark association (P <0.01); the
green blocks indicate a decrease in gene expression (fold >2 and P-value <0.01) or histone mark association (P <0.01). The blue blocks indicate that at
least two DA regions are found in the same gene and these DAs show both gain and loss of histone marks (P <0.01). (b) Heatmaps showing absolute mean
normalised expression values. The expression patterns of 19 DE histone modifier genes (left panel) were assessed using expression datasets available in
TomExeress platform which includes several developmental stages and tissue types from wild species S. pimpinellifolium (middle panel) and

Solanum lycopersicum (right panel). Of these, six genes showing consistent expression patterns among various experimental contexts are highlighted red
to signify the potential importance of these histone modifiers in the control of the fruit set. (c) Knockout of SISDG27 in tomato leads to seedless fruit
formation in CR#SDG27 plants generated by CRISPR/Cas9 gene editing. Two guide RNAs (sgRNA1 and sgRNA2; green bars) were designed for editing
the target gene. Protospacer-adjacent motif (PAM) are indicated in blue letters. Two independent mutations within S/ISDG27 sequence are shown in red
and sequence gaps represented by dashes. The predicted truncated proteins are schematically illustrated to show they are impaired in PHD and SET
functional domains. The lower panel shows parthenocarpic fruits in heterozygous lines representative of the phenotypes displayed by the two SISDG27

mutants. Bars, 1 cm.
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mutations in these genes might be lethal or impair the regenera-
tion of essential plant organs during the genetic transformation
process, thus precluding obtaining corresponding mutants. In
some other cases, functional redundancy among members of gene
families may obstruct the observation of the phenotypes. Never-
theless, heterozygous lines bearing a knockout mutation within
the SISDG27 gene showed pollination-independent fruit forma-
tion, suggesting a potential role for this gene in triggering the
fower-to-fruit transition.

Opverall, the present study sheds new light on the main events
and regulatory mechanism underlying the fruit set transition, and
provides novel targets for the design of breeding strategies, aim-
ing to ensure yield stability in the face of climate change by tar-
geting not only genetic variation but also epigenetic regulation.
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